Use of a Satellite-Based Aridity Index to Monitor Decreased Soil Water Content and Grass Growth in Grasslands of North-East Asia
Abstract
:1. Introduction
2. Methods
2.1. Study Areas and Periods
2.1.1. Shenmu, China
2.1.2. Bayan-Unjuul, Mongolia
2.2. Data and Calculation of the NDVI and SbAI
2.3. Effective Cumulative Reciprocal SbAI
- Can the CRSbAI replace the cumulative decreased SWC (CdSWC)?
- Is the CRSbAI related to vegetation growth?
3. Results
3.1. Seasonal Change in the NDVI, SWC, and SbAI in Shenmu
3.2. Relationships among CRSbAI, CdSWC, and ∆NDVI in Shenmu
3.3. Validation of the CRSbAI Method in Bayan-Unjuul
3.4. Simulation of CdSWC in Bayan-Unjuul
4. Discussion
- NDVI < 0.2 ≡ CRSbAI < 40;
- 0.2 < NDVI < 0.4 ≡ 40 < CRSbAI < 80;
- 0.4 < NDVI < 0.6 ≡ 80 < CRSbAI < 120.
- 0 < CdSWC < 50 ≡ 0 < Pr < 80;
- 50 < CdSWC < 70 ≡ 80 < Pr < 130;
- 70 < CdSWC < 110 ≡ 130 < Pr < 210;
- 110 < CdSWC ≡ 210 < Pr.
5. Conclusions
- Can the CRSbAI replace CdSWC?
- Is the CRSbAI related to grass growth and represented by ∆NDVI?
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate change 2013: The physical science basis. In Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F.D., Qin, G.-K., Plattner, M., Tignor, S.K., Allen, J., Boschung, A., Nauels, Y., Xia, V.B., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK, 2013; p. 1535. [Google Scholar]
- Feng, S.; Fu, Q. Expansion of global drylands under a warming climate. Atmos. Chem. Phys. 2013, 13, 10081–10094. [Google Scholar] [CrossRef] [Green Version]
- Koutroulis, A.G. Dryland changes under different levels of global warming. Sci. Total Environ. 2019, 655, 482–511. [Google Scholar] [CrossRef] [PubMed]
- Bréon, F.M.; Luneau, G. Atlas du Climat face Aux Défis du Réchauffement; Éditions Autrement: Paris, France, 2015; p. 96. [Google Scholar]
- Cherlet, M.; Hutchinson, C.; Reynolds, J.; Hill, J.; Sommer, S.; Von Maltitz, G. (Eds.) World Atlas of Desertification; Publication Office of the European Union: Luxembourg, 2018; p. 248. [Google Scholar]
- Kimura, R. Validation and application of the monitoring method for degraded land area based on a dust erodibility in eastern Asia. Int. J. Remote Sens. 2017, 38, 4553–4564. [Google Scholar] [CrossRef]
- Hessl, A.E.; Anchukaitis, K.J.; Jelsema, C.; Cook, B.; Byambasuren, O.; Leland, C.; Nachin, B.; Pederson, N.; Tian, H.; Hayles, L.A. Past and future drought in Mongolia. Sci. Adv. 2018, 4, e1701832. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Natsagadorj, L.; Dulamsuren, J. Some aspects of assessment of the dzud phenomena. Pap. Meteorol. Hydrol. 2001, 23, 3–18. [Google Scholar]
- Iwasaki, H. NDVI prediction over Mongolian grassland using GSMaP precipitation data and JRA-25/JCDAS temperature data. J. Arid Environ. 2009, 73, 557–562. [Google Scholar] [CrossRef]
- Du, C.; Shinoda, M.; Tachiiri, K.; Nandintsetseg, B.; Komiyama, H.; Matsushita, S. Mongolian herders’ vulnerability to dzud: A study of record livestock mortality levels during the severe 2009/2010 winter. Nat. Hazards 2018, 92, S3–S17. [Google Scholar] [CrossRef]
- Kimura, R.; Bai, L.; Wang, J. Relationships among dust outbreaks, vegetation cover, and surface soil water content on the Loess Plateau of China, 1999–2000. Catena 2009, 77, 292–296. [Google Scholar] [CrossRef]
- Kimura, R.; Shinoda, M. Spatial distribution of threshold wind speeds for dust outbreaks in northeast Asia. Geomorphology 2010, 114, 319–325. [Google Scholar] [CrossRef]
- Kimura, R. Factors contributing to dust storms in source regions producing the yellow-sand phenomena observed in Japan from 1993 to 2002. J. Arid Environ. 2012, 80, 40–44. [Google Scholar] [CrossRef]
- Fang, Z.Y.; Zhu, F.K.; Jiang, J.X.; Qian, Z.A. Studies on Dust Storm in China; China Meteorological Press: Beijing, China, 1997; p. 158. [Google Scholar]
- Kwon, H.J.; Cho, S.H.; Chun, Y.; Lagarde, F.; Pershagen, G. Effects of the Asian dust events on daily mortality in Seoul, Korea. Environ. Res. Sect. 2002, A 90, 1–5. [Google Scholar] [CrossRef]
- Onishi, K.; Sekiyama, T.T.; Nojima, M.; Kurosaki, Y.; Fujitani, Y.; Otani, S.; Maki, T.; Shinoda, M.; Kurozawa, Y.; Yamagata, Z. Prediction of health effects of cross-border atmospheric pollutants using an aerosol forecast model. Environ. Int. 2018, 117, 48–56. [Google Scholar] [CrossRef]
- Jones, H.G. Plants and Microclimate: A Quantitative Approach to Environmental Plant Physiology, 3rd ed.; Cambridge University Press: Cambridge, UK, 2014; p. 423. [Google Scholar]
- MLIT. 2007. Available online: https://www.mlit.go.jp/river/pamphlet_jirei/bousai/saigai/kiroku/suigai/suigai_3-1-1.html/ (accessed on 24 August 2020).
- Kimura, R. Relationships between NDVI, rainfall, and soil water content of the natural grassland in the Liudaogou river basin of the Loess Plateau. J. Arid Land Stud. 2011, 21, 1–6. [Google Scholar]
- Jones, H.G.; Vaughan, R.A. Remote Sensing of Vegetation; Oxford University Press: New York, NY, USA, 2010; p. 353. [Google Scholar]
- Kimura, R.; Moriyama, M. Determination by MODIS satellite-based methods of recent global trends in land surface aridity and degradation. J. Agric. Meteorol. 2019, 75, 153–159. [Google Scholar] [CrossRef] [Green Version]
- Cogato, A.; Meggio, F.; De Antoni Migliorati, M.; Marinello, F. Extreme Weather Events in Agriculture: A Systematic Review. Sustainability 2019, 11, 2547. [Google Scholar] [CrossRef] [Green Version]
- Kanda, E.; Torigoe, Y.; Kobayashi, T. A simple model to predict the developmental stages of rice panicles using the effective accumulative temperature. Jpn. J. Crop. Sci. 2002, 71, 394–402. [Google Scholar] [CrossRef] [Green Version]
- Yasumoto, S.; Maki, N.; Kojima, M.; Ohshita, Y. Changes in developmental duration of direct-seeded rice in a well-drained paddy field in response to late planting. Plant Prod. Sci. 2017, 20, 279–287. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Ishii, Y.; Idota, S.; Tobisa, M.; Niimi, M.; Yang, Y.; Nishimura, K. Yield and quality of forages in a triple cropping system in southern Kyushu, Japan. Agronomy 2019, 9, 277. [Google Scholar] [CrossRef] [Green Version]
- Horie, T.; Nakagawa, H. Modelling and prediction of developmental process in rice. Jpn. J. Crop Sci. 1990, 59, 687–695. [Google Scholar] [CrossRef] [Green Version]
- Homma, K.; Maki, M.; Hirooka, Y. Development of a rice simulation model for remote-sensing (SIMRIW-RS). J. Agric. Meteorol. 2017, 73, 9–15. [Google Scholar] [CrossRef] [Green Version]
- Yoshida, R.; Fukui, S.; Fukui, S.; Yamazaki, T. Applicability of meteorological ensemble forecasting to predict summer cold damage in rice growth. J. Agric. Meteorol. 2020, 76, 128–139. [Google Scholar] [CrossRef]
- Jackson, T.J. Measuring surface soil moisture using passive microwave remote sensing. Hydrol. Process. 1993, 7, 139–152. [Google Scholar] [CrossRef]
- Koike, T.; Nakamura, Y.; Kaihotsu, I.; Davva, N.; Matsuura, K.; Tamagawa, K.; Fujii, H. Development of an advanced microwave scanning radiometer (AMSR-E) algorithm of soil moisture and vegetation water content. Annual Journal of Hydraulic Engineering. JSCE 2004, 48, 217–222. [Google Scholar]
- Fujii, H.; Koike, T.; Imaoka, K. Improvement of the AMSR-E algorithm for soil moisture estimation by introducing a fractional vegetation coverage dataset derived from MODIS data. J. Remote Sens. Soc. Jpn. 2009, 29, 282–292. [Google Scholar]
- Kaihotsu, I.; Asanuma, J.; Aida, K.; Oyunbaatar, D. Evaluation of the AMSR2 L2 soil moisture product of JAXA on the Mongolian Plateau over seven years (2012–2018). SN Appl. Sci. 2019, 1, 1477. [Google Scholar] [CrossRef] [Green Version]
- Verhoef, A. Remote estimation of thermal inertia and soil heat flux for bare soil. Agric. For. Meteorol. 2004, 123, 221–236. [Google Scholar] [CrossRef]
- Verstraeten, W.W.; Veroustraete, F.; Van der Sande, C.J.; Grootaers, I.; Feyen, J. Soil moisture retrieval using thermal inertia, determined with visible and thermal space borne data, validated for European forests. Remote Sens. Environ. 2006, 101, 299–314. [Google Scholar] [CrossRef]
- Matsushima, D.; Kimura, R.; Shinoda, M. Soil moisture estimation using thermal inertia: Potential and sensitivity to data conditions. J. Hydrometeorol. 2012, 13, 638–648. [Google Scholar] [CrossRef]
- Kimura, R. Global detection of aridification or increasing wetness in arid regions from 2001 to 2013. Nat. Hazards 2020, 103, 2261–2276. [Google Scholar] [CrossRef]
- Matsushima, D.; Kimura, R.; Kurosaki, Y.; Ganzorig, U.; Shinoda, M. A method for estimating the threshold wind speed for dust emissions as a function of soil moisture. Bound. Layer Meteorol. 2020, 175, 237–257. [Google Scholar] [CrossRef]
- Kimura, R.; Moriyama, M. Application of a satellite-based aridity index in dust source regions of northeast Asia. J. Arid Environ. 2014, 109, 31–38. [Google Scholar] [CrossRef]
- Kimura, R. Global distribution of degraded land area based on dust erodibility determined from satellite data. Int. J. Remote Sens. 2018, 39, 5859–5871. [Google Scholar] [CrossRef]
- Kimura, R.; Fan, J.; Zhang, X.; Takayama, N.; Kamichika, M.; Matsuoka, N. Evapotranspiration over the grassland field in the Liudaogou basin of the Loess Plateau, China. Acta Oecologica 2006, 29, 45–53. [Google Scholar] [CrossRef]
- Academia Sinica and Ministry of Water Resources. Memoir of Northwestern Institute of Soil and Water Conservation; Shaanxi Scientific and Technological Press: Xi’an, China, 1993; Volume 18, p. 144. (In Chinese)
- UNEP. World Atlas of Desertification; Arnold: London, UK, 1997; p. 182. [Google Scholar]
- Shinoda, M.; Nachinshonhor, G.U.; Nemoto, M. Impact of drought on vegetation dynamics of the Mongolian steppe: A field experiment. J. Arid Environ. 2010, 74, 63–69. [Google Scholar] [CrossRef]
- FAO. Special Report—FAO/WFP Crop and Livestock Assessment Mission to Mongolia; FAO/WFP: Rome, Italy, 2017; p. 43. [Google Scholar]
- JMA (Japan Meteorological Agency). 2018. Available online: https://www.jma.go.jp/jma/press/1812/21d/worldclim2018.html/ (accessed on 21 August 2020).
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W.; Harlan, J.C. Monitoring the Vernal Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation; NASA/GSFC Final report; NASA Goddard Space Flight Center : Greenbelt, MD, USA, 1974. [Google Scholar]
- Miyazaki, S.; Yasunari, T.; Miyamoto, T.; Kaihotsu, I.; Davaa, G.; Oyunbaatar, D.; Natsagdorj, L.; Oki, T. Agrometeorological conditions of grassland vegetation in central Mongolia and their impact for leaf area growth. J. Geophys. Res. 2004, 109, D22106. [Google Scholar] [CrossRef]
- Nandintsetseg, B.; Shinoda, M.; Kimura, R.; Ibaraki, Y. Relationship between soil moisture and vegetation activity in the Mongolian steppe. SOLA 2010, 6, 029–032. [Google Scholar] [CrossRef] [Green Version]
- Kawamura, K.; Akiyama, T.; Yokota, H.; Tsutsumi, M.; Yasuda, T.; Watanabe, O.; Wang, S. Comparing MODIS vegetation indices with AVHRR NDVI for monitoring the forage quantity and quality in Inner Mongolia grassland, China. Jpn. Soc. Grassl. Sci. 2005, 51, 33–40. [Google Scholar] [CrossRef]
- Nakano, T.; Bavuudorj, G.; Nachinshonhor, G.U.; Shinoda, M. Monitoring aboveground biomass in semiarid grasslands using MODIS images. J. Agric. Meteorol. 2013, 69, 33–39. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, A.A.; Kimura, R.; Shinoda, M.; Moriyama, M. Diurnal surface temperature difference index derived from ground-based meteorological measurements for assessment of moisture availability. J. Arid Environ. 2011, 75, 156–163. [Google Scholar] [CrossRef]
- Baldocchi, D.D.; Xu, L.; Kiang, N. How plant functional-type, weather, seasonal drought and soil physical properties alter water and energy fluxes of an oak-grass savanna and an annual grassland. Agric. Forest Meteorol. 2004, 123, 13–39. [Google Scholar] [CrossRef] [Green Version]
- Everson, C.S. The water balance of a first order catchment in the montane grasslands of South Africa. J. Hydrol. 2001, 241, 110–123. [Google Scholar] [CrossRef]
- Li, S.G.; Asanuma, J.; Kotani, A.; Davaa, G.; Oyunbaatar, D. Evapotranspiration from a Mongolian steppe under grazing and its environmental constraints. J. Hydrol. 2007, 333, 133–143. [Google Scholar] [CrossRef]
- Kimura, R.; Moriyama, M. Recent trends of annual aridity indices and classification of arid regions with satellite-based aridity indices. Remote Sens. Earth Syst. Sci. 2019, 2, 88–95. [Google Scholar] [CrossRef]
- Sun, J.; Zhang, M.; Liu, T. Spatial and temporal characteristics of dust storms in China and its surrounding regions, 1960–1999: Relations to source area and climate. J. Geophys. Res. 2001, 106, 10325–10333. [Google Scholar] [CrossRef]
- Miao, L.; Luan, Y.; Luo, X.; Liu, Q.; Moore, J.C.; Nath, R.; He, B.; Zhu, F.; Cui, X. Analysis of the phenology in the Mongolian plateau by inter-comparison of global vegetation datasets. Remote Sens. 2013, 5, 5193–5208. [Google Scholar] [CrossRef] [Green Version]
- Kimura, R. Satellite-based mapping of dust erodibility in northeast Asia. Nat. Hazards 2016, 92, 19–25. [Google Scholar] [CrossRef]
- Kimura, R.; Abulaiti, A.; Mano, M.; Matsushima, D. Surface heat flux analysis in Gobi Desert steppe, Mongolia—An observation study. SOLA 2016, 12, 175–180. [Google Scholar] [CrossRef] [Green Version]
ΔNDVI | CRSbAI (Daily) | CRSbAI (Monthly) | CdSWC (mm) (Daily) | CdSWC (mm) (Monthly) | |
---|---|---|---|---|---|
2017 | 0.219 | 794 | 39 | 54 | 66 |
2018 | 0.279 | 1549 | 68 | 95 | 108 |
2019 | 0.281 | 1302 | 57 | 83 | 93 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kimura, R.; Moriyama, M. Use of a Satellite-Based Aridity Index to Monitor Decreased Soil Water Content and Grass Growth in Grasslands of North-East Asia. Remote Sens. 2020, 12, 3556. https://doi.org/10.3390/rs12213556
Kimura R, Moriyama M. Use of a Satellite-Based Aridity Index to Monitor Decreased Soil Water Content and Grass Growth in Grasslands of North-East Asia. Remote Sensing. 2020; 12(21):3556. https://doi.org/10.3390/rs12213556
Chicago/Turabian StyleKimura, Reiji, and Masao Moriyama. 2020. "Use of a Satellite-Based Aridity Index to Monitor Decreased Soil Water Content and Grass Growth in Grasslands of North-East Asia" Remote Sensing 12, no. 21: 3556. https://doi.org/10.3390/rs12213556
APA StyleKimura, R., & Moriyama, M. (2020). Use of a Satellite-Based Aridity Index to Monitor Decreased Soil Water Content and Grass Growth in Grasslands of North-East Asia. Remote Sensing, 12(21), 3556. https://doi.org/10.3390/rs12213556