Remote Sensing of Mine Site Rehabilitation for Ecological Outcomes: A Global Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Criteria
- include remote sensing as a core component of the study;
- have mine rehabilitation as either a feature of the study or a discrete mapping class (regional or catchment scale studies that generate Land Use Land Cover (LULC) maps were not included);
- make a novel contribution to the ecology of mine site rehabilitation and successional focus, rather than mapping studies that might have focused more broadly on LULC;
- demonstrate a primary focus on vegetation rather than other biophysical attributes such as soil or water.
2.2. Data Compilation
3. Results
4. Discussion
4.1. Overview
4.2. Chronological Development of Remote Sensing for Mapping Rehabilitation
4.3. Recommendations for Operationalising Remote Sensing for Mine Site Rehabilitation
- The monitoring of ecosystem function in the remote sensing literature is scant and is a key metric for rehabilitation success. In particular, the SER sub-attribute of ecological resilience requires further research. Given that one of the key aims for mine site rehabilitation is an ecosystem that is self-sustainable, the measurement and demonstration of resilience is one key area for future work [12,29]. This is particularly salient given that disturbances such as fire, drought, disease, floods, and storms are inevitable and predicted to increase, given climate change.
- Comparing baselines and reference sites to rehabilitated sites is a common approach used when monitoring for restoration success [1], and is often a requirement of ecological monitoring programs. However, the comparison between mined and unmined ecosystems was only addressed by a few notable exceptions [44,89]. Comparisons between unmined natural ecosystems versus rehabilitation will provide stakeholders with confidence in rehabilitation success and is important to support mine closure, and can be directly addressed using remote sensing.
- Studies showing long-term (decadal) development and achievement of ecological processes, such as structural canopy development [65], are required to confirm that a post-mining ecosystem is self-sustainable and resilient. A single snapshot or multiple snapshots in time provide little evidence of how rehabilitation is responding to long-term environmental fluctuations and changes over time. For example, many studies used NDVI as a proxy for vegetation vigor and rehabilitation success, however, this index is highly responsive to seasonal fluctuations. A time-series of NDVI provides more insight into rehabilitation performance rather than a uni-temporal assessment.
- Large-scale studies using long-term ground monitoring data integrated with remote sensing metrics to assess ecosystem development should be explored, given the availability of comprehensive ground monitoring data-sets that are often required by regulators to demonstrate rehabilitation progression.
- Regional or continental scale inventories of rehabilitation estates can provide industry-wide (and company-wide) perspectives on completed and still-to-be-completed rehabilitation projects.
- There are many examples of remote sensing approaches for measuring vegetation health, which could be used for rehabilitation monitoring that have been demonstrated in other disciplines, such as forestry [90].
- Field-based monitoring is still the most common approach used globally for assessing rehabilitation success, yet it is time-consuming, labor intensive, and expensive. In order for remote sensing to be further operationalized by mining companies and government regulators, researchers need to demonstrate which field-based metrics can be confidently derived using remote sensing techniques.
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Imagery Type | Index | Description | Formula | No. Studies * | % of Total Studies |
---|---|---|---|---|---|
Hyper | Hyper (CARC) | Carotenoid Content | PSRI = (R680 − R500)/R750 | 1 | 1.0 |
Hyper | Hyper (CC1) | Chlorophyll Content | R695/R670 | 1 | 1.0 |
Hyper | Hyper (CC2) | Chlorophyll Content 2 | (R850-R710)/(R850-R680) | 1 | 1.0 |
Hyper | Hyper (LAC) | Leaf Anthocyanin Content | ARTI1 = (1/R700) − (1/R550) | 1 | 1.0 |
Hyper | Hyper (NDGI) | Normalised Differenced Green Index | NDGI = (G − R)/(G + R) | 1 | 1.0 |
Hyper | Hyper (Slope) | Slope | Slope = (NIR1125−NIR935)/(NIR1125−NIR935) | 1 | 1.0 |
Hyper | Hyper (SU) | Spectral Unmixing Endmember | - | 3 | 3.0 |
Multi | ARVI | Atmospherically Resistent Vegetation Index | ARVI = (NIR − (R − (B − R)))/(NIR + (R − (B − R))) | 1 | 1.0 |
Multi | CVI | Chlorophyll Vegetation Index | NIR×R/G2 | 1 | 1.0 |
Multi | DVI | Difference Veg Index | DVI = NIR − R | 2 | 2.0 |
Multi | EVI | Enhanced Vegetation Index | EVI = G × (NIR − R)/(NIR + C1 ×R − C2 ×B + L) | 6 | 6.1 |
Multi | EVI2 | Enhanced Vegetation Index 2 | EVI2 = 2.5 × NIR-R/NIR + 2.4 ×R + L | 1 | 1.0 |
Multi | Frac Veg | Fractional Vegetation Cover | FVC = (NDVI − NDVImin)/(NDVImax − NDVImin) | 5 | 5.1 |
Multi | MSAVI | Modified Soil Adjusted Vegetation Index | MSAVI = (NIR − R)/(NIR + R+L) × (1 + L) | 1 | 1.0 |
Multi | MSAVI2 | Modified Soil Adjusted Vegetation Index 2 | MSAVI2 = (2 ×NIR + 1-SQRT((2 × NIR + 1)2 − 8 × (NIR-R)) ×0.5 | 2 | 2.0 |
Multi | NBR1 | Normalised Burn Ratio 1 | NBR = (NIR-SWIR2)/(NIR + SWIR2) (note SWIR2 =2.11-2.29µm on Landsat 8) | 4 | 4.0 |
Multi | NBR2 | Normalised Burn Ratio 2 | NBR2 = (SWIR1 − SWIR2)/(SWIR1 + SWIR2) (note SWIR1 =1.57−1.65 µm SWIR2 = 2.11−2.29 µm on Landsat 8) | 1 | 1.0 |
Multi | NDVI | Normalised Differenced Vegetation Index | NDVI = (NIR − R)/(NIR + R) | 44 | 44.4 |
Multi | NDVI(B) | Normalised Differenced Vegetation Index (Blue) | BNVI = (NIR − B)/(NIR + B) | 1 | 1.0 |
Multi | NDVI(G) | Normalised Differenced Vegetation Index (Green) | GNVI = (NIR − G)/(NIR + G) | 2 | 2.0 |
Multi | NDVI(RE) | Normalised Differenced Vegetation Index (Red Edge) | NDVI(RE) = (NIR − RE)/(NIR + RE) | 1 | 1.0 |
Multi | NDWI1 | Normalised Differenced Wetness Index 1 | NDWI1 = (G − NIR)/(G + NIR) | 1 | 1.0 |
Multi | NMDI | Normalised Moisture Differenced Index | NMDI = (NIR-SWIR1)/(NIR + SWIR1) (note SWIR1 =1.57−1.65 µm on L8) | 6 | 6.1 |
Multi | PVI | Perpendicular Vegetation Index | PVI = NIR × sinx − R × cosx | 1 | 1.0 |
Multi | Ratio (Unspecified) | Vegetation Ratio | Unspecified (suspected NDVI) | 1 | 1.0 |
Multi | RI | Regrowth index | RI = NDVI (inner patch) − NDVI (outer patch) | 1 | 1.0 |
Multi | RSR | Reduced Simple Ratio | RSR = SR×1 − SWIR − SWIRmin × SWIRmax − SWIRmin | 2 | 2.0 |
Multi | RVI | Ratio Vegetation Index | RVI = R/NIR | 3 | 3.0 |
Multi | SAVI | Soil Adjusted Vegetation Index | SAVI = (NIR-R)/(NIR + R) +L × (1 + L) | 7 | 7.1 |
Multi | SR | Simple Ratio | NIR/R | 6 | 6.1 |
Multi | SR2 | Simple Ratio 2 | NIR/SWIR | 1 | 1.0 |
Multi | TSAVI | Transformed Soil Adjusted Vegetation Index | TSAVI = s × (NIR-s × R-a)/(a × NIR + R-a × s + X ×(1 + s2) | 2 | 2.0 |
Multi | WDVI | Weighted difference veg Index | WDVI = NIR-s × R | 1 | 1.0 |
No_Index | Sensor Bands Only | - | 43 | 43.4 | |
Orthagonal | PCA | Principal Components Analysis | - | 4 | 4.0 |
Orthagonal | Tass Cap | Tasselated Cap | - | 9 | 9.1 |
SAR | SAR (SNR) | Signal to Noise Ratio (not a spectral index) | SNR = M/LSD | 1 | 1.0 |
Thermal | LE | Latent Energy Heat Flux | LE = Rn × (0.114 + 0.78 ×EVI + 0.004 × LST) | 2 | 2.0 |
VIS | RBG (GRI) | Green Ratio index | GRI = NIR/G | 1 | 1.0 |
VIS | RGB (EGI) | Excess Green index | EGI = 2 × G-R-B | 1 | 1.0 |
VIS | RGB (EGIR) | Excess Green Index Ratio | EGIR = R/2 × G × 1000 | 1 | 1.0 |
VIS | RGB (MEGI) | Modified Excess Green Index | MEGI = 2 × G-R | 1 | 1.0 |
VIS | RGB (TGI) | Triangular Greenness Index | TGI = -0.5[(670-480)(R-G)-(670-550)(R-B) | 1 | 1.0 |
VIS | RGB (VARI) | Visible Atmospheric Resistant Index | VARI = (G-R)/(G+R-B) | 1 | 1.0 |
VIS | RGB (VI) | Vegetation Index | VI = (2 × G-R-B) − (1.4 × R-G) | 1 | 1.0 |
Appendix B
No. | Author | Ref | Year | Country | Commodity Summary | Sensor Summary | Craft Primary | Spatial Extent | Temporal Scale | Classification Type | Field Obs | Study Type 1 | Study Type 2 (Attributes) | Study Type 2 (Sub-Attributes) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Wobber etal | [47] | 1975 | USA | Coal | EO Low | Landsat | Regional | Uni-Temporal | Manual | Y | Land Cover | Structural Diversity | Spatial Mosaic |
2 | Anderson & Schubert | [91] | 1976 | USA | Coal | EO Low | Landsat | Site Scale | Uni-Temporal | Supervised | Y | Land Cover | Structural Diversity | Spatial Mosaic |
3 | Anderson etal | [50] | 1977 | USA | Coal | EO Low | Landsat | Regional | Tri-Temporal | Supervised | N | Land Cover | Structural Diversity | Spatial Mosaic |
4 | Mamula | [48] | 1978 | USA | Coal | EO Low | Landsat | Regional | Uni-Temporal | Supervised | N | Land Cover | Structural Diversity | Spatial Mosaic |
5 | Brumbaugh | [51] | 1979 | USA | Coal | EO Low | Landsat | Regional | Uni-Temporal | Manual | N | Land Cover | Structural Diversity | Spatial Mosaic |
6 | Game etal | [92] | 1982 | USA | Coal | Aerial Optical | Aerial_Optical | Site Scale | Multi-Temporal | Supervised | Y | Ecol (Field Obs) | Structural Diversity | Spatial Mosaic |
7 | Irons & Kennard | [93] | 1986 | USA | Coal | EO Low | Landsat | Regional | Uni-Temporal | Supervised | N | Land Cover | Structural Diversity | Spatial Mosaic |
8 | Parks etal | [22] | 1987 | USA | Coal | EO Low | Landsat | Regional | Bi-Temporal | Supervised | Y | Land Cover | Structural Diversity | Spatial Mosaic |
9 | Phinn etal | [27] | 1991 | Australia | Mineral Sand | EO Low | Landsat | Site Scale | Uni-Temporal | Supervised | Y | Ecol (Field Obs) | Structural Diversity | Spatial Mosaic |
10 | Hill & Phinn | [63] | 1993 | Australia | Mineral Sand | EO Low | Landsat | Site Scale | Uni-Temporal | Supervised | Y | Ecol (Field Obs) | Species Composition | Desirable Animals |
11 | Rathore & Wright | [34] | 1993 | NA | NA | NA | NA | NA | NA | NA | NA | Review | NA | NA |
12 | Felinks etal | [26] | 1998 | Germany | Coal | EO Low | Landsat | Site Scale | Bi-Temporal | Manual | Y | Ecol (Field Obs) | Structural Diversity | Spatial Mosaic |
13 | Schmid etal | [21] | 1998 | Germany | Coal | EO Low | Landsat | Site Scale | Multi-Temporal | Supervised | Y | Ecol (Field Obs) | Structural Diversity | Spatial Mosaic |
14 | Staenz etal | [94] | 1999 | Canada | Metalliferous | Aerial Hyper | Aerial_Hyperspec | Site Scale | Uni-Temporal | Supervised | Y | Ecol (Field Obs) | Structural Diversity | Spatial Mosaic |
15 | Lévesque etal | [95] | 2000 | Canada | Metalliferous | Aerial Hyper | Aerial_Hyperspec | Site Scale | Uni-Temporal | Supervised | N | Ecol (No Field Obs) | Structural Diversity | Spatial Mosaic |
16 | Almeida-filho | [45] | 2002 | Brazil | Metalliferous | EO Low | Landsat | Site Scale | Decadal | Unsupervised | N | Land Cover | Structural Diversity | Spatial Mosaic |
17 | Bonifazi etal | [84] | 2003 | Italy | Quarry | EO Low | Landsat | Regional | Uni-Temporal | Manual | Y | Ecol (Field Obs) | Structural Diversity | Spatial Mosaic |
18 | Cutaia etal | [96] | 2004 | Italy | Quarry | EO Low | Landsat | Regional | Tri-Temporal | Manual | Y | Ecol (Field Obs) | Structural Diversity | Spatial Mosaic |
19 | Ganas etal | [53] | 2004 | Greece | Metalliferous | EO Low | Landsat | Site Scale | Tri-Temporal | Supervised | N | DSS | NA | NA |
20 | Pfitzner etal | [97] | 2006 | Australia | Uranium | Field Hyper | Field_Hyperspec | NA | NA | NA | N | Theoretical | Species Composition | Desirable Plants |
21 | Trisasongko etal | [98] | 2006 | Indonesia | Metalliferous | SAR | SAR | Regional | Uni-Temporal | Unsupervised | N | Land Cover | Structural Diversity | Spatial Mosaic |
22 | Weiersbye etal | [99] | 2006 | South Africa | Metalliferous | Aerial Hyper | Aerial_Hyperspec | Block Scale | Uni-Temporal | Supervised | Y | Ecol (Field Obs) | Absence of Threats | Contamination |
23 | Antwi etal | [52] | 2008 | Germany | Coal | EO Low | Landsat | Site Scale | Bi-Temporal | Manual | N | Ecol (No Field Obs) | Structural Diversity | Spatial Mosaic |
24 | Gillanders etal | [55] | 2008 | Canada | Oil Sands | EO Low | Landsat | Regional | Decadal | Unsupervised | N | Land Cover | Structural Diversity | Spatial Mosaic |
25 | Halounová | [54] | 2008 | Czech Republic | Coal | EO Low | Landsat | Regional | Tri-Temporal | Manual | N | Ecol (No Field Obs) | Ecosystem Function | Productivity/Cycling |
26 | Lau etal | [100] | 2008 | Australia | Bauxite | Aerial Hyper | Aerial_Hyperspec | Site Scale | Uni-Temporal | NA | Y | Ecol (Field Obs) | Physical Conditions | Water Chemo-Physical |
27 | Lévesque & Staenz | [82] | 2008 | Canada | Metalliferous | Aerial Hyper | Aerial_Hyperspec | Site Scale | Tri-Temporal | Unsupervised | Y | Ecol (Field Obs) | Structural Diversity | Spatial Mosaic |
28 | Richter etal | [101] | 2008 | Canada | Metalliferous | Aerial Hyper | Aerial_Hyperspec | Site Scale | Uni-Temporal | Supervised | Y | Land Cover | Structural Diversity | Spatial Mosaic |
29 | Yang | [102] | 2008 | USA | Coal | EO Low | Landsat | Site Scale | Tri-Temporal | Supervised | Y | Land Cover | Structural Diversity | Spatial Mosaic |
30 | Lu etal | [103] | 2009 | China | Coal | EO Low | EO-1_Hyperion | Site Scale | Uni-Temporal | NA | Y | Ecol (Field Obs) | Ecosystem Function | Productivity/Cycling |
31 | Townsend etal | [79] | 2009 | USA | Coal | EO Low | Landsat | Regional | Decadal | Unsupervised | N | Land Cover | Structural Diversity | Spatial Mosaic |
32 | Wei etal | [104] | 2009 | China | Coal | EO Low | Landsat | Site Scale | Decadal | Manual | N | Land Cover | Structural Diversity | Spatial Mosaic |
33 | Sonwalkar etal | [105] | 2010 | USA | Metalliferous | EO Low | MODIS | Site Scale | Multi-Temporal | Manual | N | Land Cover | Structural Diversity | Spatial Mosaic |
34 | Spyropoulos etal | [106] | 2010 | Greece | Metalliferous | EO Low | Landsat | Site Scale | Tri-Temporal | Supervised | N | DSS | NA | NA |
35 | Demirel etal | [67] | 2011 | Turkey | Coal | EO High | IKONOS_&_Quickbird | Site Scale | Bi-Temporal | Supervised | N | Land Cover | Structural Diversity | Spatial Mosaic |
36 | Demirel etal | [68] | 2011 | Turkey | Coal | EO High | IKONOS_&_Quickbird | Site Scale | Bi-Temporal | Supervised | N | Land Cover | Structural Diversity | Spatial Mosaic |
37 | Erener | [59] | 2011 | Turkey | Coal | EO Low | Landsat | Regional | Tri-Temporal | Manual | N | Ecol (No Field Obs) | Ecosystem Function | Productivity/Cycling |
38 | Procházka etal | [107] | 2011 | Czech Republic | Coal | EO Low | Landsat | Site Scale | Uni-Temporal | Unsupervised | Y | Ecol (Field Obs) | External Exchanges | Landscape Flows |
39 | Sun etal | [108] | 2011 | China | Coal | Field Hyper | Field_Hyperspec | Block Scale | Uni-Temporal | Supervised | Y | Ecol (Field Obs) | Species Composition | Desirable Plants |
40 | Bao etal | [69] | 2012 | China | Coal | EO High | Quickbird | Site Scale | Uni-Temporal | Manual | N | Ecol (No Field Obs) | Species Composition | Desirable Plants |
41 | Bodlak etal | [28] | 2012 | Czech Republic | Coal | EO Low | Landsat | Site Scale | Bi-Temporal | Manual | Y | Ecol (Field Obs) | External Exchanges | Landscape Flows |
42 | Brom etal | [66] | 2012 | Czech Republic | Coal | EO Low | Landsat | Site Scale | Decadal | Manual | N | Ecol (No Field Obs) | External Exchanges | Landscape Flows |
43 | Sen etal | [32] | 2012 | USA | Coal | EO Low | Landsat | Regional | Decadal | Supervised | N | Ecol (No Field Obs) | Ecosystem Function | Productivity/Cycling |
44 | Fletcher & Erskine | [74] | 2013 | Australia | Coal | Drone | Drone | Block Scale | Uni-Temporal | Manual | N | Ecol (No Field Obs) | Structural Diversity | All vegetation strata |
45 | Lemke etal | [60] | 2013 | USA | Coal | EO Low | Landsat | Regional | Decadal | Manual | Y | Ecol (Field Obs) | Absence of Threats | Invasive Species |
46 | Oparin etal | [62] | 2013 | Russia | Coal | EO Low | Landsat | Site Scale | Bi-Temporal | Manual | N | Land Cover | Structural Diversity | Spatial Mosaic |
47 | Petropoulos etal | [56] | 2013 | Greece | Quarry | EO Low | Landsat | Regional | Tri-Temporal | Supervised | N | Land Cover | Structural Diversity | Spatial Mosaic |
48 | Raval etal | [70] | 2013 | Australia | Coal | EO High | WorldView | Site Scale | Uni-Temporal | Manual | N | Ecol (No Field Obs) | Structural Diversity | Spatial Mosaic |
49 | Antwi etal | [109] | 2014 | Germany | Coal | EO Low | Landsat | Regional | Decadal | Supervised | Y | Ecol (Field Obs) | Structural Diversity | Spatial Mosaic |
50 | Bao etal | [31] | 2014 | Australia | Metalliferous | EO Med | SPOT | Site Scale | Uni-Temporal | GEOBIA | Y | Ecol (Field Obs) | Structural Diversity | Spatial Mosaic |
51 | Bao etal | [44] | 2014 | Australia | Metalliferous | EO Med | SPOT | Site Scale | Multi-Temporal | Manual | N | Ecol (No Field Obs) | Ecosystem Function | Productivity/Cycling |
52 | Maxwell etal | [23] | 2014 | USA | Coal | Aerial LiDAR | Aerial_LiDAR | Site Scale | Uni-Temporal | Supervised | N | Land Cover | Structural Diversity | Spatial Mosaic |
53 | Maxwell etal | [110] | 2014 | USA | Coal | Aerial Optical | Aerial_Optical | Site Scale | Uni-Temporal | Supervised | N | Land Cover | Structural Diversity | Spatial Mosaic |
54 | Wang etal | [64] | 2014 | China | Coal | EO Low | Landsat | Regional | Decadal | GEOBIA | Y | Ecol (Field Obs) | Ecosystem Function | Productivity/Cycling |
55 | Zhang etal | [111] | 2014 | Canada | Oil Sands | EO Med | SPOT | Site Scale | Multi-Temporal | Supervised | N | Land Cover | Structural Diversity | Spatial Mosaic |
56 | Badreldin & Sanchez-Azofeifa | [112] | 2015 | Canada | Coal | Terrest LiDAR | Terrest LiDAR | Site Scale | Decadal | Manual | Y | Ecol (Field Obs) | Ecosystem Function | Productivity/Cycling |
57 | Li etal | [113] | 2015 | USA | Coal | EO Low | Landsat | Regional | Decadal | Supervised | N | Land Cover | Structural Diversity | Spatial Mosaic |
58 | Li etal | [114] | 2015 | USA | Coal | EO Low | Landsat | Regional | Decadal | Supervised | N | Land Cover | Structural Diversity | Spatial Mosaic |
59 | Maxwell & Warner | [72] | 2015 | USA | Coal | Aerial Optical | Aerial_Optical | Regional | Uni-Temporal | Supervised | N | Land Cover | Structural Diversity | Spatial Mosaic |
60 | Maxwell etal | [73] | 2015 | USA | Coal | EO Med | RapidEye | Site Scale | Uni-Temporal | Supervised | N | Land Cover | Structural Diversity | Spatial Mosaic |
61 | Szostak etal | [83] | 2015 | Poland | Sulfur | EO Low | Landsat | Site Scale | Bi-Temporal | Supervised | N | Land Cover | Structural Diversity | Spatial Mosaic |
62 | Tong etal | [115] | 2015 | China | Phosphate | Drone | Drone | Site Scale | Uni-Temporal | GEOBIA | N | Land Cover | Structural Diversity | Spatial Mosaic |
63 | Bao etal | [116] | 2016 | China | Coal | EO High | WorldView | Site Scale | Uni-Temporal | GEOBIA | N | Ecol (No Field Obs) | Structural Diversity | Spatial Mosaic |
64 | Götze etal | [117] | 2016 | Czech Republic | Coal | Aerial Hyper | Aerial_Hyperspec | Site Scale | Uni-Temporal | Supervised | Y | Ecol (Field Obs) | Physical Conditions | Substrate Chemical |
65 | Karan etal | [118] | 2016 | India | Coal | EO Low | Landsat | Site Scale | Bi-Temporal | Supervised | Y | Land Cover | Structural Diversity | Spatial Mosaic |
66 | Lechner, Kassulke & Unger | [87] | 2016 | Australia | Coal | Aerial Optical | Aerial_Optical | Regional | Uni-Temporal | Manual | N | Land Cover | Structural Diversity | Spatial Mosaic |
67 | Liu | [119] | 2016 | China | Coal | EO Low | Landsat | Site Scale | Decadal | Manual | N | Land Cover | Structural Diversity | Spatial Mosaic |
68 | Chen etal | [43] | 2017 | China | Coal | EO Low | MODIS | Regional | Multi-Temporal | Manual | Y | Ecol (Field Obs) | External Exchanges | Landscape Flows |
69 | Esposito | [120] | 2017 | Italy | Quarry | Drone | Drone | Block Scale | Bi-Temporal | NA | N | Land Cover | Structural Diversity | Spatial Mosaic |
70 | LeClerc & Wiersma | [81] | 2017 | Canada | Metalliferous | EO Low | Landsat | Regional | Decadal | Supervised | Y | Ecol (Field Obs) | External Exchanges | Habitat links |
71 | Macfarlane etal | [121] | 2017 | Australia | Bauxite | EO Low | Landsat | Regional | Decadal | Manual | Y | Theoretical | Structural Diversity | Spatial Mosaic |
72 | McKenna etal | [30] | 2017 | Australia | Coal | Drone | Drone | Block Scale | Bi-Temporal | Supervised | N | Ecol (No Field Obs) | External Exchanges | Landscape Flows |
73 | Oliphant etal | [61] | 2017 | USA | Coal | EO Low | Landsat | Site Scale | Multi-Temporal | Supervised | Y | Ecol (Field Obs) | Absence of Threats | Invasive Species |
74 | Padmanaban etal | [42] | 2017 | Germany | Coal | EO Low | Landsat | Site Scale | Multi-Temporal | Supervised | N | Land Cover | Structural Diversity | Spatial Mosaic |
75 | Yang etal | [71] | 2017 | China | Coal | EO High | GeoEye-1 | Site Scale | Uni-Temporal | Manual | Y | Ecol (Field Obs) | Ecosystem Function | Habitat & Interactions |
76 | Zenkov etal | [57] | 2017 | Bulgaria | Coal | EO Low | Landsat | Site Scale | Decadal | Manual | N | Land Cover | Structural Diversity | Spatial Mosaic |
77 | Bujalsky etal | [122] | 2018 | Czech Republic | Coal | Aerial Hyper | Aerial_Hyperspec | Site Scale | Uni-Temporal | Manual | N | Ecol (No Field Obs) | External Exchanges | Landscape Flows |
78 | Chasmer etal | [123] | 2018 | Canada | Oil Sands | EO Med | SPOT | Site Scale | Multi-Temporal | Manual | Y | Ecol (Field Obs) | Ecosystem Function | Productivity/Cycling |
79 | Chen etal | [19] | 2018 | NA | NA | NA | NA | NA | NA | NA | NA | Review | NA | NA |
80 | Correa etal | [124] | 2018 | Brazil | Metalliferous | EO Low | MODIS | Site Scale | Multi-Temporal | NA | Y | Ecol (Field Obs) | Ecosystem Function | Productivity/Cycling |
81 | Gastauer etal | [125] | 2018 | NA | NA | NA | NA | NA | NA | NA | NA | Review | NA | NA |
82 | McKenna etal | [29] | 2018 | Australia | Coal | EO High | WorldView | Block Scale | Tri-Temporal | Supervised | Y | Ecol (Field Obs) | Ecosystem Function | Resilience/recruitment |
83 | Whiteside & Bartolo | [75] | 2018 | Australia | Uranium | Drone | Drone | Block Scale | Tri-Temporal | GEOBIA | N | Ecol (No Field Obs) | Structural Diversity | Spatial Mosaic |
84 | Yang etal | [126] | 2018 | USA | Coal | EO Low | Landsat | Regional | Decadal | Manual | N | Ecol (No Field Obs) | Ecosystem Function | Habitat & Interactions |
85 | Yang etal | [65] | 2018 | Australia | Coal | EO Low | Landsat | Regional | Decadal | Spectral Time-Series | Y | Ecol (Field Obs) | Ecosystem Function | Productivity/Cycling |
86 | Zenkov etal | [127] | 2018 | Russia | Iron Ore | EO Low | Landsat | Site Scale | Bi-Temporal | Manual | N | Land Cover | Structural Diversity | Spatial Mosaic |
87 | Bao etal | [24] | 2019 | China | Coal | SAR | SAR | Block Scale | Uni-Temporal | Manual | Y | Ecol (Field Obs) | Ecosystem Function | Productivity/Cycling |
88 | Buters etal | [20] | 2019 | NA | NA | NA | NA | NA | NA | NA | NA | Review | NA | NA |
89 | Dlamini etal | [58] | 2019 | South Africa | Mineral Sand | EO Low | Landsat | Site Scale | Decadal | Spectral Time-Series | N | Ecol (No Field Obs) | Structural Diversity | Spatial Mosaic |
90 | Erskine etal | [89] | 2019 | Australia | Uranium | EO Low | Landsat | Site Scale | Decadal | NA | Y | Ecol (Field Obs) | External Exchanges | Landscape Flows |
91 | Isokangas etal | [76] | 2019 | Finland | Metalliferous | Drone | Drone | Block Scale | Uni-Temporal | Manual | Y | Ecol (Field Obs) | Absence of Threats | Contamination |
92 | Johansen, Erskine & McCabe | [77] | 2019 | Australia | Coal | Drone | Drone | Block Scale | Tri-Temporal | GEOBIA | Y | Ecol (Field Obs) | Structural Diversity | Spatial Mosaic |
93 | Kun | [128] | 2019 | Turkey | Coal | Drone | Drone | Block Scale | Uni-Temporal | Manual | Y | Ecol (Field Obs) | Structural Diversity | Spatial Mosaic |
94 | Lechner etal | [49] | 2019 | PNG_&_Laos | Metalliferous | EO Low | Landsat | Regional | Decadal | Supervised | N | Land Cover | Structural Diversity | Spatial Mosaic |
95 | Moudry etal | [25] | 2019 | Czech Republic | Coal | Drone | Drone | Block Scale | Uni-Temporal | Manual | Y | Ecol (Field Obs) | Structural Diversity | All vegetation strata |
96 | Padro etal | [85] | 2019 | Spain | Quarry | Drone | Drone | Block Scale | Uni-Temporal | Supervised | Y | Ecol (Field Obs) | Structural Diversity | Spatial Mosaic |
97 | Vasuki etal | [129] | 2019 | Australia | Bauxite | EO Low | Landsat | Regional | Decadal | Supervised | N | Land Cover | Structural Diversity | Spatial Mosaic |
98 | Xu etal | [130] | 2019 | China | Coal | EO Med | SPOT | Regional | Tri-Temporal | Supervised | N | Ecol (No Field Obs) | Structural Diversity | Spatial Mosaic |
99 | Zhang etal | [86] | 2019 | China | Coal | EO Low | Landsat | Site Scale | Decadal | Supervised | N | Ecol (No Field Obs) | Structural Diversity | Spatial Mosaic |
References
- Gann, G.D.; McDonald, T.; Walder, B.; Aronson, J.; Nelson, C.R.; Jonson, J.; Hallett, J.G.; Eisenberg, C.; Guariguata, M.R.; Liu, J.; et al. International principles and standards for the practice of ecological restoration. Second edition. Restor. Ecol. 2019, 27, S1–S46. [Google Scholar] [CrossRef] [Green Version]
- Hobbs, R.J.; Norton, D.A. Towards a conceptual framework for Restoration Ecology. Restor. Ecol. 1996, 4, 93–110. [Google Scholar] [CrossRef]
- Doley, D.; Audet, P. Adopting novel ecosystems as suitable rehabilitation alternatives for former mine sites. Ecol. Process. 2013, 2, 1–11. [Google Scholar] [CrossRef] [Green Version]
- US Government. Surface Mining Control and Reclamation Act of 1977, Title 30, Chapter 25. In Title 30, Chapter 25, Office of Surface Mining and Reclamation. Washington, United States of America; 1977. Available online: https://www.govinfo.gov/content/pkg/STATUTE-91/pdf/STATUTE-91-Pg445.pdf (accessed on 27 October 2020).
- Skousen, J.; Zipper, C.E. Post-mining policies and practices in the Eastern USA coal region. Int. J. Coal Sci. Technol. 2014, 1, 135–151. [Google Scholar] [CrossRef] [Green Version]
- Queensland Government. Mineral and Energy Resources (Financial Provisioning) Bill 2018; Department of Environment and Science: Brisbane, Australia, 2018; p. 204. Available online: https://www.parliament.qld.gov.au/Documents/TableOffice/TabledPapers/2018/5618T173.pdf (accessed on 1 February 2020).
- Western Australia Government. Mining Rehabilitation Fund Act 2012; Department of Mines, Industry Regulation and Safety: Perth, Australia, 2014; p. 31. Available online: www.legislation.wa.gov.au (accessed on 1 October 2020).
- Province of Alberta. Environmental Protection and Enhancement Act. Revised Statutes of Alberta 2000 Chapter E-12; Alberta, Canada. 2020, p. 168. Available online: https://www.qp.alberta.ca/ (accessed on 1 October 2020).
- People’s Republic of China. Mineral Resources Law; Ministry of Commerce: Beijing, China, 2009. Available online: http://www.china.org.cn/environment/2007-08/20/content_1034342.htm (accessed on 1 October 2020).
- Republic of South Africa. Mineral and Petroleum Resources Development Act; South African Government: Cape Town, Republic of South Africa, 2002; p. 122. Available online: https://www.gov.za/documents/ (accessed on 1 October 2020).
- The European Parliament. Directive 2006/21/EC of the European Parliament and of the Council of 15 March 2006 on the Management of Waste from Extractive Industries and Amending Directive 2004/35/EC. Strasbourg, The European Parliament. 2006. Available online: https://eur-lex.europa.eu/eli/dir/2006/21/2009-08-07 (accessed on 1 October 2020).
- Erskine, P.D.; Fletcher, A.T. Novel Ecosystems created by coal mines in Central Queensland’s Bowen Basin. Ecol. Process. 2013, 2, 33. [Google Scholar] [CrossRef] [Green Version]
- Gould, S.F. Comparison of Post-mining Rehabilitation with Reference Ecosystems in Monsoonal Eucalypt Woodlands, Northern Australia. Restor. Ecol. 2012, 20, 250–259. [Google Scholar] [CrossRef]
- Vickers, H.; Gillespie, M.; Gravina, A. Assessing the development of rehabilitated grasslands on post-mined landforms in north west Queensland, Australia. Agric. Ecosyst. Environ. 2012, 163, 72–84. [Google Scholar] [CrossRef]
- Audet, P.; Gravina, A.; Glenn, V.; McKenna, P.B.; Vickers, H.; Gillespie, M.; Mulligan, D. Structural development of vegetation on rehabilitated North Stradbroke Island: Above/belowground feedback may facilitate alternative ecological outcomes. Ecol. Process. 2013, 2, 20. [Google Scholar] [CrossRef] [Green Version]
- Gravina, A.A.; McKenna, P.B.; Glenn, V. Evaluating the success of mineral sand mine rehabilitation on North Stradbroke Island, Queensland: Comparisons with reference eucalypt communities. Proc. R. Soc. Queensl. 2011, 117, 419–436. [Google Scholar]
- Ruiz-Jaen, M.C.; Aide, T.M. Restoration success: How is it being measured? Restor. Ecol. 2005, 13, 569–577. [Google Scholar] [CrossRef]
- Doley, D.; Audet, P.; Mulligan, D.R. Examining the Australian context for post-mined land rehabilitation: Reconciling a paradigm for the development of natural and novel ecosystems among post-disturbance landscapes. Agric. Ecosyst. Environ. 2012, 163, 85–93. [Google Scholar] [CrossRef]
- Chen, W.; Li, X.; He, H.; Wang, L. A review of fine-scale land use and land cover classification in open-pit mining areas by remote sensing techniques. Remote Sens. 2018, 10, 15. [Google Scholar] [CrossRef] [Green Version]
- Buters, T.M.; Bateman, P.W.; Robinson, T.; Belton, D.; Dixon, K.; Cross, A.T. Methodological Ambiguity and Inconsistency Constrain Unmanned Aerial Vehicles as A Silver Bullet for Monitoring Ecological Restoration. Remote Sens. 2019, 11, 1180. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, H.; Glaesser, C. Multitemporal analysis of satellite data and their use in the monitoring of the environmental impacts of open cast lignite mining areas in eastern Germany. Int. J. Remote Sens. 1998, 19, 2245–2260. [Google Scholar] [CrossRef]
- Parks, N.F.; Petersen, G.W.; Baumer, G.M. High resolution remote sensing of spatially and spectrally complex coal surface mines of central Pennsylvania: A comparison between simulated SPOT MSS and Landsat-5 Thematic Mapper. Photogramm. Eng. Remote Sens. 1987, 53, 415–420. [Google Scholar]
- Maxwell, A.E.; Warner, T.A.; Strager, M.P.; Pal, M. Combining RapidEye Satellite Imagery and Lidar for Mapping of Mining and Mine Reclamation. Photogramm. Eng. Remote Sens. 2014, 80, 179–189. [Google Scholar] [CrossRef]
- Bao, N.; Li, W.; Gu, X.; Liu, Y. Biomass estimation for semiarid vegetation and mine rehabilitation using worldview-3 and sentinel-1 SAR imagery. Remote Sens. 2019, 11, 2855. [Google Scholar] [CrossRef] [Green Version]
- Moudrý, V.; Gdulová, K.; Fogl, M.; Klápště, P.; Urban, R.; Komárek, J.; Moudrá, L.; Štroner, M.; Barták, V.; Solský, M. Comparison of leaf-off and leaf-on combined UAV imagery and airborne LiDAR for assessment of a post-mining site terrain and vegetation structure: Prospects for monitoring hazards and restoration success. Appl. Geogr. 2019, 104, 32–41. [Google Scholar] [CrossRef]
- Felinks, B.; Pilarski, M.; Wiegleb, G. Vegetation survey in the former brown coal mining area of eastern Germany by integrating remote sensing and ground-based methods. Appl. Veg. Sci. 1998, 1, 233–240. [Google Scholar] [CrossRef]
- Phinn, S.R.; Hill, G.J.E.; Johnston, S.; Kirwood, C. Landsat Thematic Mapper Imagery for Mapping Disturbed and Rehabilitated Vegetation, North Stradbroke Island, Queensland. Queensl. Geogr. J. 1991, 6, 47–58. [Google Scholar]
- Bodlák, L.; Křováková, K.; Nedbal, V.; Pechar, L. Assessment of landscape functionality changes as one aspect of reclamation quality—The case of Velká podkrušnohorská dump, Czech Republic. Ecol. Eng. 2012, 43, 19–25. [Google Scholar] [CrossRef]
- McKenna, P.B.; Phinn, S.; Erskine, P. Fire Severity and Vegetation Recovery on Mine Site Rehabilitation Using WorldView-3 Imagery. Fire 2018, 1, 22. [Google Scholar] [CrossRef] [Green Version]
- McKenna, P.B.; Erskine, P.D.; Lechner, A.M.; Phinn, S. Measuring fire severity using UAV imagery in semi-arid central Queensland, Australia. Int. J. Remote Sens. 2017, 38, 4244–4264. [Google Scholar] [CrossRef]
- Bao, N.; Lechner, A.M.; Johansen, K.; Ye, B. Object-based classification of semi-arid vegetation to support mine rehabilitation and monitoring. J. Appl. Remote Sens. 2014, 8, 1–19. [Google Scholar] [CrossRef]
- Sen, S.; Zipper, C.E.; Wynne, R.H.; Donovan, P.F. Identifying Revegetated Mines as Disturbance/Recovery Trajectories Using an Interannual Landsat Chronosequence. Photogramm. Eng. Remote Sens. 2012, 78, 223–235. [Google Scholar] [CrossRef]
- Park, S. Applications of Unmanned Aerial Vehicles in Mining from Exploration to Reclamation: A Review. Minerals 2020, 10, 663. [Google Scholar] [CrossRef]
- Rathore, C.S.; Wright, R. Monitoring environmental impacts of surface coal mining. Int. J. Remote Sens. 1993, 14, 1021–1042. [Google Scholar] [CrossRef]
- Werner, T.T.; Bebbington, A.; Gregory, G. Assessing impacts of mining: Recent contributions from GIS and remote sensing. Extr. Ind. Soc. 2019, 6, 993–1012. [Google Scholar] [CrossRef]
- Wortley, L.; Hero, J.M.; Howes, M. Evaluating ecological restoration success: A review of the literature. Restor. Ecol. 2013, 21, 537–543. [Google Scholar] [CrossRef]
- McIntyre, N.; Bulovic, N.; Cane, I.; McKenna, P.B. A multi-disciplinary approach to understanding the impacts of mines on traditional uses of water in Northern Mongolia. Sci. Total Environ. 2016, 557, 404–414. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; He, G.; Wang, M.; Wang, Z.; Long, T.; Peng, Y. Detecting Decadal Land Cover Changes in Mining Regions based on Satellite Remotely Sensed Imagery: A Case Study of the Stone Mining Area in Luoyuan County, SE China. Photogramm. Eng. Remote Sens. 2015, 81, 745–751. [Google Scholar] [CrossRef]
- Bao, N.; Wu, L.; Ye, B.; Yang, K.; Zhou, W. Assessing soil organic matter of reclaimed soil from a large surface coal mine using a field spectroradiometer in laboratory. Geoderma 2017, 288, 47–55. [Google Scholar] [CrossRef]
- Bollhöfer, A.; Pfitzner, K.; Ryan, B.; Martin, P.; Fawcett, M.; Jones, D.R. Airborne gamma survey of the historic Sleisbeck mine area in the Northern Territory, Australia, and its use for site rehabilitation planning. J. Environ. Radioact. 2008, 99, 1770–1774. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Shen, Q.; Nie, C.; Huang, Y.; Wang, J.; Hu, Q.; Ding, X.; Zhou, Y.; Chen, Y. Hyperspectral inversion of heavy metal content in reclaimed soil from a mining wasteland based on different spectral transformation and modeling methods. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 211, 393–400. [Google Scholar] [CrossRef]
- Padmanaban, R.; Bhowmik, A.; Cabral, P. A Remote Sensing Approach to Environmental Monitoring in a Reclaimed Mine Area. ISPRS Int. J. Geo-Inf. 2017, 6, 401. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.; Wang, M.; Liu, Z.; Chi, W. The biogeophysical effects of revegetation around mining areas: A case study of Dongsheng mining areas in Inner Mongolia. Sustainability 2017, 9, 628. [Google Scholar] [CrossRef] [Green Version]
- Bao, N.; Lechner, A.M.; Fletcher, A.; Erskine, P.; Mulligan, D.; Bai, Z. SPOTing long-term changes in vegetation over short-term variability. Int. J. Min. Reclam. Environ. 2014, 28, 2–24. [Google Scholar] [CrossRef]
- Almeida-filho, R.; Shimabukuro, Y.E. Digital processing of a Landsat-TM time series for mapping and monitoring degraded areas caused by independent gold miners, Roraima State, Brazilian Amazon. Remote Sens. Environ. 2002, 79, 42–50. [Google Scholar] [CrossRef]
- Alexander, S.S.; Dein, J.; Gold, D.P. The use of ERTS-1 MSS data for mapping strip mines and acid mine drainage in Pennsyvania. NASA Spec. Publ. 1973, 372, 569–575. [Google Scholar]
- Wobber, F.J.; Russell, O.R.; Deely, D.J. Multiscale aerial and orbital techniques for management of coal-mined lands. Photogrammetria 1975, 31, 117–133. [Google Scholar] [CrossRef]
- Mamula, N. Remote-sensing methods for monitoring surface coal mining in the northern great plains. J. Res. U.S. Geol. Surv. 1978, 6, 149–160. [Google Scholar]
- Lechner, A.M.; Owen, J.; Ang, M.L.E.; Edraki, M.; Che Awang, N.A.; Kemp, D. Historical socio-environmental assessment of resource development footprints using remote sensing. Remote Sens. Appl. Soc. Environ. 2019, 15, 1–12. [Google Scholar] [CrossRef]
- Anderson, A.T.; Schultz, D.; Buchman, N.; Nock, H.M. Landsat imagery for surface-mine inventory. A band-ratio method for measuring disturbed surface areas proved to be both temporally and geographically extendable. Photogramm. Eng. Remote Sens. 1977, 43, 1027–1036. [Google Scholar]
- Brumbaugh, F.R. Strip mine reclamation and remote sensing technology. Min. Congr. J. 1979, 65, 57–61. [Google Scholar]
- Antwi, E.K.; Krawczynski, R.; Wiegleb, G. Detecting the effect of disturbance on habitat diversity and land cover change in a post-mining area using GIS. Landsc. Urban Plan. 2008, 87, 22–32. [Google Scholar] [CrossRef]
- Ganas, A.; Aerts, J.; Astaras, T.; De Vente, J.; Frogoudakis, E.; Lambrinos, N.; Riskakis, C.; Oikonomidis, D.; Filippidis, A.; Kassoli-Fournaraki, A. The use of earth observation and decision support systems in the restoration of open-cast nickel mines Evia, central Greece. Int. J. Remote Sens. 2004, 25, 3261–3274. [Google Scholar] [CrossRef]
- Halounová, L. Reclamation areas and their development studied by vegetation indices. Int. J. Digit. Earth 2008, 1, 155–164. [Google Scholar] [CrossRef]
- Gillanders, S.N.; Coops, N.C.; Wulder, M.A.; Goodwin, N.R. Application of Landsat satellite imagery to monitor land-cover changes at the Athabasca Oil Sands, Alberta, Canada. Can. Geogr. 2008, 52, 466–485. [Google Scholar] [CrossRef]
- Petropoulos, G.P.; Partsinevelos, P.; Mitraka, Z. Change detection of surface mining activity and reclamation based on a machine learning approach of multi-temporal Landsat TM imagery. Geocarto Int. 2013, 28, 323–342. [Google Scholar] [CrossRef]
- Zenkov, V.; Yuronen, Y.P.; Nefedov, B.N.; Zayats, V.V. Remote monitoring of ecological state of disturbed lands in the area of trojanovo open pit coal mine in Bulgaria. Eurasian Min. 2017, 2017, 38–41. [Google Scholar] [CrossRef]
- Dlamini, L.Z.D.; Xulu, S. Monitoring mining disturbance and restoration over RBM site in South Africa using landtrendr algorithm and landsat data. Sustainability 2019, 11, 6916. [Google Scholar] [CrossRef] [Green Version]
- Erener, A. Remote sensing of vegetation health for reclaimed areas of Seyitömer open cast coal mine. Int. J. Coal Geol. 2011, 86, 20–26. [Google Scholar] [CrossRef]
- Lemke, D.; Schweitzer, C.J.; Tadesse, W.; Wang, Y.; Brown, J.A. Geospatial Assessment of Invasive Plants on Reclaimed Mines in Alabama. Invasive Plant Sci. Manag. 2013, 6, 401–410. [Google Scholar] [CrossRef]
- Oliphant, A.J.; Wynne, R.H.; Zipper, C.E.; Ford, W.M.; Donovan, P.F.; Li, J. Autumn olive (Elaeagnus umbellata) presence and proliferation on former surface coal mines in Eastern USA. Biol. Invasions 2017, 19, 179–195. [Google Scholar] [CrossRef]
- Oparin, V.N.; Potapov, V.P.; Giniyatullina, O.L.; Shchastlivtsev, E.L. Studies into the process of mine waste dump filling up by vegetation using remote sensing data. J. Min. Sci. 2013, 49, 976–982. [Google Scholar] [CrossRef]
- Hill, G.J.E.; Phinn, S.R. Revegetated sand mining areas, swamp wallabies and remote sensing: North Stradbroke Island, Queensland. Aust. Geogr. Stud. 1993, 31, 3–13. [Google Scholar] [CrossRef]
- Wang, J.; Jiao, Z.; Bai, Z. Changes in carbon sink value based on RS and GIS in the Heidaigou opencast coal mine. Environ. Earth Sci. 2014, 71, 863–871. [Google Scholar] [CrossRef]
- Yang, Y.; Erskine, P.D.; Lechner, A.M.; Mulligan, D.; Zhang, S.; Wang, Z. Detecting the dynamics of vegetation disturbance and recovery in surface mining area via Landsat imagery and LandTrendr algorithm. J. Clean. Prod. 2018, 178, 353–362. [Google Scholar] [CrossRef]
- Brom, J.; Nedbal, V.; Procházka, J.; Pecharová, E. Changes in vegetation cover, moisture properties and surface temperature of a brown coal dump from 1984 to 2009 using satellite data analysis. Ecol. Eng. 2012, 43, 45–52. [Google Scholar] [CrossRef]
- Demirel, N.; Emil, M.K.; Duzgun, H.S. Surface coal mine area monitoring using multi-temporal high-resolution satellite imagery. Int. J. Coal Geol. 2011, 86, 3–11. [Google Scholar] [CrossRef]
- Demirel, N.; Düzgün, Ş.; Emil, M.K. Landuse change detection in a surface coal mine area using multi-temporal high-resolution satellite images. Int. J. Min. Reclam. Environ. 2011, 25, 342–349. [Google Scholar] [CrossRef]
- Bao, N.; Ye, B.; Bai, Z. Rehabilitation of Vegetation Mapping of ATB Opencast Coal-Mine Based on GIS and RS. Sens. Lett. 2012, 10, 387–393. [Google Scholar] [CrossRef]
- Raval, S.; Merton, R.N.; Laurence, D. Satellite based mine rehabilitation monitoring using WorldView-2 imagery. Min. Technol. 2013, 122, 200–207. [Google Scholar] [CrossRef]
- Yang, Y.; Ren, X.; Zhang, S.; Chen, F.; Hou, H. Incorporating ecological vulnerability assessment into rehabilitation planning for a post-mining area. Environ. Earth Sci. 2017, 76, 1–16. [Google Scholar] [CrossRef]
- Maxwell, A.E.; Warner, T.A. Differentiating mine-reclaimed grasslands from spectrally similar land cover using terrain variables and object-based machine learning classification. Int. J. Remote Sens. 2015, 36, 4384–4410. [Google Scholar] [CrossRef] [Green Version]
- Maxwell, A.E.; Warner, T.A.; Strager, M.P.; Conley, J.F.; Sharp, A.L. Assessing machine-learning algorithms and image- and lidar-derived variables for GEOBIA classification of mining and mine reclamation. Int. J. Remote Sens. 2015, 36, 954–978. [Google Scholar] [CrossRef]
- Fletcher, A.T.; Erskine, P.D. Rehabilitation closure criteria assessment using high resolution photogrammetrically derived surface models. In Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Rostock, Germany, 4–6 September 2013; pp. 1–4. [Google Scholar]
- Whiteside, T.G.; Bartolo, R.E. A robust object-based woody cover extraction technique for monitoring mine site revegetation at scale in the monsoonal tropics using multispectral RPAS imagery from different sensors. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 300–312. [Google Scholar] [CrossRef]
- Isokangas, E.; Davids, C.; Kujala, K.; Rauhala, A.; Ronkanen, A.K.; Rossi, P.M. Combining unmanned aerial vehicle-based remote sensing and stable water isotope analysis to monitor treatment peatlands of mining areas. Ecol. Eng. 2019, 133, 137–147. [Google Scholar] [CrossRef]
- Johansen, K.; Erskine, P.D.; McCabe, M.F. Using Unmanned Aerial Vehicles to assess the rehabilitation performance of open cut coal mines. J. Clean. Prod. 2019, 209, 819–833. [Google Scholar] [CrossRef]
- Huang, S.; Tang, L.; Hupy, J.P.; Wang, Y.; Shao, G. A commentary review on the use of normalized difference vegetation index (NDVI) in the era of popular remote sensing. J. For. Res. 2020, 1–6. [Google Scholar]
- Townsend, P.A.; Helmers, D.P.; Kingdon, C.C.; McNeil, B.E.; de Beurs, K.M.; Eshleman, K.N. Changes in the extent of surface mining and reclamation in the Central Appalachians detected using a 1976–2006 Landsat time series. Remote Sens. Environ. 2009, 113, 62–72. [Google Scholar] [CrossRef]
- Carr, J.R.; Glass, C.E.; Schowengerdt, R.A. Signature extension versus retraining for multispectral classification of surface mines in arid regions (Arizona). Photogramm. Eng. Remote Sens. 1983, 49, 1193–1199. [Google Scholar]
- LeClerc, E.; Wiersma, Y.F. Assessing post-industrial land cover change at the Pine Point Mine, NWT, Canada using multi-temporal Landsat analysis and landscape metrics. Environ. Monit. Assess. 2017, 189, 185. [Google Scholar] [CrossRef] [PubMed]
- Lévesque, J.; Staenz, K. Monitoring mine tailings revegetation using multitemporal hyperspectral image data. Can. J. Remote Sens. 2008, 34, S172–S186. [Google Scholar] [CrossRef]
- Szostak, M.; Wężyk, P.; Hawryło, P.; Pietrzykowski, M. The analysis of spatial and temporal changes of land cover and land use in the reclaimed areas with the application of airborne orthophotomaps and LANDSAT images. Geod. Cartogr. 2015, 64, 75–86. [Google Scholar] [CrossRef] [Green Version]
- Bonifazi, G.; Cutaia, L.; Massacci, P.; Roselli, I. Monitoring of abandoned quarries by remote sensing and in situ surveying. Ecol. Modell. 2003, 170, 213–218. [Google Scholar] [CrossRef]
- Padró, J.C.; Carabassa, V.; Balagué, J.; Brotons, L.; Alcañiz, J.M.; Pons, X. Monitoring opencast mine restorations using Unmanned Aerial System (UAS) imagery. Sci. Total Environ. 2019, 657, 1602–1614. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, J.; Li, S. Tempo-spatial changes and main anthropogenic influence factors of vegetation fractional coverage in a large-scale opencast coal mine area from 1992 to 2015. J. Clean. Prod. 2019, 232, 940–952. [Google Scholar] [CrossRef]
- Lechner, A.M.; Kassulke, O.; Unger, C. Spatial assessment of open cut coal mining progressive rehabilitation to support the monitoring of rehabilitation liabilities. Resour. Policy 2016, 50, 234–243. [Google Scholar] [CrossRef]
- Unger, C.; Lechner, A.M.; Glenn, V.; Edraki, M.; Mulligan, D. Mapping and prioritising rehabilitation of abandoned mines in Australia. Proc. Life Mine 2012, 259–266. [Google Scholar]
- Erskine, P.D.; Bartolo, R.; McKenna, P.B.; Humphrey, C. Using reference sites to guide ecological engineering and restoration of an internationally significant uranium mine in the Northern Territory, Australia. Ecol. Eng. 2019, 129, 61–70. [Google Scholar] [CrossRef]
- Lechner, A.M.; Foody, G.M.; Boyd, D.S. Applications in Remote Sensing to Forest Ecology and Management. One Earth 2020, 2, 405–412. [Google Scholar] [CrossRef]
- Anderson, A.T.; Schubert, J. ERTS-1 Data Applied to Strip Mining. Photogramm. Eng. Remote Sens. 1976, 42, 211–219. [Google Scholar]
- Game, M.; Carrel, J.E.; Hotrabhavandra, T. Patch Dynamics of Plant Succession on Abandoned Surface Coal Mines: A Case History Approach. Br. Ecol. Soc. 1982, 70, 707–720. [Google Scholar] [CrossRef]
- Irons, J.R.; Kennard, R.L. The utility of Thematic Mapper sensor characteristics for surface mine monitoring. Photogramm. Eng. Remote Sens. 1986, 52, 389–396. [Google Scholar]
- Staenz, K.; Neville, R.A.; Lévesque, J.; Szeredi, T.; Singhroy, V.; Borstad, G.A.; Hauff, P. Evaluation of casi and SFSI hyperspectral data for environmental and geological applications - Two case studies. Can. J. Remote Sens. 1999, 25, 311–322. [Google Scholar] [CrossRef]
- Lévesque, J.; Staenz, K.; Szeredi, T. The impact of spectral band characteristics on unmixing of hyperspectral data for monitoring mine tailings site rehabilitation. Can. J. Remote Sens. 2000, 26, 231–240. [Google Scholar] [CrossRef]
- Cutaia, L.; Massacci, P.; Roselli, I. Analysis of Landsat 5 TM images for monitoring the state of restoration of abandoned quarries. Int. J. Surf. Mining, Reclam. Environ. 2004, 18, 122–134. [Google Scholar] [CrossRef]
- Pfitzner, K.; Bollhöfer, A.; Carr, G. A standard design for collecting vegetation reference spectra: Implementation and implications for data sharing. J. Spat. Sci. 2006, 51, 79–92. [Google Scholar] [CrossRef]
- Trisasongko, B.; Lees, B.; Paull, D. Polarimetric classification in a tailings deposition area at the Timika Mine Site, Indonesia. Mine Water Environ. 2006, 25, 246–250. [Google Scholar] [CrossRef]
- Weiersbye, I.M.; Margalit, N.; Feingersh, T.; Revivo, G.; Stark, R.; Zur, Y.; Heller, D.; Braun, O.; Cukrowska, E.M. Use of airborne hyper-spectral remote sensing (HSRS) to focus remediation and monitor vegetation processes on gold mining landscapes in South Africa. Mine Clos. 2006, 2006, 601–611. [Google Scholar]
- Lau, I.; Hewson, R.; Ong, C.; Tongway, D. Remote Mine Site Rehabilitation Monitoring Using Airborne Hyperspectral Imaging and Landscape Function Analysis (LFA). In Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Beijing, China, 3–11 July 2008; Volume 37, pp. 325–330. [Google Scholar]
- Richter, N.; Staenz, K.; Kaufmann, H. Spectral unmixing of airborne hyperspectral data for baseline mapping of mine tailings areas. Int. J. Remote Sens. 2008, 29, 3937–3956. [Google Scholar] [CrossRef]
- Yang, J.J. Detecting landscape changes pre-and post surface coal mining in Indiana, USA. Geogr. Inf. Sci. 2008, 14, 36–43. [Google Scholar] [CrossRef]
- Lu, X.; Hu, Z.Q.; Guo, L. Quantitative inverse modeling of nitrogen content from hyperion data under stress of exhausted coal mining sites. Min. Sci. Technol. 2009, 19, 31–35. [Google Scholar] [CrossRef]
- Wei, S.; Zhong-Ping, S.; Dao-Liang, L.; Raaj, R.; Xiang, Z.; Xiang-Yun, G.; Su, W.; Sun, Z.-P.; Li, D.-L.; Ramsankaran, R.; et al. Vegetation recovery monitoring over the waste dump in Haizhou opencast coalmine area, China, during 1975-2000 using NDVI and VF index. J. Indian Soc. Remote Sens. 2009, 37, 631–645. [Google Scholar]
- Sonwalkar, M.; Fang, L.; Sun, D. Use of NDVI dataset for a GIS based analysis: A sample study of TAR Creek superfund site. Ecol. Inform. 2010, 5, 484–491. [Google Scholar] [CrossRef]
- Spyropoulos, N.; Valmis, S.; Ganas, A.; Metaxas, G. Land reclamation of surface mining based on imagery intelligence and spatial decision support systems. World Trans. Eng. Technol. Educ. 2010, 8, 115–119. [Google Scholar]
- Procházka, J.; Brom, J.; Št’astný, J.; Pecharová, E. The impact of vegetation cover on temperature and humidity properties in the reclaimed area of a brown coal dump. Int. J. Min. Reclam. Environ. 2011, 25, 350–366. [Google Scholar] [CrossRef]
- Sun, H.; Li, M.; Li, D. The vegetation classification in coal mine overburden dump using canopy spectral reflectance. Comput. Electron. Agric. 2011, 75, 176–180. [Google Scholar] [CrossRef]
- Antwi, E.K.; Boakye-Danquah, J.; Asabere, S.B.; Takeuchi, K.; Wiegleb, G. Land cover transformation in two post-mining landscapes subjected to different ages of reclamation since dumping of spoils. SpringerPlus 2014, 3, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Maxwell, A.E.; Strager, M.P.; Warner, T.A.; Zégre, N.P.; Yuill, C.B. Comparison of NAIP orthophotography and rapideye satellite imagery for mapping of mining and mine reclamation. GIScience Remote Sens. 2014, 51, 301–320. [Google Scholar] [CrossRef]
- Zhang, Y.; Guindon, B.; Lantz, N.; Shipman, T.; Chao, D.; Raymond, D. Quantification of anthropogenic and natural changes in oil sands mining infrastructure land based on RapidEye and SPOT5. Int. J. Appl. Earth Obs. Geoinf. 2014, 29, 31–43. [Google Scholar] [CrossRef]
- Badreldin, N.; Sanchez-Azofeifa, A. Estimating forest biomass dynamics by integrating multi-temporal Landsat satellite images with ground and airborne LiDAR data in the Coal Valley Mine, Alberta, Canada. Remote Sens. 2015, 7, 2832–2849. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Xia, Q.; Zipper, C.E.; Li, S.; Donovan, P.F.; Wynne, R.H.; Oliphant, A.J. Character analysis of mining disturbance and reclamation trajectory in surface coal-mine area by time-series NDVI. Trans. Chin. Soc. Agric. Eng. 2015, 31, 251–257. [Google Scholar]
- Li, J.; Zipper, C.E.; Donovan, P.F.; Wynne, R.H.; Oliphant, A.J. Reconstructing disturbance history for an intensively mined region by time-series analysis of Landsat imagery. Environ. Monit. Assess. 2015, 187, 557. [Google Scholar] [CrossRef]
- Tong, X.; Liu, X.; Chen, P.; Liu, S.; Luan, K.; Li, L.; Liu, S.; Liu, X.; Xie, H.; Jin, Y.; et al. Integration of UAV-based photogrammetry and terrestrial laser scanning for the three-dimensional mapping and monitoring of open-pit mine areas. Remote Sens. 2015, 7, 6635–6662. [Google Scholar] [CrossRef] [Green Version]
- Bao, N.; Wu, L.X.; Liu, S.J.; Li, N. Scale parameter optimization through high-resolution imagery to support mine rehabilitated vegetation classification. Ecol. Eng. 2016, 97, 130–137. [Google Scholar] [CrossRef]
- Götze, C.; Beyer, F.; Gläßer, C. Pioneer vegetation as an indicator of the geochemical parameters in abandoned mine sites using hyperspectral airborne data. Environ. Earth Sci. 2016, 75, 1–14. [Google Scholar] [CrossRef]
- Karan, S.K.; Samadder, S.R.; Maiti, S.K. Assessment of the capability of remote sensing and GIS techniques for monitoring reclamation success in coal mine degraded lands. J. Environ. Manag. 2016, 182, 272–283. [Google Scholar] [CrossRef]
- Liu, X.; Zhou, W.; Bai, Z. Vegetation coverage change and stability in large open-pit coal mine dumps in China during 1990–2015. Ecol. Eng. 2016, 95, 447–451. [Google Scholar] [CrossRef]
- Esposito, G.; Mastrorocco, G.; Salvini, R.; Oliveti, M.; Starita, P. Application of UAV photogrammetry for the multi-temporal estimation of surface extent and volumetric excavation in the Sa Pigada Bianca open-pit mine, Sardinia, Italy. Environ. Earth Sci. 2017, 76, 1–16. [Google Scholar] [CrossRef]
- Macfarlane, C.; Grigg, A.H.; Daws, M.I. A standardised Landsat time series (1973–2016) of forest leaf area index using pseudoinvariant features and spectral vegetation index isolines and a catchment hydrology application. Remote Sens. Appl. Soc. Environ. 2017, 6, 1–14. [Google Scholar] [CrossRef]
- Bujalský, L.; Jirka, V.; Zemek, F.; Frouz, J. Relationships between the normalised difference vegetation index and temperature fluctuations in post-mining sites. Int. J. Min. Reclam. Environ. 2018, 32, 254–263. [Google Scholar] [CrossRef]
- Chasmer, L.; Baker, T.; Carey, S.K.; Straker, J.; Strilesky, S.; Petrone, R. Monitoring ecosystem reclamation recovery using optical remote sensing: Comparison with field measurements and eddy covariance. Sci. Total Environ. 2018, 642, 436–446. [Google Scholar] [CrossRef] [PubMed]
- Corrêa, R.S.; Balduíno, A.P.D.C.; Teza, C.T.V.; Baptista, G.M.D.M. Vegetation cover development resulting from different restoration approaches of exploited mines. Floresta Ambient. 2018, 25, 1–9. [Google Scholar] [CrossRef]
- Gastauer, M.; Silva, J.R.; Caldeira Junior, C.F.; Ramos, S.J.; Souza Filho, P.W.M.; Furtini Neto, A.E.; Siqueira, J.O. Mine land rehabilitation: Modern ecological approaches for more sustainable mining. J. Clean. Prod. 2018, 172, 1409–1422. [Google Scholar] [CrossRef]
- Yang, Z.; Li, J.; Zipper, C.E.; Shen, Y.; Miao, H.; Donovan, P.F. Identification of the disturbance and trajectory types in mining areas using multitemporal remote sensing images. Sci. Total Environ. 2018, 644, 916–927. [Google Scholar] [CrossRef] [PubMed]
- Zenkov, I.V.; Vokin, V.N.; Kiryushina, E.V.; Raevich, K.V. Remote monitoring data on opencast mining and disturbed land ecology in the bakal iron ore field. Eurasian Min. 2018, 2018, 29–33. [Google Scholar] [CrossRef]
- Kun, M. Assessment and monitoring of rehabilitation studies on coal mine dump site with UAV’S. Appl. Ecol. Environ. Res. 2019, 17, 7381–7393. [Google Scholar] [CrossRef]
- Vasuki, Y.; Yu, L.; Holden, E.J.; Kovesi, P.; Wedge, D.; Grigg, A.H. The spatial-temporal patterns of land cover changes due to mining activities in the Darling Range, Western Australia: A Visual Analytics Approach. Ore Geol. Rev. 2019, 108, 23–32. [Google Scholar] [CrossRef]
- Xu, J.; Zhao, H.; Yin, P.; Wu, L.; Li, G. Landscape ecological quality assessment and its dynamic change in coal mining area: A case study of Peixian. Environ. Earth Sci. 2019, 78, 1–13. [Google Scholar] [CrossRef]
Variables | |||||||
---|---|---|---|---|---|---|---|
Commodity | Study Type * | Sensors | Spatial Extent | Classification Method | Temporal Scale | Index | |
Categories/Class |
|
|
|
|
|
|
|
Index Category | n (Values) | n (Publications) | Average (%) | Min (%) | Max (%) | SD |
---|---|---|---|---|---|---|
Multi VI (NDVI+) | 19 | 6 | 86 | 45 | 97 | 12.9 |
Sensor Bands Only | 97 | 13 | 85 | 41 | 98 | 12.3 |
Single VI NDVI | 33 | 14 | 83 | 52 | 99 | 12.0 |
Single VI Other | 9 | 4 | 74 | 52 | 91 | 15.0 |
Total/Overall | 158 | 37 | 84 | 41 | 99 | 13.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
McKenna, P.B.; Lechner, A.M.; Phinn, S.; Erskine, P.D. Remote Sensing of Mine Site Rehabilitation for Ecological Outcomes: A Global Systematic Review. Remote Sens. 2020, 12, 3535. https://doi.org/10.3390/rs12213535
McKenna PB, Lechner AM, Phinn S, Erskine PD. Remote Sensing of Mine Site Rehabilitation for Ecological Outcomes: A Global Systematic Review. Remote Sensing. 2020; 12(21):3535. https://doi.org/10.3390/rs12213535
Chicago/Turabian StyleMcKenna, Phillip B., Alex M. Lechner, Stuart Phinn, and Peter D. Erskine. 2020. "Remote Sensing of Mine Site Rehabilitation for Ecological Outcomes: A Global Systematic Review" Remote Sensing 12, no. 21: 3535. https://doi.org/10.3390/rs12213535
APA StyleMcKenna, P. B., Lechner, A. M., Phinn, S., & Erskine, P. D. (2020). Remote Sensing of Mine Site Rehabilitation for Ecological Outcomes: A Global Systematic Review. Remote Sensing, 12(21), 3535. https://doi.org/10.3390/rs12213535