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Abstract: The mining industry has been operating across the globe for millennia, but it is only in the
last 50 years that remote sensing technology has enabled the visualization, mapping and assessment of
mining impacts and landscape recovery. Our review of published literature (1970–2019) found that the
number of ecologically focused remote sensing studies conducted on mine site rehabilitation increased
gradually, with the greatest proportion of studies published in the 2010–2019 period. Early studies
were driven exclusively by Landsat sensors at the regional and landscape scales while in the last
decade, multiple earth observation and drone-based sensors across a diverse range of study locations
contributed to our increased understanding of vegetation development post-mining. The Normalized
Differenced Vegetation Index (NDVI) was the most common index, and was used in 45% of papers;
while research that employed image classification techniques typically used supervised (48%) and
manual interpretation methods (37%). Of the 37 publications that conducted error assessments,
the average overall mapping accuracy was 84%. In the last decade, new classification methods such as
Geographic Object-Based Image Analysis (GEOBIA) have emerged (10% of studies within the last ten
years), along with new platforms and sensors such as drones (15% of studies within the last ten years)
and high spatial and/or temporal resolution earth observation satellites. We used the monitoring
standards recommended by the International Society for Ecological Restoration (SER) to determine
the ecological attributes measured by each study. Most studies (63%) focused on land cover mapping
(spatial mosaic); while comparatively fewer studies addressed complex topics such as ecosystem
function and resilience, species composition, and absence of threats, which are commonly the focus
of field-based rehabilitation monitoring. We propose a new research agenda based on identified
knowledge gaps and the ecological monitoring tool recommended by SER, to ensure that future
remote sensing approaches are conducted with a greater focus on ecological perspectives, i.e., in terms
of final targets and end land-use goals. In particular, given the key rehabilitation requirement of
self-sustainability, the demonstration of ecosystem resilience to disturbance and climate change
should be a key area for future research.

Keywords: mine site rehabilitation; reclamation; ecological restoration; remote sensing; mining

1. Introduction

The practice of ecological restoration aims to facilitate a level of native ecosystem recovery
following disturbance impacts on a scale, ranging from ecosystem degradation to complete ecosystem
destruction [1,2]. Within this broad area of study, one particular sub-discipline has emerged. With a
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specific focus on the rehabilitation of landscapes following mining, post-mine rehabilitation is clearly
distinct from non-mining restoration projects due to the high-levels of disturbance. As a result, recovery
objectives are more likely aligned with new (novel) or hybrid ecosystems made up of native and exotic
species that provide acceptable levels of stability and ecosystem functionality [3].

The importance of post-mine rehabilitation is identified by governments across multiple
jurisdictions, who have introduced legislation that require mining companies to achieve specified
standards for reconstructed landforms, topsoil, vegetation, and water quality. In the United States,
the introduction of the Surface Mine Control and Reclamation Act of 1977 [4] represented one of the first
federal government regulations to enforce rehabilitation standards, including the filling of remaining
voids and pre-specified end land-uses [5]. Since then, numerous jurisdictions have implemented
similar legislation administered by governments, aiming for best practice and including key features
such as financial assurances, progressive rehabilitation, and targets that are safe, stable, non-polluting
and ecologically sustainable [6–11].

The most common way for mining companies to demonstrate rehabilitation success and provide
confidence for mine closure is through ecological monitoring [12]. This is typically achieved using
ground-based transect and quadrat monitoring methods that are robust and repeatable, and subject
to an appropriate level of scientific scrutiny [13–16]. Such an approach provides data on a range of
conditions, from the initial stages of landform reshaping, to the demonstration of vegetation cover
development and the evidence of complex ecosystem function and structure. Ground-based monitoring
methods are often labor-intensive exercises and although technically precise, these programs are
constrained spatially, temporally, and financially. While the aim for ground monitoring is a study design
that is statistically representative of the sampled population, for the above reasons, these programs
tend to sample a small proportion of the landscape, and their effectiveness might be limited due
to this scale factor. The International Society for Ecological Restoration (SER) has developed an
‘ecological recovery wheel’ monitoring tool to guide restoration projects and quantify the trajectory
of recovery in comparison to analogue native ecosystems [1]. This tool helps to define the attributes
and sub-attributes that are necessary to determine successful ecosystem recovery, by focusing on
the key areas of structural diversity, species composition, physical conditions, external exchanges,
ecosystem function, and absence of threats. Although mined land rehabilitation that returns novel
ecosystems might not be appropriate to compare directly with natural analogues [12,17,18], the tool
developed by the SER offers an appropriate choice of metrics to measure and quantify the success of
rehabilitation efforts.

In contrast to ground monitoring programs that are constrained by small areas, remote sensing
offers the opportunity to monitor at a landscape scale to either compliment ground surveys, or replace
them entirely. In the last two decades the science of remote sensing and spatial analysis underwent
a fundamental shift, with new advances in earth observation and drone technology providing
opportunities for rapid and cost effective assessments of multiscale landscape changes, and ecosystem
development of restoration and rehabilitation projects [19,20]. However, due to the inherently
heterogeneous nature of the rehabilitated landscapes, these areas can be challenging to monitor
remotely. As a constructed landscape, rehabilitation is typically made up of discrete patches of
vegetation in different stages of development, with underlying soil characteristics and landform
slopes and topography that can vary significantly over short distances; particularly when compared
to neighboring unmined land [12]. Additionally, rehabilitation managers often vary inputs, such as
seed mixes, topsoil depth, and site preparation techniques, resulting in high levels of spectral
heterogeneity within and between patches, across post-mining landscapes [21–30]. Nonetheless,
the advantage of a remote sensing approach that uses discrete classification at fine spatial scales, is the
potential to characterize the heterogeneity and the patterns associated with fine scale rehabilitation
history, such as topsoil distribution, landform contour banks, and seeding patterns, using innovative
classification techniques [31]. Moreover, a number of studies have shown the possibility of taking
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advantage of spectrally unique rehabilitation targets, using high temporal resolution provided by
earth-observation satellites [32].

The capacity for remote sensing to convey the complexity of post-mine rehabilitation and the
ecological drivers that lead to successful plant establishment and growth, and to mine closure is not
comprehensively addressed across the literature. A number of review papers have examined the connection
between remote sensing and mining, including fine scale land cover classifications [19], drone monitoring
of restoration projects [20,33], and mine impacts [34,35]. Additionally, other review studies have assessed
how restoration projects applied ecological attributes using ground monitoring [17,36]. However, there are
no review papers that have assessed the role remote sensing has played in the ecological assessment of
post-mine rehabilitation. Given the advances in remote sensing technology over the last 50 years and
the future trajectories for the areas requiring rehabilitation globally, this paper represents an important
and timely contribution.

We undertake a systematic review to assess the current status of remote sensing studies of
vegetation dynamics on mine site rehabilitation between 1970 and 2019. We start by characterizing the
sensors, platforms, and classification methods used, and the locations and types of mapped resources.
We then discuss the key question of how closely remote sensing studies approximated the monitoring
of ecological attributes and success of mine site rehabilitation. Using the International Society for
Ecological Restoration’s ecological recovery wheel monitoring tool as a template [1], we categorize past
studies to assess how researchers approached assessments of rehabilitated landscapes. In particular,
what are the ecological attributes that remote sensing measures and where are the research gaps?
Are there ecological attributes that remote sensing is not able to measure effectively? We conclude by
providing a set of recommendations to guide future research.

2. Materials and Methods

2.1. Search Criteria

We conducted an online search on 23/01/2020 applying a systematic approach to our literature
review, using Scopus to search for all papers published between 1970 and 2019. The fifty-year period was
chosen to adequately capture the beginning of earth observation through to the current era, and thus
provide insight into the progress of rehabilitation assessments from relatively coarse resolution satellites
to modern, high spatial and temporal sensors. We used the following search query string:

(TITLE-ABS-KEY (“remote sensing”)) AND (TITLE-ABS-KEY (“mine” OR “mining” OR “mined”))
AND (TITLE-ABS-KEY (“restoration “ OR “reclamation “ OR “rehabilitat*” OR “revegetat*”)) AND
(TITLE-ABS-KEY (“vegetat*” OR “eco*” OR “cover” OR “environment*”)) AND NOT (TITLE-ABS-KEY
(“data mining”)).

For the purposes of this study, we used the definitions for rehabilitation, restoration, reclamation,
and revegetation, derived from the International principles and standards for the practice of ecological
restoration [1]. Many of these terms are used interchangeably throughout the literature. Herein, we use
the term ‘rehabilitation’ to describe the process of landform reconstruction and reinstatement of a desired
level of ecosystem function and vegetation structural development following mining disturbance.

Following the initial online Scopus search, papers were selected for the review based on a four-stage
process. First, papers that met the above Scopus search criteria were selected and downloaded if
they were relevant to the fields of remote sensing and mine site rehabilitation, published in peer
review journals (conference proceedings, books, and non-peer reviewed articles were not included)
and published in the English language. Second, papers were shortlisted according to their suitability
to the review topic and based on the following criteria. Papers were required to:

• include remote sensing as a core component of the study;
• have mine rehabilitation as either a feature of the study or a discrete mapping class (regional or

catchment scale studies that generate Land Use Land Cover (LULC) maps were not included);
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• make a novel contribution to the ecology of mine site rehabilitation and successional focus, rather
than mapping studies that might have focused more broadly on LULC;

• demonstrate a primary focus on vegetation rather than other biophysical attributes such as soil
or water.

We eliminated a significant number of remote sensing papers that did not directly focus on
rehabilitation. For example, many papers assessed the direct impacts of mining on land cover,
using change detection at regional scales (e.g., [37,38]), while other studies showed a greater emphasis
on soil assessments [39–41].

Third, we searched Google Scholar, Web of Science, and ScienceDirect, based on the following
word combinations: “remote sensing mine rehabilitation”, “remote sensing mine reclamation”, “remote
sensing mine closure”, “remote sensing mine restoration”, and “remote sensing mining land cover” to
cross check the Scopus search and determine if any relevant papers were missed. We took the first
entries until there were no relevant entries after five pages.

Fourth, during the reading and review process, any new and relevant literature discovered within
the reference lists were included in the review.

2.2. Data Compilation

The aims and objectives of each paper were summarized, in addition to the year of publication,
Country, region, and location of the study. We compiled a database to summarize a number of
variables including commodity, study type, sensors, spatial extent, classification method, temporal
scale, and indices used (Table 1).

Mine ‘Commodity’ was recorded for each study to determine if remote sensing studies favored any
particular commodities. Copper, zinc, gold, silver, and nickel mines were all grouped into the category
‘Metalliferous’ and small mines extracting hard-rock, calcareous sandstone, bentonite, and perlite were
grouped into the category ‘Quarry’. The type of extraction method was also recorded and included
open-cut, underground, small-scale artisanal mining, borehole, open pit, strip mining, and quarry.
However, this was not included in the final assessment, since the majority of studies were open-cut
(86%) and mine type can largely be inferred from commodity. Note that only one study was conducted
on an underground coal mine assessing the subsidence impacts on vegetation [42].

Papers were categorized based on the ‘Study Type’ that was undertaken. Ecological studies
were those that used remote sensing to gain a deeper understanding of the ecological processes that
are occurring in rehabilitated areas. Often these studies are novel and combine remote sensing with
ecological field data in an innovative way. This category was further separated into ecological studies
that used field data (‘Ecol (Field Obs)’) and ecological studies that did not use field data (‘Ecol (No Field
Obs)’). Other categories within the Study Type variable were ‘Land Cover’ assessments, ‘Theoretical’
studies (n = 2) that employed method development, ‘Review’ papers (n = 4) and papers that developed
decision support system tools (‘DSS’), generally aimed at policy development (n = 2).

The ‘Sensors’ that were used in each study were recorded and then summarized into broad
groups, based on the predominant sensor. These categories included: ‘EO Low’ Earth observation low
resolution (>30 m); ‘EO Medium’ Earth observation medium resolution (5–30 m); ‘EO High’ Earth
observation high resolution (<5 m); ‘Drone’ for drones using optical sensors (i.e., include various
methods such as Structure from Motion (SfM) point clouds to produce Digital Elevation Models (DEMs)
and the classification of multispectral imagery) and thermal sensors; ‘Terrestrial Light Detection and
Ranging (LiDAR)’, ‘Aerial Optical’ (True-Colour/Multispectral), ‘Aerial Hyperspectral’, ‘Aerial LiDAR’,
‘SAR’ (Synthetic Aperture Radar), and ‘Handheld Hyperspectral’ sensors. Note that we found no
studies that used drone LiDAR or drone hyperspectral sensors.
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Table 1. Metadata used to categorize each study in the review. Each study was given a class according to the variables below. * Study Type was also classified
according to the International Society for Ecological Restoration (SER) ecological recovery wheel attributes (not listed here).

Variables

Commodity Study Type * Sensors Spatial Extent Classification Method Temporal Scale Index

C
at

eg
or

ie
s/

C
la

ss

- Coal
- Metalliferous
- Bauxite
- Iron-Ore
- Mineral Sand
- Oil Sands
- Phosphate
- Uranium
- Quarry
- Sulphur

- Ecological (with
Field Observations)

- Ecological (without
Field Observations)

- Land Cover
- Review
- Theoretical
- Decision

Support System

- EO Low (>30 m)
- EO Medium (5–30 m)
- EO High (<5 m)
- Drone Optical

(RGB/MS/Thermal)
- Terrestrial LiDAR
- Aerial Optical

(RBG/MS)
- Aerial

Hyperspectral sensors
- Aerial LiDAR
- SAR
- Handheld

Hyperspectral sensors

- Regional scale
(multiple Mine sites,
> 50 km2)

- Mine site scale
(1 Mine site,
10–50 km2)

- Block scale
(1–2 age-classes
of rehabilitation,
1–10 km2)

- GEOBIA
- Supervised
- Unsupervised
- Spectral

Time Series
- Manual

- Uni-Temporal
- Bi-Temporal
- Tri-Temporal
- Multi-Temporal
- Decadal

- Single VI-NDVI
- Single VI-Other
- Multi VI
- Sensor

Bands Only
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The ‘Spatial Extent’ of each study was categorized into three classes that best reflected the range
of studies used in the project. This included the ‘Regional scale’, which were studies that included
multiple mine sites (>50 km2), the ‘Mine Site Scale’ that were focused on the assessment of one entire
mine site and surrounding areas (10–50 km2), and the ‘Block Scale’, which were studies that focused on
1–2 age-classes of rehabilitation or one rehabilitated block of land (1–10 km2). There were no studies
that assessed rehabilitation at the continental or global scale.

‘Classification Method’ was summarized into four broad groups—‘GEOBIA’ for those studies
employing Geographic Object-Based Image Analysis (GEOBIA) to segment and classify images
based on image-objects rather than pixels; ‘Supervised’ for studies that used a variety of methods
including machine learning algorithms such as Random Forests, Support Vector Machines, and boosted
classification and regression trees (CART). Other supervised techniques included Maximum Likelihood,
k-Nearest Neighbor (k-NN) and Artificial Neural Network (ANN) Classifiers. Studies that used
training samples to classify images were also included in the Supervised class. ‘Unsupervised’
methods included Iterative Self-Organizing Data Analysis (ISODATA), self-organization cluster
analysis (ISOCLUST—from IDRISI), and ISOSEG (using k-Means). Studies that used methods such
as LandTrendr were classed separately as ‘Spectral Time-Series’. The studies that were classed as
‘Manual’ were those that did not use any of the above methods and manually created classes, either by
digitizing polygons or using spectral indices to extract features such as vegetation cover, tree canopies,
or bare areas.

‘Temporal Scale’ of the studies was summarized by the following classes—‘Uni-Temporal’ for
those studies using a single image for the analysis; ‘Bi-Temporal’ when two images were used;
‘Tri-Temporal’ for those studies using 3 images; and ‘Multi-Temporal’ when multiple images were
used. These studies spanned 1–2 decades (this can be a time-series [43] or 5+ images within the
same decade [44]); and ‘Decadal’ was used to describe studies which used multiple images spanning
multiple (>2) decades. Generally, these studies employed time-series analysis and change detection for
LULC assessments [45].

The spectral indices (‘Index’) used were summarized for each study. We wanted to know which
vegetation index (VI) was the most commonly used and if any particular index was more successfully
employed, compared to others. Studies were grouped into ‘Single VI –NDVI’ for those that only used
Normalized Differenced Vegetation Index (NDVI), ‘Single VI-Other’ for studies that used a vegetation
index apart from NDVI, ‘Multi-VI’ when studies used more than one index (note that all of these
included the use of NDVI) and ‘Sensor Bands Only’ for those studies that used spectral bands without
applying band ratios.

To determine contribution to ecological outcomes, each study was categorized based on the
attributes of the ecological recovery wheel designed for the monitoring of restoration projects
by the International Society for Ecological Restoration (SER) [1]. In particular, we used the six
attributes and eighteen sub-attributes developed in Principle 3 that are suited for the monitoring of
recovering or rehabilitated ecosystems. Each study was categorized according to the most suitable
attribute and sub-attribute that best represented the primary objective of the study. The six attributes
included—Absence of Threats, Physical Conditions, Species Composition, Structural Diversity,
Ecosystem Function, and External Exchanges. Note that of the total 99 papers in the review, those classed
as review papers (n = 4) and decision support system tools (DSS) papers (n = 2) did not generate
any ecological research outcomes and were, therefore, omitted from the ecological recovery wheel
assessment, leaving a total of n = 93 papers. The total number of papers for each category were
rescaled to the five-point scale featured in the ecological recovery wheel. This was based on the
maximum number of studies for the spatial mosaic sub-attribute, which was the most common study
type. In order to further explore the ecological recovery wheel as a remote sensing monitoring tool,
we assessed each attribute and sub-attribute and ranked these on the 1–5 scale for the potential for a
remote sensing monitoring approach on post-mine rehabilitation. Where remote sensing has a high
potential to monitor a sub-attribute, these were ranked a maximum of 5. A moderate and low potential
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were ranked a 3 and 2, respectively, and scores were ranked zero when a remote sensing approach was
unlikely to contribute to monitoring outcomes for mine site rehabilitation.

Finally, we recorded overall map accuracies (OMA %) which were grouped according to the
Index used.

3. Results

The online search using Scopus, Google Scholar, Web of Science, and ScienceDirect, resulted in
a total of 333 papers; of which 193 research and 4 review papers were assessed according to their
suitability. Using our search criteria, we shortlisted a total of 99 papers for the final review comprising
93 research papers, 2 decision support system (DSS) and 4 review articles.

Over time, the number of papers published increased exponentially, with 5 (5%) papers published
in the decade 1970–1979, 3 (3%) in 1980–1989, 6 (6%) in 1990–1999, 18 (18%) in 2000–2009, and 67
(68%) published in 2010–2019 (Figure 1). Early papers from the mid-1970s were all studies conducted
on rehabilitated coal mines in the United States of America (USA) using Landsat sensors. Overall,
the USA accounted for 21 (21%) studies, Australia—17, China—13, Canada—9, Germany—5, and Brazil,
Bulgaria, Finland, Greece, India, Indonesia, Italy, Papua New Guinea, Laos, Poland, Russia, South Africa,
Spain, and Turkey all had less than 5 studies each (Figure 1A). Remote sensing studies were mostly
conducted on coal mines (62%), followed by metalliferous mines (17%), quarries (5%), and bauxite,
iron-ore, mineral sand, oil sands, phosphate, sulfur, and uranium (less than 5%) (Figure 1B).

Figure 1C shows that Landsat sensors were the dominant choice of sensor in 50% of studies over
the 50-year period. However, over time a greater number of sensors were used, especially between
2010–2019. This was particularly the case in 2017, 2018, and 2019, when drones were used in 25% of
studies, aerial hyperspectral in 8%, aerial optical in 4%, and high-resolution earth observation Satellite
Pour l’Observation de la Terre (SPOT) in 5%, and WorldView in 3% of studies (Figure 1C).

Interestingly, research conducted in the last decade covered a greater diversity of SER ecological
sub-attributes, when compared to the entire 1970–2019 period. While spatial mosaic studies
(represented by predominantly LULC studies) dominated over the 1970–2019 period with 63% of
studies, the 2010–2019 decade saw an emergence of new studies with a focus across a broader range of
sub-attributes. These included remote sensing papers that assessed topics such as productivity/cycling
(14%), landscape flows (11%), desirable plants (3%), invasive species (3%), and habitat links (2%)
(Figure 1D).

Over the five decades, the types of studies varied, with 36% of research papers attributed to
ecological studies with field data, 37% land cover studies, and 18% ecological studies without field data
(Figure 2A). In general, studies were dominated by earth observation (EO) low spatial-resolution sensors
(55%), with drone-based sensors being the second highest (10%), followed by aerial hyperspectral
sensors (8%), EO high (7%), and EO medium (6%) (Figure 2B). The spatial extent for more than half
(52%) of the studies was at the mine site scale, with comparatively fewer studies at the regional
scale (30%) and the block scale (13%) (Figure 2C). For the temporal scale, the studies were mostly
uni-temporal (36%) or decadal (23%), and the classification methods tended to focus on supervised
(43%) or manual methods (33%) (Figure 2D,E).
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Figure 1. Stacked bar charts showing the number of publications for each year, according to the country
of study (A), the commodity (B), the primary craft used for the assessment (C), and the sub-attributes
taken from the SER ecological recovery wheel (D).
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Figure 2. Summary statistics for the 99 publications reviewed showing the type of study (A), type of
sensor (B), spatial extent of study (C), temporal scale (D), and classification methods employed (E).
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Figure 3A shows the SER ecological recovery wheel categorized for the 93 research papers.
(Note that of the total 99 papers, 4 review papers and 2 DSS were omitted from this assessment).
The total number of papers for each category were rescaled, based on the maximum number of
studies for a single sub-attribute, which was 59 (63%) for the sub-attribute spatial mosaic. As a result,
all other sub-attributes were rescaled to 1 or below on the ecological recovery wheel scale (Figure 3A).
This demonstrated that the literature was dominated by LULC studies, while a smaller proportion
focused on ecosystem function (productivity/cycling) (11%) or external exchanges/landscape flows
(7%). All other attributes were either under-represented or not represented at all.

It is our opinion that remote sensing has the potential to address 16 of 18 sub-attributes in
the ecological recovery wheel, as shown in Figure 3B. Twelve sub-attributes scored a maximum of
5, suggesting that remote sensing is capable of assessing metrics including resilience/recruitment,
invasive species, desirable plants, and all vegetation strata. Desirable animals scored 3 indicating a
moderate capacity for assessment. All three physical conditions sub-attributes scored 2, suggesting a
low capacity, while gene flows and all trophic levels scored zero, suggesting remote sensing is not
suitable (Figure 3B).

Figure 4 shows the frequency of spectral indices used as a total of the reviewed publications.
Normalized Differenced Vegetation Index (NDVI) was the most common index used, with 44 studies
(44%) employing the index. A total of 43 studies (43%) did not employ an index and used sensor bands,
most commonly within a supervised classification (47%). The orthogonal indices tessellated cap and
principal component analysis (PCA) were used in 9 studies (9%) and 4 studies (4%), respectively; while 7
studies (7%) used soil adjusted vegetation index (SAVI). Six (6) studies used enhanced vegetation
index (EVI), normalized moisture difference index (NMDI), and simple ratio (SR), while 5 studies used
fractional vegetation cover (Frac Veg). A total of 6 narrow band indices were used with hyperspectral
imagery, while 7 indices were used with standard color (RGB) imagery from drone studies.

Of the total studies, 37 quantified overall map accuracy using error matrices, with an average
overall accuracy of 84% and a range from 41% to 99% (Table 2). Fourteen publications used NDVI
as the only index with an average overall map accuracy of 83% and a range between 52% and 99%.
The majority of these studies used GEOBIA classification, along with high-resolution earth observation
imagery and did not use field data to validate classifications. Thirteen of the studies used sensor
bands with an average overall map accuracy of 85% and a range from 41% to 98%. Comparatively
fewer studies used multiple vegetation indices (including NDVI) (6) and single vegetation indices
(not NDVI), with an average overall map accuracy of 86% and 74%, respectively (Table 2).



Remote Sens. 2020, 12, 3535 11 of 34

Figure 3. Remote sensing studies plotted on the ecological recovery wheel for monitoring projects (International Society for Ecological Restoration (SER)) based on their
primary objective and rescaled by the sub-attribute spatial mosaic which had the highest number of studies at 59 (A). Potential application of remote sensing opportunities
for monitoring in mine site rehabilitation (B). This figure was adapted from the ecological recovery wheel, accessed at http://seraustralasia.com/wheel/wheel.html.

http://seraustralasia.com/wheel/wheel.html
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Figure 4. The frequency of indices used. Note that a number of studies used multiple indices within
one publication. Hyper = Hyperspectral imagery narrow band indices, and RGB = derived from color
red green blue imagery. For a list of index names see Table A1.

Table 2. Summary of overall map accuracies indices taken from studies in the review that quantified
overall map accuracies.

Index Category n
(Values)

n
(Publications) Average (%) Min (%) Max (%) SD

Multi VI (NDVI+) 19 6 86 45 97 12.9
Sensor Bands Only 97 13 85 41 98 12.3

Single VI NDVI 33 14 83 52 99 12.0
Single VI Other 9 4 74 52 91 15.0

Total/Overall 158 37 84 41 99 13.0

Figure 5 shows an alluvial chart that represents the proportions of data within each variable and the
interconnectedness between variables (columns) and categories (rows). The black lines (nodes) represent
each category, and the length of the node represents the proportion of publications. For example,
the decade 2010–2019 produced the highest number of studies, and most of these publications were
produced by the USA, Australia, Canada, and China. A large proportion of the studies produced in
the USA were on coal mine rehabilitation, mostly conducted at the site and regional scale. On the
right hand side of the alluvial chart, the dominance of the ecological attribute structural diversity
and corresponding sub-attribute spatial mosaic is apparent (63%), while important metrics such as
resilience/recruitment represent only 1% of studies (Figure 5).
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Figure 5. Alluvial chart demonstrating the proportions within variables and the correlations between variables. From Left to Right: Decade of publication, Country of
study, Commodity, Sensor used in study, Spatial Extent, Temporal Scale, Classification method, ecological attribute, and ecological sub-attribute. NA = review papers,
DSS, and theoretical papers.
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4. Discussion

4.1. Overview

The use of remote sensing to monitor mine site rehabilitation is well established, with studies
conducted across 19 different countries on a diverse range of commodity types and using a variety of
sensors and platforms. Since the early 1970s, scientists have looked to remote sensing technology to gauge
land cover change and quantify rehabilitation outcomes associated with mining impacts [34,46–48].
However, the vast body of research for the last five decades shows little evidence that remote
sensing has provided practical outputs that capture the key ecological characteristics required for
ecological monitoring, and the application of rehabilitation science. Although there was a greater
diversity of studies in the 2010–2019 decade, we found that overall, studies paid little attention
to the importance of the rehabilitation process, ecosystem development and functioning, and the
final goals and objectives of rehabilitation, including mine closure. This is most clearly shown when
studies were categorized using the Society for Ecological Restoration’s (SER) ecological recovery wheel
monitoring approach [1]. From the total 18 sub-attributes, 63% of studies focused on the spatial mosaic
sub-attribute; while comparatively fewer studies addressed more complex topics such as ecosystem
function, species composition, and absence of threats. Whereas the underrepresentation of studies
on attributes associated with physical conditions was expected (since our review primarily focused
on vegetation and actively filtered studies with a focus on substrate), the concentration of studies on
spatial mosaic demonstrates the need for a greater understanding of the capacity for remote sensing to
monitor rehabilitation success. This involves moving beyond historical approaches for remote sensing,
which have commonly been on land-use and land-cover mapping to monitor change.

Interestingly, a review of 68 studies that assessed restoration success through ground monitoring
campaigns also found that not all ecological monitoring attributes defined by SER were measured [17].
The most commonly assessed attributes included diversity, vegetation structure and ecological process
attributes; while attributes that were poorly measured included those requiring long-time scales such as
recruitment, integration with the landscape and self-sustainability. However, in a follow-up review
nearly a decade later, Wortley et al. (2013) found that many studies had since addressed those attributes,
indicating that the understanding of long-term processes was highly valuable to determining the
success of restoration [36]. Coincidently, attributes that require long-term data sets and can indicate
the achievement of key goals of mine site rehabilitation such as sustainability (e.g., second-generation
recruitment/resilience to disturbance events such as fire) are well placed for remote sensing assessments
given spatial and temporal descriptive capabilities. Other attributes that are well placed for remote
sensing assessments, and were under represented in the literature include attributes within ecosystem
functioning, absence of threats, species composition, external exchanges, and structural diversity. Recent
technological advances, coupled with improvements in our understanding of rehabilitation science,
suggests that new approaches to remote sensing of rehabilitation are timely, needed, and achievable.
Sensors such as hyperspectral and LiDAR have the potential to understand structural and developmental
changes that are occurring across rehabilitated areas, while automated processing techniques and
software are increasingly available for land managers and stakeholders. Furthermore, historical remote
sensing archives can be used to “go back in time”, even if field data is unavailable to fill this important
data gap commonly absent in field-based studies [49].

4.2. Chronological Development of Remote Sensing for Mapping Rehabilitation

The choice of sensors for rehabilitation monitoring projects always requires a trade-off between
the available spatial and temporal resolution. The potential for remote sensing for quantifying
rehabilitation extent and vegetation cover was initially demonstrated by a number of studies using
early Landsat Multi Spectral Sensor (MSS) in comparative studies with aerial photography [47,48,50,51].
These pioneering early studies concluded that the new series of satellite earth observation sensors
were well suited to land cover mapping, including the inference of vegetation development and
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rehabilitation vigor [34]. Although now considered a low spatial and temporal resolution earth
observation satellite, the Landsat series sensors were used consistently to characterize a range of
rehabilitation features including land cover change [52–58], vegetation health [42,59], species level maps,
including invasive species [60,61], vegetation biomass [62], successional development and age class
differentiation [22,27,63], carbon sink calculations [64], disturbance and recovery change patterns [65],
and surface temperature changes, as a function of vegetation cover and soil moisture properties [66].
Additionally, moderate to high spatial resolution earth observation sensors such as Satellite Pour
l’Observation de la Terre (SPOT), IKONOS, Quickbird, RapidEye, GeoEye-1, and WorldView were
typically employed in land cover studies, demonstrating the potential of classification methods using
single or bi-temporal imagery [31,44,67–70], while other studies assessed rehabilitation for resilience
and recovery from secondary disturbances [29,71].

Beyond the use of passive optical sensors, active sensors demonstrate the capacity for ecological
monitoring of rehabilitation but are still relatively under-utilized. Bao et al. (2019) found that fusing
WorldView-3 optical bands with Sentinel-1 SAR bands increased the correlation with on-ground
measurements of above ground biomass and resulted in a model with a higher prediction accuracy
(r2 = 0.79, RMSE = 22.82gm−2) compared to WorldView-3 and Sentinel SAR, separately in a rehabilitated
semi-arid grassland in North China [24]. Other studies showed improvement in accuracy by including
auxiliary non-spectral light detection and ranging (LiDAR) data. For example, Maxwell et al. (2015)
showed that the inclusion of LiDAR had greater classification accuracy than using multispectral
data which resulted in confusion between similar land cover classes such as unmined forest versus
rehabilitated woodlands [72,73].

More recently, developments in high spatial and temporal resolution using drone-based sensors
have contributed significantly to rehabilitation assessments. These studies showed the capacity for
measuring vegetation canopies and woody species [74,75], vegetation health [76], impacts from
fire disturbance [30], and cover changes over time, along with landform stability to demonstrate
rehabilitation success at the block scale [77]. Vegetation structure was also assessed using Structure
from Motion (SfM) derived 3D point clouds to measure canopy height and vegetation cover [25].
However, the accuracy of drone-derived products can be significantly impacted by a number of factors,
such as season of capture, canopy shadows, camera settings, cloud shadows, and windy conditions
that move foliage between captures [25,30,74,75]. Additionally, while drones are becoming increasingly
popular, the cost of hardware and image capture, when compared with online free imagery from
Sentinel and Landsat, might reduce their popularity in the longer term, and a lack of historic archival
imagery is a key limitation.

The assessment of indices used showed the popularity of the Normalized Vegetation Difference
Index (NDVI) as a tool for monitoring vegetation development on rehabilitated landscapes.
In rehabilitation, as in other remote sensing studies, the NDVI is one of the most widely used
indices for vegetation assessment [78]. The NDVI was used in 44% of studies and when employed as
the only index (n = 14 studies) produced an average overall map accuracy of 83%. When NDVI was
used in combination with one or more indices (n = 6 studies) overall average map accuracy increased
marginally to 86% with a range of 45% to 97%. Interestingly when no vegetation indices were used
(n = 13 studies), in predominantly supervised classification, overall map accuracy average was a high
85%, suggesting that while indices continue to remain popular, their use in classifying imagery is not
essential. The diversity of indices used in papers assessing rehabilitation was notable, with 44 different
spectral, orthogonal, SAR, and thermal indices used over the fifty-year period. Spectral indices derived
from multispectral imagery (26 indices) were most common, followed by visible true color imagery
(red green blue) (7 indices) and hyperspectral imagery (7 indices) (Table A1).

4.3. Recommendations for Operationalising Remote Sensing for Mine Site Rehabilitation

A number of studies demonstrated the increased scrutiny on rehabilitation outcomes following
legislative changes, due to increased incentives for mining companies to report progressive rehabilitation
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and demonstrate compliance to Government agencies. In the United States, the introduction of the
Surface Mine Reclamation Act (SMCRA) of 1977 led to an initial surge in remote sensing studies
developing methods to inventory rehabilitation efforts [22,47,48,50,51,79,80]. Similar legislation in
other countries led to comparable studies in Canada [81,82], Poland [83], South Africa [58], Italy [84],
Spain [85], Greece [53], China [86], and Australia [65,74,87,88].

Due to its popularity and availability, scientists from a broad range of disciplines are increasingly
using remote sensing as a tool for environmental monitoring. However, remote sensing assessments of
mine site rehabilitation require considerable knowledge and skill to interpret outputs of analysis and
derive meaningful results. This is highlighted by a number of studies emphasizing the heterogeneous
nature of mine site rehabilitation and the unique spatial and temporal challenges for remote sensing
assessments [21–30]. Alternatively, the distinctive spectral, temporal and spatial patterns of rehabilitated
landscapes provides opportunities for remote sensing to derive valuable ecological information.
For example, progressive rehabilitation over a long period can result in a patchwork of different
age-classes that potentially can be assessed with a single image to build change trajectories of ecological
metrics such as vegetation cover, woody density, and species richness. Such assessments might be
possible, but only with field-based knowledge such as establishment age, site preparation methods,
seeding mixes, and reflectance values for endemic and exotic species. One key limitation we found
was that less than half of the studies (43%) integrated ground-based field data with remote sensing
data. Ground data are essential for calibrating and validating remotely sensed models and for testing
correlations between ecological attributes such as vegetation cover. Another common limitation we
identified was the assumption that increases in vegetation cover, identified by mapping vegetation
cover, are equivalent to a final measure of success for mine site rehabilitation. While a measured
increase in vegetation cover might indicate stability and show early stages of plant establishment,
this represents just one metric in a suite of criteria that is needed to inform rehabilitation success.
Importantly, this assumption ignores the value of desired plant species, absence of weeds, and the
structural components of developing ecosystems that are essential to meet target community attributes
required for end land-use and mine closure.

Several knowledge gaps can be addressed given the current state of remote sensing technology
and image availability. Based on our knowledge of rehabilitation and remote sensing science, we make
the following suggestions for future work:

• The monitoring of ecosystem function in the remote sensing literature is scant and is a key metric
for rehabilitation success. In particular, the SER sub-attribute of ecological resilience requires
further research. Given that one of the key aims for mine site rehabilitation is an ecosystem that
is self-sustainable, the measurement and demonstration of resilience is one key area for future
work [12,29]. This is particularly salient given that disturbances such as fire, drought, disease,
floods, and storms are inevitable and predicted to increase, given climate change.

• Comparing baselines and reference sites to rehabilitated sites is a common approach used
when monitoring for restoration success [1], and is often a requirement of ecological monitoring
programs. However, the comparison between mined and unmined ecosystems was only addressed
by a few notable exceptions [44,89]. Comparisons between unmined natural ecosystems versus
rehabilitation will provide stakeholders with confidence in rehabilitation success and is important
to support mine closure, and can be directly addressed using remote sensing.

• Studies showing long-term (decadal) development and achievement of ecological processes,
such as structural canopy development [65], are required to confirm that a post-mining ecosystem
is self-sustainable and resilient. A single snapshot or multiple snapshots in time provide little
evidence of how rehabilitation is responding to long-term environmental fluctuations and changes
over time. For example, many studies used NDVI as a proxy for vegetation vigor and rehabilitation
success, however, this index is highly responsive to seasonal fluctuations. A time-series of NDVI
provides more insight into rehabilitation performance rather than a uni-temporal assessment.
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• Large-scale studies using long-term ground monitoring data integrated with remote sensing metrics
to assess ecosystem development should be explored, given the availability of comprehensive ground
monitoring data-sets that are often required by regulators to demonstrate rehabilitation progression.

• Regional or continental scale inventories of rehabilitation estates can provide industry-wide
(and company-wide) perspectives on completed and still-to-be-completed rehabilitation projects.

• There are many examples of remote sensing approaches for measuring vegetation health,
which could be used for rehabilitation monitoring that have been demonstrated in other disciplines,
such as forestry [90].

• Field-based monitoring is still the most common approach used globally for assessing rehabilitation
success, yet it is time-consuming, labor intensive, and expensive. In order for remote sensing to
be further operationalized by mining companies and government regulators, researchers need to
demonstrate which field-based metrics can be confidently derived using remote sensing techniques.

Throughout 50 years of remote sensing monitoring, there is yet to be a clear scientific consensus on
the best approach for determining rehabilitation success through remote sensing methods. There are
great opportunities for moving beyond the conventional land cover assessments and developing
standardized approaches to measure a number of ecological attributes as defined by SER International
standards. These opportunities could arise through the development of tools to assist rehabilitation
practitioners and regulators, to measure short-term achievement of success criteria, or methods to
quantify long-term success, including resilience to climate change and stochastic events.

5. Conclusions

Our review of the available literature indicates that over the past five decades, the number of
ecologically focused remote sensing studies conducted on mine site rehabilitation increased gradually
from the early 1970s to reach a peak in the 2010–2019 decade. Initial research was dominated by
the Landsat series of satellites, through broad-scale land cover assessments, while the introduction
of new earth observation and drone sensors enabled studies to explore more complex ecological
metrics. However, the SER ecological monitoring attributes remain significantly underrepresented,
and future research should focus on demonstrating the potential to measure sub-attributes associated
with ecosystem function, absence of threats, species composition, and structural diversity. The average
overall mapping accuracy for 37 studies that conducted error assessments was 84% and the NDVI
was the most common spectral index, used in 44% of studies, with an average overall map accuracy
of 83% when used as the solitary index. It is clear that the discipline is in the early stages of
growth and there are significant opportunities for the assessment of progressive rehabilitation and
achievement of end land-use targets. Given the comparatively recent rapid advances in sensor
technology, processing software, and spatial analysis techniques, along with changing legal and
social environments, the importance of developing standardized monitoring methods for gauging
rehabilitation success is evident. Indeed, improvements in the characterization of ecological recovery
through remotely sensed methods will lead to a number of positive outcomes; from increased efficacy of
on-ground management, to increased stakeholder confidence throughout the progressive rehabilitation
period, and at the time of mine closure.
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Appendix A

Table A1. Summary of indices used in the review. Hyper = Hyperspectral, Multi = Multispectral, SAR = Synthetic Aperture Radar, VIS = Visible. * Note that many
studies used multiple indices.

Imagery Type Index Description Formula No. Studies * % of Total Studies

Hyper Hyper (CARC) Carotenoid Content PSRI = (R680 − R500)/R750 1 1.0

Hyper Hyper (CC1) Chlorophyll Content R695/R670 1 1.0

Hyper Hyper (CC2) Chlorophyll Content 2 (R850-R710)/(R850-R680) 1 1.0

Hyper Hyper (LAC) Leaf Anthocyanin Content ARTI1 = (1/R700) − (1/R550) 1 1.0

Hyper Hyper (NDGI) Normalised Differenced
Green Index NDGI = (G − R)/(G + R) 1 1.0

Hyper Hyper (Slope) Slope Slope = (NIR1125−NIR935)/(NIR1125−NIR935) 1 1.0

Hyper Hyper (SU) Spectral Unmixing
Endmember - 3 3.0

Multi ARVI Atmospherically Resistent
Vegetation Index ARVI = (NIR − (R − (B − R)))/(NIR + (R − (B − R))) 1 1.0

Multi CVI Chlorophyll
Vegetation Index NIR×R/G2 1 1.0

Multi DVI Difference Veg Index DVI = NIR − R 2 2.0

Multi EVI Enhanced
Vegetation Index EVI = G × (NIR − R)/(NIR + C1 ×R − C2 ×B + L) 6 6.1

Multi EVI2 Enhanced Vegetation
Index 2 EVI2 = 2.5 × NIR-R/NIR + 2.4 ×R + L 1 1.0

Multi Frac Veg Fractional
Vegetation Cover FVC = (NDVI − NDVImin)/(NDVImax − NDVImin) 5 5.1

Multi MSAVI Modified Soil Adjusted
Vegetation Index MSAVI = (NIR − R)/(NIR + R+L) × (1 + L) 1 1.0

Multi MSAVI2 Modified Soil Adjusted
Vegetation Index 2

MSAVI2 = (2 ×NIR + 1-SQRT((2 × NIR + 1)2 − 8 ×
(NIR-R)) ×0.5 2 2.0
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Table A1. Cont.

Imagery Type Index Description Formula No. Studies * % of Total Studies

Multi NBR1 Normalised Burn Ratio 1 NBR = (NIR-SWIR2)/(NIR + SWIR2)
(note SWIR2 =2.11-2.29µm on Landsat 8) 4 4.0

Multi NBR2 Normalised Burn Ratio 2
NBR2 = (SWIR1 − SWIR2)/(SWIR1 + SWIR2)

(note SWIR1 =1.57−1.65 µm SWIR2 = 2.11−2.29 µm
on Landsat 8)

1 1.0

Multi NDVI Normalised Differenced
Vegetation Index NDVI = (NIR − R)/(NIR + R) 44 44.4

Multi NDVI(B) Normalised Differenced
Vegetation Index (Blue) BNVI = (NIR − B)/(NIR + B) 1 1.0

Multi NDVI(G) Normalised Differenced
Vegetation Index (Green) GNVI = (NIR − G)/(NIR + G) 2 2.0

Multi NDVI(RE)
Normalised Differenced

Vegetation Index
(Red Edge)

NDVI(RE) = (NIR − RE)/(NIR + RE) 1 1.0

Multi NDWI1 Normalised Differenced
Wetness Index 1 NDWI1 = (G − NIR)/(G + NIR) 1 1.0

Multi NMDI Normalised Moisture
Differenced Index

NMDI = (NIR-SWIR1)/(NIR + SWIR1)
(note SWIR1 =1.57−1.65 µm on L8) 6 6.1

Multi PVI Perpendicular
Vegetation Index PVI = NIR × sinx − R × cosx 1 1.0

Multi Ratio
(Unspecified) Vegetation Ratio Unspecified (suspected NDVI) 1 1.0

Multi RI Regrowth index RI = NDVI (inner patch) − NDVI (outer patch) 1 1.0

Multi RSR Reduced Simple Ratio RSR = SR×1 − SWIR − SWIRmin × SWIRmax
− SWIRmin

2 2.0

Multi RVI Ratio Vegetation Index RVI = R/NIR 3 3.0

Multi SAVI Soil Adjusted
Vegetation Index SAVI = (NIR-R)/(NIR + R) +L × (1 + L) 7 7.1
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Table A1. Cont.

Imagery Type Index Description Formula No. Studies * % of Total Studies

Multi SR Simple Ratio NIR/R 6 6.1

Multi SR2 Simple Ratio 2 NIR/SWIR 1 1.0

Multi TSAVI Transformed Soil
Adjusted Vegetation Index

TSAVI = s × (NIR-s × R-a)/(a × NIR + R-a × s + X
×(1 + s2) 2 2.0

Multi WDVI Weighted difference
veg Index WDVI = NIR-s × R 1 1.0

No_Index Sensor
Bands Only - 43 43.4

Orthagonal PCA Principal Components
Analysis - 4 4.0

Orthagonal Tass Cap Tasselated Cap - 9 9.1

SAR SAR (SNR) Signal to Noise Ratio
(not a spectral index) SNR = M/LSD 1 1.0

Thermal LE Latent Energy Heat Flux LE = Rn × (0.114 + 0.78 ×EVI + 0.004 × LST) 2 2.0

VIS RBG (GRI) Green Ratio index GRI = NIR/G 1 1.0

VIS RGB (EGI) Excess Green index EGI = 2 × G-R-B 1 1.0

VIS RGB (EGIR) Excess Green Index Ratio EGIR = R/2 × G × 1000 1 1.0

VIS RGB (MEGI) Modified Excess
Green Index MEGI = 2 × G-R 1 1.0

VIS RGB (TGI) Triangular
Greenness Index TGI = -0.5[(670-480)(R-G)-(670-550)(R-B) 1 1.0

VIS RGB (VARI) Visible Atmospheric
Resistant Index VARI = (G-R)/(G+R-B) 1 1.0

VIS RGB (VI) Vegetation Index VI = (2 × G-R-B) − (1.4 × R-G) 1 1.0
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Appendix B

Table A2. A summary of the 99 papers used in the study, sorted by year of publication.

No. Author Ref Year Country Commodity
Summary

Sensor
Summary

Craft
Primary

Spatial
Extent

Temporal
Scale

Classification
Type

Field
Obs

Study
Type 1

Study Type 2
(Attributes)

Study Type 2
(Sub-Attributes)

1 Wobber etal [47] 1975 USA Coal EO Low Landsat Regional Uni-Temporal Manual Y Land
Cover

Structural
Diversity Spatial Mosaic

2 Anderson &
Schubert [91] 1976 USA Coal EO Low Landsat Site

Scale Uni-Temporal Supervised Y Land
Cover

Structural
Diversity Spatial Mosaic

3 Anderson
etal [50] 1977 USA Coal EO Low Landsat Regional Tri-Temporal Supervised N Land

Cover
Structural
Diversity Spatial Mosaic

4 Mamula [48] 1978 USA Coal EO Low Landsat Regional Uni-Temporal Supervised N Land
Cover

Structural
Diversity Spatial Mosaic

5 Brumbaugh [51] 1979 USA Coal EO Low Landsat Regional Uni-Temporal Manual N Land
Cover

Structural
Diversity Spatial Mosaic

6 Game etal [92] 1982 USA Coal Aerial
Optical Aerial_Optical Site

Scale Multi-Temporal Supervised Y Ecol
(Field Obs)

Structural
Diversity Spatial Mosaic

7 Irons &
Kennard [93] 1986 USA Coal EO Low Landsat Regional Uni-Temporal Supervised N Land

Cover
Structural
Diversity Spatial Mosaic

8 Parks etal [22] 1987 USA Coal EO Low Landsat Regional Bi-Temporal Supervised Y Land
Cover

Structural
Diversity Spatial Mosaic

9 Phinn etal [27] 1991 Australia Mineral Sand EO Low Landsat Site
Scale Uni-Temporal Supervised Y Ecol

(Field Obs)
Structural
Diversity Spatial Mosaic

10 Hill &
Phinn [63] 1993 Australia Mineral Sand EO Low Landsat Site

Scale Uni-Temporal Supervised Y Ecol
(Field Obs)

Species
Composition

Desirable
Animals

11 Rathore &
Wright [34] 1993 NA NA NA NA NA NA NA NA Review NA NA

12 Felinks etal [26] 1998 Germany Coal EO Low Landsat Site
Scale Bi-Temporal Manual Y Ecol

(Field Obs)
Structural
Diversity Spatial Mosaic

13 Schmid etal [21] 1998 Germany Coal EO Low Landsat Site
Scale Multi-Temporal Supervised Y Ecol

(Field Obs)
Structural
Diversity Spatial Mosaic

14 Staenz etal [94] 1999 Canada Metalliferous Aerial
Hyper

Aerial_
Hyperspec

Site
Scale Uni-Temporal Supervised Y Ecol

(Field Obs)
Structural
Diversity Spatial Mosaic

15 Lévesque
etal [95] 2000 Canada Metalliferous Aerial

Hyper
Aerial_

Hyperspec
Site

Scale Uni-Temporal Supervised N Ecol (No
Field Obs)

Structural
Diversity Spatial Mosaic
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Table A2. Cont.

No. Author Ref Year Country Commodity
Summary

Sensor
Summary

Craft
Primary

Spatial
Extent

Temporal
Scale

Classification
Type

Field
Obs

Study
Type 1

Study Type 2
(Attributes)

Study Type 2
(Sub-Attributes)

16 Almeida-filho [45] 2002 Brazil Metalliferous EO Low Landsat Site
Scale Decadal Unsupervised N Land

Cover
Structural
Diversity Spatial Mosaic

17 Bonifazi etal [84] 2003 Italy Quarry EO Low Landsat Regional Uni-Temporal Manual Y Ecol
(Field Obs)

Structural
Diversity Spatial Mosaic

18 Cutaia etal [96] 2004 Italy Quarry EO Low Landsat Regional Tri-Temporal Manual Y Ecol
(Field Obs)

Structural
Diversity Spatial Mosaic

19 Ganas etal [53] 2004 Greece Metalliferous EO Low Landsat Site
Scale Tri-Temporal Supervised N DSS NA NA

20 Pfitzner etal [97] 2006 Australia Uranium Field
Hyper

Field_
Hyperspec NA NA NA N Theoretical Species

Composition Desirable Plants

21 Trisasongko
etal [98] 2006 Indonesia Metalliferous SAR SAR Regional Uni-Temporal Unsupervised N Land

Cover
Structural
Diversity Spatial Mosaic

22 Weiersbye
etal [99] 2006 South

Africa Metalliferous Aerial
Hyper

Aerial_
Hyperspec

Block
Scale Uni-Temporal Supervised Y Ecol

(Field Obs)
Absence of

Threats Contamination

23 Antwi etal [52] 2008 Germany Coal EO Low Landsat Site
Scale Bi-Temporal Manual N Ecol (No

Field Obs)
Structural
Diversity Spatial Mosaic

24 Gillanders
etal [55] 2008 Canada Oil Sands EO Low Landsat Regional Decadal Unsupervised N Land

Cover
Structural
Diversity Spatial Mosaic

25 Halounová [54] 2008 Czech
Republic Coal EO Low Landsat Regional Tri-Temporal Manual N Ecol (No

Field Obs)
Ecosystem
Function

Productivity/
Cycling

26 Lau etal [100] 2008 Australia Bauxite Aerial
Hyper

Aerial_
Hyperspec

Site
Scale Uni-Temporal NA Y Ecol

(Field Obs)
Physical

Conditions
Water

Chemo-Physical

27 Lévesque &
Staenz [82] 2008 Canada Metalliferous Aerial

Hyper
Aerial_

Hyperspec
Site

Scale Tri-Temporal Unsupervised Y Ecol
(Field Obs)

Structural
Diversity Spatial Mosaic

28 Richter etal [101] 2008 Canada Metalliferous Aerial
Hyper

Aerial_
Hyperspec

Site
Scale Uni-Temporal Supervised Y Land

Cover
Structural
Diversity Spatial Mosaic

29 Yang [102] 2008 USA Coal EO Low Landsat Site
Scale Tri-Temporal Supervised Y Land

Cover
Structural
Diversity Spatial Mosaic

30 Lu etal [103] 2009 China Coal EO Low EO-1_
Hyperion

Site
Scale Uni-Temporal NA Y Ecol

(Field Obs)
Ecosystem
Function

Productivity/
Cycling

31 Townsend
etal [79] 2009 USA Coal EO Low Landsat Regional Decadal Unsupervised N Land

Cover
Structural
Diversity Spatial Mosaic
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Table A2. Cont.

No. Author Ref Year Country Commodity
Summary

Sensor
Summary

Craft
Primary

Spatial
Extent

Temporal
Scale

Classification
Type

Field
Obs

Study
Type 1

Study Type 2
(Attributes)

Study Type 2
(Sub-Attributes)

32 Wei etal [104] 2009 China Coal EO Low Landsat Site
Scale Decadal Manual N Land

Cover
Structural
Diversity Spatial Mosaic

33 Sonwalkar
etal [105] 2010 USA Metalliferous EO Low MODIS Site

Scale Multi-Temporal Manual N Land
Cover

Structural
Diversity Spatial Mosaic

34 Spyropoulos
etal [106] 2010 Greece Metalliferous EO Low Landsat Site

Scale Tri-Temporal Supervised N DSS NA NA

35 Demirel etal [67] 2011 Turkey Coal EO High IKONOS_&_
Quickbird

Site
Scale Bi-Temporal Supervised N Land

Cover
Structural
Diversity Spatial Mosaic

36 Demirel etal [68] 2011 Turkey Coal EO High IKONOS_&_
Quickbird

Site
Scale Bi-Temporal Supervised N Land

Cover
Structural
Diversity Spatial Mosaic

37 Erener [59] 2011 Turkey Coal EO Low Landsat Regional Tri-Temporal Manual N Ecol (No
Field Obs)

Ecosystem
Function

Productivity/
Cycling

38 Procházka
etal [107] 2011 Czech

Republic Coal EO Low Landsat Site
Scale Uni-Temporal Unsupervised Y Ecol

(Field Obs)
External

Exchanges
Landscape

Flows

39 Sun etal [108] 2011 China Coal Field
Hyper

Field_
Hyperspec

Block
Scale Uni-Temporal Supervised Y Ecol

(Field Obs)
Species

Composition Desirable Plants

40 Bao etal [69] 2012 China Coal EO High Quickbird Site
Scale Uni-Temporal Manual N Ecol (No

Field Obs)
Species

Composition Desirable Plants

41 Bodlak etal [28] 2012 Czech
Republic Coal EO Low Landsat Site

Scale Bi-Temporal Manual Y Ecol
(Field Obs)

External
Exchanges

Landscape
Flows

42 Brom etal [66] 2012 Czech
Republic Coal EO Low Landsat Site

Scale Decadal Manual N Ecol (No
Field Obs)

External
Exchanges

Landscape
Flows

43 Sen etal [32] 2012 USA Coal EO Low Landsat Regional Decadal Supervised N Ecol (No
Field Obs)

Ecosystem
Function

Productivity/
Cycling

44 Fletcher &
Erskine [74] 2013 Australia Coal Drone Drone Block

Scale Uni-Temporal Manual N Ecol (No
Field Obs)

Structural
Diversity

All vegetation
strata

45 Lemke etal [60] 2013 USA Coal EO Low Landsat Regional Decadal Manual Y Ecol
(Field Obs)

Absence of
Threats Invasive Species

46 Oparin etal [62] 2013 Russia Coal EO Low Landsat Site
Scale Bi-Temporal Manual N Land

Cover
Structural
Diversity Spatial Mosaic

47 Petropoulos
etal [56] 2013 Greece Quarry EO Low Landsat Regional Tri-Temporal Supervised N Land

Cover
Structural
Diversity Spatial Mosaic
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Table A2. Cont.

No. Author Ref Year Country Commodity
Summary

Sensor
Summary

Craft
Primary

Spatial
Extent

Temporal
Scale

Classification
Type

Field
Obs

Study
Type 1

Study Type 2
(Attributes)

Study Type 2
(Sub-Attributes)

48 Raval etal [70] 2013 Australia Coal EO High WorldView Site
Scale Uni-Temporal Manual N Ecol (No

Field Obs)
Structural
Diversity Spatial Mosaic

49 Antwi etal [109] 2014 Germany Coal EO Low Landsat Regional Decadal Supervised Y Ecol
(Field Obs)

Structural
Diversity Spatial Mosaic

50 Bao etal [31] 2014 Australia Metalliferous EO Med SPOT Site
Scale Uni-Temporal GEOBIA Y Ecol

(Field Obs)
Structural
Diversity Spatial Mosaic

51 Bao etal [44] 2014 Australia Metalliferous EO Med SPOT Site
Scale Multi-Temporal Manual N Ecol (No

Field Obs)
Ecosystem
Function

Productivity/
Cycling

52 Maxwell
etal [23] 2014 USA Coal Aerial

LiDAR Aerial_LiDAR Site
Scale Uni-Temporal Supervised N Land

Cover
Structural
Diversity Spatial Mosaic

53 Maxwell
etal [110] 2014 USA Coal Aerial

Optical Aerial_Optical Site
Scale Uni-Temporal Supervised N Land

Cover
Structural
Diversity Spatial Mosaic

54 Wang etal [64] 2014 China Coal EO Low Landsat Regional Decadal GEOBIA Y Ecol
(Field Obs)

Ecosystem
Function

Productivity/
Cycling

55 Zhang etal [111] 2014 Canada Oil Sands EO Med SPOT Site
Scale Multi-Temporal Supervised N Land

Cover
Structural
Diversity Spatial Mosaic

56
Badreldin &

Sanchez-
Azofeifa

[112] 2015 Canada Coal Terrest
LiDAR

Terrest
LiDAR

Site
Scale Decadal Manual Y Ecol

(Field Obs)
Ecosystem
Function

Productivity/
Cycling

57 Li etal [113] 2015 USA Coal EO Low Landsat Regional Decadal Supervised N Land
Cover

Structural
Diversity Spatial Mosaic

58 Li etal [114] 2015 USA Coal EO Low Landsat Regional Decadal Supervised N Land
Cover

Structural
Diversity Spatial Mosaic

59 Maxwell &
Warner [72] 2015 USA Coal Aerial

Optical Aerial_Optical Regional Uni-Temporal Supervised N Land
Cover

Structural
Diversity Spatial Mosaic

60 Maxwell
etal [73] 2015 USA Coal EO Med RapidEye Site

Scale Uni-Temporal Supervised N Land
Cover

Structural
Diversity Spatial Mosaic

61 Szostak etal [83] 2015 Poland Sulfur EO Low Landsat Site
Scale Bi-Temporal Supervised N Land

Cover
Structural
Diversity Spatial Mosaic

62 Tong etal [115] 2015 China Phosphate Drone Drone Site
Scale Uni-Temporal GEOBIA N Land

Cover
Structural
Diversity Spatial Mosaic

63 Bao etal [116] 2016 China Coal EO High WorldView Site
Scale Uni-Temporal GEOBIA N Ecol (No

Field Obs)
Structural
Diversity Spatial Mosaic
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Table A2. Cont.

No. Author Ref Year Country Commodity
Summary

Sensor
Summary

Craft
Primary

Spatial
Extent

Temporal
Scale

Classification
Type

Field
Obs

Study
Type 1

Study Type 2
(Attributes)

Study Type 2
(Sub-Attributes)

64 Götze etal [117] 2016 Czech
Republic Coal Aerial

Hyper
Aerial_

Hyperspec
Site

Scale Uni-Temporal Supervised Y Ecol
(Field Obs)

Physical
Conditions

Substrate
Chemical

65 Karan etal [118] 2016 India Coal EO Low Landsat Site
Scale Bi-Temporal Supervised Y Land

Cover
Structural
Diversity Spatial Mosaic

66
Lechner,

Kassulke &
Unger

[87] 2016 Australia Coal Aerial
Optical Aerial_Optical Regional Uni-Temporal Manual N Land

Cover
Structural
Diversity Spatial Mosaic

67 Liu [119] 2016 China Coal EO Low Landsat Site
Scale Decadal Manual N Land

Cover
Structural
Diversity Spatial Mosaic

68 Chen etal [43] 2017 China Coal EO Low MODIS Regional Multi-Temporal Manual Y Ecol
(Field Obs)

External
Exchanges

Landscape
Flows

69 Esposito [120] 2017 Italy Quarry Drone Drone Block
Scale Bi-Temporal NA N Land

Cover
Structural
Diversity Spatial Mosaic

70 LeClerc &
Wiersma [81] 2017 Canada Metalliferous EO Low Landsat Regional Decadal Supervised Y Ecol

(Field Obs)
External

Exchanges Habitat links

71 Macfarlane
etal [121] 2017 Australia Bauxite EO Low Landsat Regional Decadal Manual Y Theoretical Structural

Diversity Spatial Mosaic

72 McKenna
etal [30] 2017 Australia Coal Drone Drone Block

Scale Bi-Temporal Supervised N Ecol (No
Field Obs)

External
Exchanges

Landscape
Flows

73 Oliphant
etal [61] 2017 USA Coal EO Low Landsat Site

Scale Multi-Temporal Supervised Y Ecol
(Field Obs)

Absence of
Threats Invasive Species

74 Padmanaban
etal [42] 2017 Germany Coal EO Low Landsat Site

Scale Multi-Temporal Supervised N Land
Cover

Structural
Diversity Spatial Mosaic

75 Yang etal [71] 2017 China Coal EO High GeoEye-1 Site
Scale Uni-Temporal Manual Y Ecol

(Field Obs)
Ecosystem
Function

Habitat &
Interactions

76 Zenkov etal [57] 2017 Bulgaria Coal EO Low Landsat Site
Scale Decadal Manual N Land

Cover
Structural
Diversity Spatial Mosaic

77 Bujalsky
etal [122] 2018 Czech

Republic Coal Aerial
Hyper

Aerial_
Hyperspec

Site
Scale Uni-Temporal Manual N Ecol (No

Field Obs)
External

Exchanges
Landscape

Flows

78 Chasmer
etal [123] 2018 Canada Oil Sands EO Med SPOT Site

Scale Multi-Temporal Manual Y Ecol
(Field Obs)

Ecosystem
Function

Productivity/
Cycling

79 Chen etal [19] 2018 NA NA NA NA NA NA NA NA Review NA NA
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Table A2. Cont.

No. Author Ref Year Country Commodity
Summary

Sensor
Summary

Craft
Primary

Spatial
Extent

Temporal
Scale

Classification
Type

Field
Obs

Study
Type 1

Study Type 2
(Attributes)

Study Type 2
(Sub-Attributes)

80 Correa etal [124] 2018 Brazil Metalliferous EO Low MODIS Site
Scale Multi-Temporal NA Y Ecol

(Field Obs)
Ecosystem
Function

Productivity/
Cycling

81 Gastauer
etal [125] 2018 NA NA NA NA NA NA NA NA Review NA NA

82 McKenna
etal [29] 2018 Australia Coal EO High WorldView Block

Scale Tri-Temporal Supervised Y Ecol
(Field Obs)

Ecosystem
Function

Resilience/
recruitment

83 Whiteside &
Bartolo [75] 2018 Australia Uranium Drone Drone Block

Scale Tri-Temporal GEOBIA N Ecol (No
Field Obs)

Structural
Diversity Spatial Mosaic

84 Yang etal [126] 2018 USA Coal EO Low Landsat Regional Decadal Manual N Ecol (No
Field Obs)

Ecosystem
Function

Habitat &
Interactions

85 Yang etal [65] 2018 Australia Coal EO Low Landsat Regional Decadal Spectral
Time-Series Y Ecol

(Field Obs)
Ecosystem
Function

Productivity/
Cycling

86 Zenkov etal [127] 2018 Russia Iron Ore EO Low Landsat Site
Scale Bi-Temporal Manual N Land

Cover
Structural
Diversity Spatial Mosaic

87 Bao etal [24] 2019 China Coal SAR SAR Block
Scale Uni-Temporal Manual Y Ecol

(Field Obs)
Ecosystem
Function

Productivity/
Cycling

88 Buters etal [20] 2019 NA NA NA NA NA NA NA NA Review NA NA

89 Dlamini etal [58] 2019 South
Africa Mineral Sand EO Low Landsat Site

Scale Decadal Spectral
Time-Series N Ecol (No

Field Obs)
Structural
Diversity Spatial Mosaic

90 Erskine etal [89] 2019 Australia Uranium EO Low Landsat Site
Scale Decadal NA Y Ecol

(Field Obs)
External

Exchanges
Landscape

Flows

91 Isokangas
etal [76] 2019 Finland Metalliferous Drone Drone Block

Scale Uni-Temporal Manual Y Ecol
(Field Obs)

Absence of
Threats Contamination

92
Johansen,
Erskine &
McCabe

[77] 2019 Australia Coal Drone Drone Block
Scale Tri-Temporal GEOBIA Y Ecol

(Field Obs)
Structural
Diversity Spatial Mosaic

93 Kun [128] 2019 Turkey Coal Drone Drone Block
Scale Uni-Temporal Manual Y Ecol

(Field Obs)
Structural
Diversity Spatial Mosaic

94 Lechner etal [49] 2019 PNG_&_
Laos Metalliferous EO Low Landsat Regional Decadal Supervised N Land

Cover
Structural
Diversity Spatial Mosaic

95 Moudry etal [25] 2019 Czech
Republic Coal Drone Drone Block

Scale Uni-Temporal Manual Y Ecol
(Field Obs)

Structural
Diversity

All vegetation
strata
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Table A2. Cont.

No. Author Ref Year Country Commodity
Summary

Sensor
Summary

Craft
Primary

Spatial
Extent

Temporal
Scale

Classification
Type

Field
Obs

Study
Type 1

Study Type 2
(Attributes)

Study Type 2
(Sub-Attributes)

96 Padro etal [85] 2019 Spain Quarry Drone Drone Block
Scale Uni-Temporal Supervised Y Ecol

(Field Obs)
Structural
Diversity Spatial Mosaic

97 Vasuki etal [129] 2019 Australia Bauxite EO Low Landsat Regional Decadal Supervised N Land
Cover

Structural
Diversity Spatial Mosaic

98 Xu etal [130] 2019 China Coal EO Med SPOT Regional Tri-Temporal Supervised N Ecol (No
Field Obs)

Structural
Diversity Spatial Mosaic

99 Zhang etal [86] 2019 China Coal EO Low Landsat Site
Scale Decadal Supervised N Ecol (No

Field Obs)
Structural
Diversity Spatial Mosaic
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