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Abstract: The surface mining activities in grassland and rangeland zones directly affect the livestock
production, forage quality, and regional grassland resources. Mine rehabilitation is necessary for
accelerating the recovery of the grassland ecosystem. In this work, we investigate the integration of
data obtained via a synthetic aperture radar (Sentinel-1 SAR) with data obtained by optical remote
sensing (Worldview-3, WV-3) in order to monitor the conditions of a vegetation area rehabilitated
after coal mining in North China. The above-ground biomass (AGB) is used as an indicator of the
rehabilitated vegetation conditions and the success of mine rehabilitation. The wavelet principal
component analysis is used for the fusion of the WV-3 and Sentinel-1 SAR images. Furthermore, a
multiple linear regression model is applied based on the relationship between the remote sensing
features and the AGB field measurements. Our results show that WV-3 enhanced vegetation indices
(EVI), mean texture from band8 (near infrared band2, NIR2), the SAR vertical and horizon (VH)
polarization, and band 8 (NIR2) from the fused image have higher correlation coefficient value with
the field-measured AGB. The proposed AGB estimation model combining WV-3 and Sentinel 1A
SAR imagery yields higher model accuracy (R2 = 0.79 and RMSE = 22.82 g/m2) compared to that
obtained with any of the two datasets only. Besides improving AGB estimation, the proposed model
can also reduce the uncertainty range by 7 g m−2 on average. These results demonstrate the potential
of new multispectral high-resolution datasets, such as Sentinel-1 SAR and Worldview-3, in providing
timely and accurate AGB estimation for mine rehabilitation planning and management.
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1. Introduction

Several large surface mining sites are located in North China, especially in the semiarid grassland
of Inner Mongolia. The mining, extraction, and processing of mineral resources (particularly ores)
from such sites require full aggressive removal of the on-site vegetation, surface soil, and bedrock. The
removal of these natural environmental ingredients leads to a significant degradation in the grassland
ecosystems [1]. One of the principal rehabilitation techniques employed to remedy the resulting
environmental problems and restore the ecological functions is the re-establishment of the vegetation
in the mining sites [2]. Vegetation mapping provides critical information for the understanding and
assessment of rehabilitation processes in mining sites. One of the most essential carbon pool indicators
in mine rehabilitation ecosystems is the above-ground biomass (AGB). Timely and accurate biomass
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assessment and mapping is crucial for reclaiming mining sites in semiarid grasslands. However,
biomass measurements are quite costly and infeasible for large areas. Estimation models, which are
based on the correlation between field biomass data and spectral, texture, and polarization information
from remote sensing imagery, can be applied for timely and effective AGB monitoring across large
area [3].

Common tools for mining site reclamation include optical multispectral sensors, satellite imagery,
and hyperspectral data. For example, these tools are used in land change detection [4], vegetation
health assessment [2], and soil property prediction [5]. However, the use of optical sensors for the AGB
estimation in semiarid mining locations is limited by the vegetation structure as well as the saturation
of the high-vegetation cover [6]. Vegetation monitoring can be carried out with synthetic aperture
radar (SAR) sensors, because of the sensitivity of these sensors to the geometrical and dielectric plant
characteristics, and their superior imaging outcomes compared to optical images [7]. Combining SAR
and optical sensors can help in differentiating between vegetation classes and improving the mapping
accuracy [8,9]. Combination schemes can be formed in two ways: incorporating all sensor data as
extra bands, or the fusion of the optical and SAR data with a fusion algorithm, such as the wavelet
principal component analysis [10]. For mined lands of regional extents, optical high-resolution spatial
and spectral remote sensing data is required for deriving detailed surface material information [11,12].
The Worldview-3 data has relatively higher spatial and spectral resolutions, and is characterized by
sensitivity and surface reflectance variations that can help in distinguishing vegetation types [13]. SAR
imagery has not been widely used in biomass mapping and mine rehabilitation due to its limited area
coverage and high acquisition cost. New opportunities for mapping vegetation emerged with the recent
launch of Sentinel-1 as a joint initiative of the European Commission (EC) and the European Space
Agency (ESA) and the release of the collected SAR data [8]. Moreover, mine reclamation can be further
improved by exploiting the complementarity between the SAR and optical multispectral imagery.

In this paper, we investigate the combination of the data from Sentinel-1 SAR and Worldview-3
(WV-3) imagery for mapping the biomass of reclaimed vegetation in mined environments. Specifically,
the aims of this work are to (1) create a model of the relationship between the AGB field measurements
and each of the Sentinel-1 SAR backscatter coefficients and the WV-3 multispectral reflectance
measurements; (2) assess the potential of the fused SAR and WV-3 data for improving the biomass
estimation accuracy; (3) evaluate the spatial distribution and the uncertainty of the output biomass
maps. In a nutshell, this paper is an attempt towards the development of remote sensing techniques
using Sentinel-1 SAR data and WV-3 optical data for biomass modeling and mapping to support
mine reclamation.

2. Materials and Methods

2.1. Field Study Location

The Baori Hiller Surface Coal Mine (BHCM) is located in the center of the Hulun Buir meadow
steppe in North China, as seen in Figure 1. This mining site has been active since 2004, and its
reclamation began in 2009. Our study area is the BHCM reclaimed dump. The dump has a stepped
design with a maximum step height of 20 m, a main step gradient of 18%, and a platform height
of 100 m. Because it was formed by piling waste soil and rocks throughout the mining process, the
topography is significantly different from the original natural topography with several platforms and
slope, as seen in Figure 1. This dump was covered with over 20 cm of natural topsoil of Kastanozems
to support natural vegetation and to act as a growth medium for accelerated artificial revegetation. The
main plant species on the flat part of the reclaimed dump are Elymus dahuricus Turcz., Medicago falcata L.,
Artemisia sieversiana Ehrhart ex Willd., Salsola collina Pall., Scutellaria baicalensis Georgi., see Table 1.
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Table 1. A chronological summary of the mine rehabilitation progress.

Reclamation
Year

Vegetation
Cover

Dominant Species Number of Sampling Sites

2016 2018 2019

2009 50%
Elymus dahuricus Turcz.

3 0 0Heteropappus altaicus
(Willd.) Novopokr.

2010 50% Elymus dahuricus Turcz. 2 0 0

2011 60%
Elymus dahuricus Turcz.

6 2 1Artemisia sieversiana

2012 62%
Artemisia sieversiana

6 1 2Scutellaria baicalensis Georgi
Bupleurum chinensis DC.

2013 70% Medicago falcata L. 4 4 4

2014 57% Elymus dahuricus Turcz. 4 3 3

2015 75% Medicago falcata L. 3 1 2

2016 50% Elymus dahuricus Turcz. 4 1 2

A field survey was conducted in the platform of the dump from the 1st to the 7th of August 2016,
25 to 29 July 2018, and 20 to 26 July 2019, when no extreme weather conditions occurred. The land
cover was classified into eight subregions with different reclamation year, as seen in Table 1, Figure 1.
Normally, within a rehabilitation year, the rehabilitation project, including topsoil properties and
planting species, is similar. The samples we selected were assigned within the subregion using grid
numbers according to a stratified, random sampling method. Such a design provided randomness and
helped to avoid uneven distribution of sample points. This approach assigns a specific number of
sample sites to each subregion in proportion to the size or significance of the subregion according to the
project objectives. At each sampling site, three plots with size of 0.5 m × 0.5 m were selected. Digital
images were captured from each measuring plot. The plant coverage for a given plots was derived
as the greenness value of the captured image. AGB measurements were collected by destructive
sampling from each plot. Fresh samples were collected, dried at 70 ◦C for 72 h, and then weighed to
obtain the total AGB. The average AGB of three plots was calculated for each sampling site. In total,
field-measured AGB from 32 sampling sites at 2016 were collected and used to estimate AGB based on
remote sensing data, where the remote sensing data was collected at the same period. Additionally, in
order to justify the methodology, field-measured AGB of 12 sampling sites in 2018 and field-measured
AGB of 14 sampling sites were collected in 2019.
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2.2. Satellite Data Collection

In this work, the optical data used is Worldview-3 (WV-3) multispectral data acquired on the 11 of
August 2016. Table 2 summarizes the spatial, temporal, and spectral characteristics of the associated
sensor. Preprocessing operations of the WV-3 data are geometric correction, radiometric calibration,
and FLAASH atmospheric correction by ENVI5.3. The available Sentienl-1A data around field survey
period (1–7 August 2016) were downloaded from the Sentinel data hub. Finally, there were four images
used in this study, as seen in Table 3.

Table 2. Spatial, temporal, and spectral characteristics of the Worldview-3 (WV-3) remote sensor.

Sensor Spatial Resolution Band Name Wavelength (nm)

Coastline 400–450
Blue 450–510

Green 510–580
Worldview-3 1.24 m Yellow 585–625

Red 630–690
Red edge 705–745

NIR1 770–895
NIR2 860–1040

Table 3. Characteristics of Sentienl-1A images used.

Acquisition Time Polarization Mode Radiation Precision Resolution

29 July 2016

VV+VH

20 m (Azimuth
resolution)5 August 2016

10 August 2016 5 m (Range resolution)
17 August 2016

2.3. Image Preprocessing

2.3.1. Synthetic Aperture Radar Image Preprocessing

Three preprocessing procedures were applied to each scene prior to image reconstruction and
image fusion, as seen in Figure 2. These are radiometric correction, lee filtering, and terrain correction.
ESA’s Sentinel Application Platform (SNAP) software was used for the preprocessing. Radiometric
calibration was conducted so that the pixel values truly represent the radar backscatter of the reflecting
surface. The backscatter values were eventually converted to decibels using Equation (1). The
backscattering coefficient unit is dB.

Backscattering coefficient = 10× log10 intensity (1)

Speckle noise, due to constructive and deconstructive wave interference in the image, was
minimized using the Refined Lee filter method, which was selected due to its reported superior
performance in SNAP [14]. Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM)
at 30 m resolution and 1 m DEM covering the study area derived from airborne photogrammetry in
2014 were combined for terrain correction. Specifically, the 30 m SRTM was resampled into pseudo
1 m resolution and data within study area was replaced by the true 1 m DEM. The merged DEM was
then used for the terrain correction of SAR image.
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2.3.2. SAR Image Reconstruction

Super-resolution image reconstruction seeks to construct a high-resolution image from multiple
low-resolution ones for better visual effects [15]. The projection-over-convex-set (POCS) method
exploits the projection residue to improve the visual appearance of the reconstructed high-resolution
image [16,17]. Notably, this method takes a full advantage of the statistical properties of the projection
residue included in the constraints and adaptively changes the modified threshold. In this work,
SAR images were reconstructed by using four Sentinel-1A SAR images to improve the image-based
discrimination capability, and to increase the detail using the four acquired images based on the
POCS algorithm.

The signal-to-noise ratio (SNR) is computed from the local mean and the standard deviation. A
larger SNR value represents more image detail. The SNR is computed as follows: (i) find the image
average M; (ii) find the local mean and the standard deviation for each image block; (iii) get the mean
value of the local standard error (LSD); (iv) compute the SNR as

SNR =
M

LSD
(2)

The reconstructed SAR image was resampling to 1.24 m, corresponding to the spatial resolution
of WV-3 imagery. The reconstructed SAR image and WV-3 image were georegistered to each other
based on 30 ground control points using cubic convolution sampling method within root mean square
error of 0.5 pixels.

2.3.3. Image Fusion

The stronger backscattering from sampling sites was recorded in the vertical and vertical VV
polarization data with relatively higher backscatter coefficient value, rather than VH polarization.
Therefore, we used VV polarization of the constructed SAR image to fuse with the WV-3 image. The
image fusion was conducted by wavelet principal component analysis (W-PCA), which can provide
the highest accuracy in land cover classification and vegetation mapping based on the use of optical
and SAR data for information extraction [18,19]. The steps of the W-PCA fusion are: (i) apply PCA
to the multispectral WV-3 image data and obtain the first principal component (PC1); (ii) match
the histograms of the Sentinel-1 and PC1 image data; (ii) utilize a wavelet decomposition to merge
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Sentinel-1 images into the PC1 image; (iv) apply the inverse PCA transform so that the embedded
Sentinel-1 information carried by the PC1 image can be integrated to obtain the fused image.

The fused images can be generally evaluated using data indicators such as the information entropy,
the average gradient, the spatial similarity coefficient, and the spectral distortion.

The information entropy represents the amount of information contained in an image. With no
excessive noise, the information entropy is richer and the image detail information is better. This
entropy is calculated as:

H = −
M−1∑
i=0

pilgpi pi =
Ni
N

(3)

where H is the image information entropy, M is the number of image gray levels, i is the number of
pixels of the gray value, and N is the total number of pixels in the image.

The average gradient reflects the image sharpness and shows the minute image details of contrast
and texture changes. This gradient is given by:

−

G =
1

M ∗N

M−1∑
i=1

N−1∑
j=1

√
(∆I2

x + ∆I2
y)

/2
(4)

where ∆I2
x and ∆I2

y are the differences in the x and y directions, respectively. The larger the average
gradient, the better the image texture information. The average gradient is an important indicator of
geologically complex images.

The spatial correlation coefficient reflects the spatial correlation between the fused image and the
original high-resolution image. A higher spatial correlation coefficient value indicates that the original
high-resolution image contains richer texture details. This coefficient is calculated as:

r =

M∑
i=0

N∑
j=1

( fA(i, j) − fA)( fB(i, j) − fB)√
M∑

i=0

N∑
j=1

( fA(i, j) − fA)
2 M∑

i=0

N∑
j=1

( fB(i, j) − fB)
2

(5)

where M and N are the numbers of image rows and columns, fA(i, j) and fB(i, j) are respectively the
gray values of the fused and original high-resolution images at (i, j), and fA and fB are the average gray
values of the high-resolution fused and original images, respectively.

The spectral distortion (or twisting) reflects the degree of distortion of the spectral information of
the fused image relative to an original multispectral image. This distortion is defined as the average
of the absolute values of all pixel differences of the original and fused images. The larger the value
of the spectral distortion, the more severe the spectral change of the fused image. This distortion is
calculated as:

DFA =
1

MN

M∑
i=1

N∑
j=1

(
∣∣∣F(i, j) −A(i, j)

∣∣∣) (6)

where M and N are respectively the numbers of image rows and columns, while F(i, j) and A(i, j) are
the gradation values of the fused and source images at (i, j), respectively.

2.3.4. Feature Parameter Extraction

For the WV-3 spectral bands and the VV/VH polarization data of Sentinel-1 SAR, texture features
were computed based on grey-level co-occurrence matrices with window sizes of 3 × 3 pixels. These
texture features include the mean (ME), the variance (VA), the uniformity (UN), the dissimilarity
(DI), the correlation (CR), the homogeneity (HO), and the second moment (SM). In addition, the
following vegetation indices were computed from the multispectral data: the normalized difference
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vegetative index (NDVI); the difference vegetation index (DVI); the ratio vegetation index (RVI); the
normalized greenness vegetation index (NGVI); the antiatmosphere vegetation index (ARVI); the
enhanced vegetation index (EVI), and the red-edge normalized vegetation index (NDVI705), as seen in
Table 4.

Table 4. Computational forms and advantages of different vegetation indices.

Vegetative Index Calculation Formula Advantages Reference

NDVI
The most widely used vegetation index; the

best indicator of vegetation growth
and coverage.

Rouse et al., 1974 [20]

DVI
Sensitive to changes in soil background,

using areas with early- or mid-vegetation
development or low-vegetation coverage.

Richardson and Weigand, 1977 [21]

RVI
Sensitive to lush, high-coverage vegetation,
with high RVI values for green vegetation

and low RVI values for nonvegetation.
Pearson and Miller, 1972 [22]

NDGI Tests different forms of vital vegetation. Gitelson et al., 1996 [23]

ARVI Reduces the impact of the atmosphere on
the vegetation index. Kanfman and Tanre, 1992 [24]

EVI Weakens the influence of the soil
background. Liu and Huete, 1995 [25]

An improved version of the NDVI index
that is very sensitive to small changes in

vegetation canopy, forest window
fragments, and aging changes.

Sims et al., 2002 [26]

2.4. Biomass Estimation Methods

The Pearson correlation coefficient was used to find the correlation between the input variables and
the field measured above-ground biomass from 2016. Then, the input variables with high significance
were selected to establish a biomass estimation model.

The performance of each model is evaluated by calculating the root mean square error (RMSE)
and the estimation accuracy,

RMSE =

√√√√√√ n∑
i=1

(AGRi −AGR′i )
2

N
(7)

Ac = (1−
RMSE

AGR
) × 100% (8)

where AGRi is the measured grassland biomass, AGR′i is the estimated grassland biomass, n is
the number of samples, Ac is the estimation accuracy, and AGR is the average of the grassland
biomass measurements.

The uncertainty caused by variations in the model residuals can be measured by the standard
deviation of the residuals. In other words, this uncertainty is quantified by a linear relationship between
the standard deviation of residuals and the above-ground biomass. This relationship is given by:

δε = αB (9)

where δε is the standard deviation of the residuals, α is the fitted parameter, and B is the predicted
value of the biomass.

3. Results

3.1. Image Reconstruction and Fusion

As shown in Figures 3 and 4, the Sentinel-1 SAR image has been improved after super-resolution
reconstruction, in which more details appear and the discriminative capability is improved. The SNR
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value increased from 5.8 dB before construction to 6.8 dB after construction for the VV polarization
image, and from 6.4 dB before construction to 7.9 dB after construction for the VH polarization image.
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image reconstruction.

As shown in Figure 5, the sharpness as well as the spectral and structural texture features of the
fused image are visually better than those of a single optical or SAR image. The higher entropy value
reflects that more details are present in the fused image compared to the optical WV-3 image. Also,
the higher average gradient indicates that the sharpness and texture information of the fused image
are better than those of the SAR image, as seen in Figures 6 and 7. Bands 7 and 8 of the fused image
generated higher similarity coefficients and lower spectral distortion values in comparison to the WV-3
multispectra image, which shows more texture features and less spectral changes, as seen in Figure 8.
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3.2. Above Ground Biomass (AGB)AGB Estimation Models and Uncertainty

Table 5 shows the results of correlation analysis between image features and the field measured
biomass. The image features include all available spectral bands, vegetation indices, texture information,
as well as the VV/VH polarization and fused bands. For spectral bands, yellow band, red band, NIR1
and NIR2 had significant correlation with biomass at p-value of 0.01. The blue band had significant
correlation with biomass at a p-value of 0.05. All vegetation indices used in this study generated higher
correlation coefficient values with the AGB at p-value of 0.01 than that generated using the spectral
band. For all vegetation indices, EVI yielded the highest correlation coefficient value of 0.876. The
mean texture feature for NIR2 had the higher correlation coefficient of 0.760 at a p-value of 0.01 than
the other texture features. The VH polarization has the highest correlation coefficient value with the
AGB measurements compared to its correlation coefficients with the VV and SAR texture information.
The highest correlation coefficient values are associated with the fused image. The variables with the
highest correlation coefficients were used to establish the biomass prediction model.

Table 5. Correlation analysis between the biomass field measurements and image features.

Worldview-3 Sentinel-1 SAR Fusion
Spectral Information Texture Information Texture Information Spectral Information
Variable Correlation Variable Correlation Variable Correlation Variable Correlation

Coastline (B1) −0.323 B4ME −0.741 ** VH 0.504 ** B1 −0.759 **
Blue (B2) −0.474 * B5ME −0.792 ** VV 0.410 * B2 −0.806 **

Green (B3) −0.372 B5CR −0.358 * VVME 0.412 ** B3 −0.837 **
Yellow (B4) −0.620 ** B6ME 0.511 ** VVVA 0.174 B4 −0.834 **

Red (B5) −0.657 ** B6CR −0.412 * VVHO −0.238 B5 −0.800 **
Red edge (B6) 0.215 B7ME 0.760 ** VVCO 0.165 B6 0.564 **

NIR1 (B7) 0.694 ** B7VA 0.700 ** VVDI 0.201 B7 0.842 **
NIR2 (B8) 0.718 ** B7HO −0.593 ** VVEN 0.257 B8 0.874 **

RVI 0.790 ** B7DI 0.535 * VVSM −0.219
NGVI 0.871 ** B7EN 0.510 ** VVCR 0.169

NDVI705 0.835 ** B7SM −0.366 * VHME 0.503 **
NDVI 0.874 ** B8ME 0.748 ** VHVA −0.061
EVI 0.876 ** B8VA 0.669 ** VHHO 0.069
DVI 0.833 ** B8HO −0.600 ** VHCO 0.064

B8DI 0.558 ** VHDI −0.016
B8EN 0.612 ** VHEN −0.133
B8SM 0.520 ** VHSM 0.298

VHCR −0.195

** Significant correlation at the 0.01 level. * Significant correlation at the 0.05 level.
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Four versions of the biomass prediction model were established by using the optical WV-3 data
only, the SAR data only, both the WV-3 and SAR data, and the fused data, as seen in Table 6 and
Figure 9). Twenty-one samples from 2016 were used as training sets for establishing the model,
and 11 samples from 2016 were used for validation. The R2 and RMSE from validation were used
to quantify the model’s accuracy. The optimal model fitting outcomes are shown in Table 6. With
the optical WV-3 data only, the EVI performed well with R2 = 0.7098 and RMSE = 24.2018 g m−2

for the model accuracy. The VH polarization of the SAR image data provides relatively a lower
model accuracy of R2 = 0.324 and RMSE = 42.1104 g m−2. Both band 8 of the fused image and the
multivariable data from the WV3 and SAR data can improve the accuracy of biomass model by 21.42%
and 20.47%, respectively, compared to the individual SAR image. The model with an input variable of
RHB8 for the fused image produced the highest model accuracy (R2 = 0.7983, RMSE = 22.8283 g m−2,
Ac% = 74.64%) Additionally, The Levene test was conducted for linear regression model using
input variable of “RHB8“. It was found that there was no significant correlation (p-value = 0.184)
between variables and the residual error. Thus, the variance of this regression model is homoscedastic.
Furthermore, the field-measured AGB acquired independently in 2018 and 2019 was used to the verify
the effectiveness of the proposed model in terms of achieving the highest verification accuracy based
on the fusion 8th band. As shown in Figure 10, the model using the fusion band can generate relatively
high verification accuracy, with R2 = 0.89 and RMSE = 23.7892. For areas with measured AGB larger
than 100 g m−2, the predicted AGB was underestimated. The average rainfall was 378.8 mm and
341.6 mm for July in 2018 and 2019, while the average rainfall was 107.7 mm in 2016. This climate
factor might result in the higher measured AGB in 2018 and 2019 than 2016. Additionally, the biomass
from the rehabilitated area of 2013 and 2015, which was planted with Medicago falcata L., might increase
year by year under fencing protection.
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Table 6. The best regression models and their modeling and verification accuracies.

Label Variable Model Model Accuracy (n = 11)
R2 RMSE g m−2 Ac%

a EVI y = 2.8408×EVI + 16.829 0.7098 24.2018 73.12
b VH y = 2.2726×VH2 + 96.275×VH + 1094.4 0.3240 42.1104 53.22

c NDVI
VHME

y = 3.2563×NDVI – 0.6224×VHME + 8.593 0.6963 23.6801 73.69

d FusedB8 y = 1.0557×Fusion B8 – 26.676 0.7983 22.8283 74.64
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Additionally, for a model with input variables of EVI and VH, an overestimation occurs if AGB is
higher than 120 g m−2 and an underestimation occurs once AGB becomes less than 50 g m−2, as seen in
Figure 11. The combined model with the NDVI and VH inputs can alleviate the underestimation with
a lower residual for a value of AGB less than 50 g m−2, and the fused-image band 8 can reduce the
overestimation with a lower residual for a value of AGB higher than 120 g m−2.

The AGB predictions for the four models of Table 6 were classified and mapped with seven levels
(0–40 g m−2, 40–60 g m−2, 60–80 g m−2, 80–100 g m−2, 100–150 g m−2, 150–200 g m−2, >200 g m−2),
as seen in Figure 12. Employing the estimated AGB distributions from the models, and using the
fused-image band-8 high-accuracy model, we recorded AGB with 150–200 g m−2 and >200 g m−2

in a reclamation area of 2013 and 2015 planted with Medicago falcata L. The mean AGB values in the
reclamation areas of 2009, 2010, and 2011 were around 30 g m−2. The lowest AGB value was recorded
in the reclamation area of 2012. Given the area with AGB levels of 60–80 g m−2 and 80–100 g m−2, all
models performed well with uncertainties less than 8 g m−2. Higher uncertainty values were found in
the areas of 2013 and 2015, as seen in Figure 13.
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4. Discussion

The estimation of the mine revegetation AGB using satellite remote sensing data is still challenging
due to numerous factors, such as the reclamation coverage, topsoil, landform, and plant species
influencing the correlation between AGB and remote sensing variables. Therefore, investigating
new and multiresource remote-sensed data in mine reclamation environments (including image
construction, fusion, and combination for revegetation AGB estimation) is very necessary. Taking
advantage of the recent release of the Sentinel-1 SAR and Worldview-3 imagery, in this work, we
investigated the relationship between the measured AGB and multispectral imaging data, as well as
VV/VH and fused band variables. Also, we investigated the best AGB estimation models based on
accuracy assessment and spatial extent.

4.1. Relationship of the Measured AGB with Remote Sensing Variables

For the WV-3 multispectral data, the NIR1 and NIR2 bands respectively produced correlation
coefficients of 0.694 and 0.718 at p = 0.01. These coefficients were comparatively higher than those
produced by other bands. These two bands (denoted as the WV-3 NIR1/NIR2 bands, or simply the
red and yellow bands) were still the most frequently used bands in land-cover classification and
mapping [27]. However, there was no significant correlation found between the red-edge band and
the measured AGB. This observation does not seem to be in line with earlier research findings on the
importance and potential of the red-edge band in agriculture classification and forest leaf area index
(LAI) estimation [28,29]. Due to the fact that the red-edge band is most likely affected by water content,
the semiarid reclaimed vegetation might not be sensitive to the red-edge band [30,31]. The newly
incorporated yellow band has been found to be correlated with AGB with a coefficient of 0.620 at
p = 0.01. Maimaitijiang et al. [32] have found that the yellow band has high sensitivity for low-nitrogen
savanna grasses because of the high sensitivity of this band to subtle changes in the chlorophyll content.
Vegetation indices are sensitive to various outside factors, such as atmospheric disturbances. The soil
background has been widely used in vegetation restoration monitoring [33]. It was found that the



Remote Sens. 2019, 11, 2855 16 of 20

vegetation indices used in this study had significant correlation with the measured AGB. It is clear that
NDVI is the best reflectance index to explain the variability in density and biomass [34]. A correlation
coefficient of 0.874 at p = 0.01 was recorded between AGB and NDVI. Additionally, a model with a DVI
input had a correlation coefficient of 0.833 at p = 0.01 and performed well. Barati et al. [35] found that
the DVI index with a value of 0.668 for the coefficient of determination (R2) showed the best fractional
vegetation cover estimation in sparse vegetated areas. Remotely sensed image texture may be a good
proxy of vegetation structures [36], and shows sensitivity to AGB variations [37]. The mean texture
parameter values for the NIR1 and NIR2 bands provided higher significant correlations with AGB
of 0.760 and 0.748 at p = 0.01, respectively. The cross-polarization backscattering coefficient of the
C-band SAR data had the strongest correlation with rice crops as shown experimentally [38]. The VH
polarization with a coefficient of 0.504 at p = 0.01 had a higher significant correlation than that of the
VV polarization, which had a coefficient of 0.410 at p = 0.05. The Sentinel-1 SAR backscatter values
from the VH polarization are more robust and accurate than those based on the VV polarization for
biomass estimation [39]. The fused-image bands integrating WV-3 and Sentinel-1 SAR images can
provide higher correlation with AGB compared to individual variables exclusively from either the
WV-3 or SAR data. Image fusion can provide higher accuracy than individual sensors by producing
small to moderate increases in accuracy over multispectral image mapping and producing significant
accuracy improvements over the use of SAR data alone [40].

4.2. The Accuracy and Uncertainty of the AGB Estimation Model

When the WV-3 data is used alone, the regression model with an input variable of EVI shows
moderate prediction performance with model accuracy of 73.12%. This model outperformed models
based on SAR raw polarization backscatter coefficients. The estimation accuracy of the multispectral
satellite-based biomass retrieval ranged from 67% to 85%. In grasslands, vegetation indices offer
the advantage of superseding the influences of soil background, atmospheric composition, and the
viewing and zenith angle effects, while enhancing the vegetation signal, when estimating AGB [41].
The regression model with an input variable of VH using Sentinel-1 SAR data only does not perform
very well. The model accuracy is only at 0.43 for R2 and 42.1104 g m−2 for RMSE. Similar performance
was found in the Sentinel-1 SAR value (R2 = 0.34) reported by [42] for AGB estimation in grazing
pastures involving two pasture sites. The active sensors are highly affected by topography due to
incident angle, and by soil types [43]. The differential scattering of radar signal under different
landforms in the rehabilitated dump might result in errors in the AGB estimation. Additionally, the
influence of background, such as soil moisture and roughness in low-vegetation-coverage areas should
be considered. In our studied rehabilitated area, the range of soil moisture was measured from 8% to
15% in the field survey and was relatively homogenous, which could contribute to low backscattering
to AGB estimation [44]. However, soil particle size distribution is heterogeneous. Due to insufficient
backfill soil after mining, the source of the topsoil is partly from coal ash, crushed rock, and quaternary
sediments, which resulted in a higher coarse sand content and fine silt content [45]. Furthermore, the
model accuracy should be linked to field sampling size and data extraction protocol utilized, a single
Sentinel-1A pixel could have been extracted over each of the sample plots (the field plots were much
smaller than the Sentinel-1A pixel). For a small-scale rehabilitated mining area using SAR data only, if
the estimation results need to be more accurate, higher-resolution SAR images are required. Thus,
given the relatively low relationship between shrub AGB and Sentienl-1A SAR data, it was suggested
that the Sentienl-1A SAR parameter may provide additional biomass information as a supplement to
the optical model [46]. The integration of optical and SAR technologies has also been proven to be
more accurate than the individual technologies separately [47]. The model with fused-image band-8
input has the highest prediction accuracy (R2 = 0.79, RMSE = 22.82 g m−2), which is more accurate in
biomass prediction with less uncertainty in an area with a low vegetation cover. This can be ascribed
to the ability of that model to accurately detect nonvegetated areas (which are smooth for radar waves)
and with a low backscatter coefficient compared to the vegetated areas [48]. The Sentinel-1 C-band
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SAR is the preferred dataset for biomass analysis in low-biomass sites such as grasslands and forest
regeneration sites. This is because of this data type has stronger backscattering in these areas compared
to the L and P bands [49]. The critical problems of data saturation should be of concern, since these
problems result in high uncertainties and low accuracies of AGB estimation in high-biomass areas [50].
For the C-band, the leaves and small branches remain as the major scattering components and the
backscattering reaches saturation levels above 10 kg/m2 in forest AGB estimation [51]. The highest
uncertainty was found from an estimation model using SAR data only, and an uncertainty of 89.5 g m−2

was recorded in the area with an AGB of 150–199.21 g m−2. The data saturation problems could be
partly solved by using multisource data or data fusion. Thus, the results indicated that the estimation
model using fused-image bands and multiple variables both partly reduce the mean uncertainty
value from the saturation level by a decrement of 2.42 g m−2 to eventually become 9.68 g m−2. The
regression band based on the fused images developed in this work has the ability to estimate AGB
values exceeding 100 g m−2.

5. Conclusions

This paper indicates satisfactory results and suggests good potential for AGB mapping of
rehabilitated vegetation area in mining sites. The availability of the WorldView-3 multispectral data
of high spatial resolution and Sentinel-1 SAR data is an important development for small-scale mine
rehabilitation and planning. The freely available SAR data should encourage the conduction of
biomass mapping and monitoring with high accuracy in mining environments, particularly in semiarid
grasslands. This work provides information which could be crucial for decision makers on mine
rehabilitation planning and management of grassland systems. The following conclusions are drawn:

1. High correlation values between biomass and remote-sensing data were obtained from the
fused-image band 8 (0.874), EVI (0.876), VH polarization (0.504), and the mean texture parameter
of band 7 (0.760) at a 0.01 significance level.

2. The developed regression model based on the fused-image band 8 input provides a higher
accuracy in biomass estimation compared to models using Worldview-3 or SAR data alone,
which have prediction errors of 22.82 g m−2 and 24.29 g m−2, and accuracies of 74.64% and
73.12%, respectively.

3. Higher values of uncertainty were found in the reclamation areas of 2013 and 2015 with an
average AGB of over 100 g m−2. The combination of the WV-3 and Sentinel-1 SAR data can
reduce the uncertainty of the mean value from the saturation level by a decrement of 2.42 g m−2

to eventually become 9.68 g m−2.
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