Assessment of Tree Detection Methods in Multispectral Aerial Images
Abstract
:1. Introduction
- The introduction of the DEVM, an image representation that blends aboveground structural information and quantification of vegetation suitable for the detection of trees;
- the development of a scheme to generate synthetic data sets of trees in DEVM space for training classical and modern tree detection methods;
- the assessment of classical and modern techniques, trained with synthetic images, to detect treetops.
2. Related Literature
2.1. Classical Tree Detection
2.2. Deep Learning for Plant Detection
2.3. Synthetic Data Set Generation
2.4. Image Sources
3. Materials and Methods
3.1. DEVM: A Blended Representation of Structure and Multispectral Information
3.1.1. Characterizing Vegetation
3.1.2. The Digital Elevated Vegetation Model
3.2. Synthetic Data Set Generation
3.3. Treetop Detection Methods
3.3.1. Classical Methods
3.3.2. Deep Learning-Based Methods
3.4. Image Acquisition and Processing
4. Experimental Results
4.1. Tree Detection
4.2. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Pipeline for the Creation of Synthetic Images
Algorithm A1 Synthetic DEVM images of trees. We generated domes to define individual tree shapes. The pdf generated random real values from a uniform distribution in the range between a and b, inclusive. is the floor function. | |
1: Call: | |
2: Input: The number of rows r and columns c for the output image | |
3: Output: Synthetic DEVM image, | |
▹ Assume the existence of global constants , , and , the minimum and maximum number of trees, number domes per tree, and height of the trees, respectively; and , the minimum and maximum lateral widths of each dome, correspondingly; , the maximum displacement of the centroid and the change of the width, respectively; and and , a diagonal matrix with the relationship between meters and pixels, and the center of the dome in the image. | |
4: ; | ▹ Initialize DEVM image to zero |
5: ; | ▹ Define the number of trees |
6: for do | |
7: ; | ▹i-th tree height |
8: ; | |
9: ; | ▹i-th tree width |
10: ; | |
11: ; | |
▹i-th tree center | |
12: ; | ▹ number of domes for the i-th tree |
13: for do | |
14: ; | ▹ height for the j-th domes of the i-th tree |
15: ; | |
16: ; | |
▹ center of the j-th dome of the i-th tree | |
17: ; | |
18: ; | |
▹ width of the j-th dome of the i-th tree | |
19: | ▹ create a dome using (3) |
20: | ▹ transform domains, |
21: ; | ▹ Add dome to image |
22: end for | |
23: end for |
References
- Kelly, A. Improving REDD+ (Reducing Emissions from Deforestation and Forest Degradation) Programs. Ph.D. Thesis, University of Washington, Washington, DC, USA, 2017. [Google Scholar]
- Lund, G.; Thomas, C. A Primer on Stand and Forest Inventory Designs; Technical Report WO-54; US Department of Agriculture Forest Service: Los Angeles, CA, USA, 1989. [Google Scholar]
- Özyeşil, O.; Voroninski, V.; Basri, R.; Singer, A. A Survey of Structure from Motion. Acta Numer. 2017, 26, 305–364. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y.; Yunjun, Z.; Zhao, Z. A Two-Step Semiglobal Filtering Approach to Extract DTM From Middle Resolution DSM. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1599–1603. [Google Scholar] [CrossRef]
- Carlson, T.; Ripley, D. On the Relation between NDVI, Fractional Vegetation Cover, and Leaf Area Index. Remote Sens. Environ. 1997, 62, 241–252. [Google Scholar] [CrossRef]
- Ozdarici-Ok, A. Automatic Detection and Delineation of Citrus Trees from VHR Satellite Imagery. Int. J. Remote Sens. 2015, 36, 4275–4296. [Google Scholar] [CrossRef]
- Gomes, M.; Maillard, P. Detection of Tree Crowns in Very High Spatial Resolution Images. Environ. Appl. Remote. Sens. 2016. [Google Scholar] [CrossRef] [Green Version]
- Koc-San, D.; Selim, S.; Aslan, N.; San, B. Automatic Citrus Tree Extraction from UAV Images and Digital Surface Models using Circular Hough Transform. Comput. Electron. Agric. 2018, 150, 289–301. [Google Scholar] [CrossRef]
- Özcan, A.; Hisar, D.; Sayar, Y.; Ünsalan, C. Tree Crown Detection and Delineation in Satellite Images using Probabilistic Voting. Remote Sens. Lett. 2017, 8, 761–770. [Google Scholar] [CrossRef]
- Shafarenko, L.; Petrou, M.; Kittler, J. Automatic Watershed Segmentation of Randomly Textured Color Images. IEEE Trans. Image Process. 1997, 6, 1530–1544. [Google Scholar] [CrossRef]
- Reza, N.; Na, S.; Lee, K. Automatic Counting of Rice Plant Numbers after Transplanting using Low Altitude UAV Images. Int. J. Contents 2017, 13, 1–8. [Google Scholar]
- Maillard, P.; Gomes, M. Detection and Counting of Orchard Trees from VHR Images using a Geometrical-Optical Model and Marked Template Matching. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 3, 75. [Google Scholar] [CrossRef]
- Bao, Y.; Tian, Q.; Chen, M.; Lin, H. An Automatic Extraction Method for Individual Tree Crowns based on Self-Adaptive Mutual Information and Tile Computing. Int. J. Digit. Earth 2015, 8, 495–516. [Google Scholar] [CrossRef]
- Goldbergs, G.; Maier, S.; Levick, S.; Edwards, A. Efficiency of Individual Tree Detection Approaches Based on Light-Weight and Low-Cost UAS Imagery in Australian Savannas. Remote Sens. 2018, 10, 161. [Google Scholar] [CrossRef] [Green Version]
- Fassnacht, F.; Mangold, D.; Schäfer, J.; Immitzer, M.; Kattenborn, T.; Koch, B.; Latifi, H. Estimating Stand Density, Biomass and Tree Species from Very High Resolution Stereo-Imagery–Towards an All-in-One Sensor for Forestry Applications. For. Int. J. For. Res. 2017, 90, 1–19. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, X.; Wu, B. Automatic Detection of Individual Oil Palm Trees from UAV Images using HOG Features and an SVM Classifier. Int. J. Remote Sens. 2018, 40, 1–15. [Google Scholar] [CrossRef]
- Li, W.; He, C.; Fu, H.; Zheng, J.; Dong, R.; Yu, L.; Luk, W. A Real-Time Tree Crown Detection Approach for Large-Scale Remote Sensing Images on FPGAs. Remote Sens. 2019, 11, 1025. [Google Scholar] [CrossRef] [Green Version]
- Xiao, C.; Qin, R.; Xie, X.; Huang, X. Individual Tree Detection and Crown Delineation with 3D Information from Multi-view Satellite Images. Photogramm. Eng. Remote Sens. 2019, 85, 55–63. [Google Scholar] [CrossRef] [Green Version]
- García, D.; Caicedo, J.; Castellanos, G. Individual Detection of Citrus and Avocado Trees Using Extended Maxima Transform Summation on Digital Surface Models. Remote Sens. 2020, 12, 1633. [Google Scholar] [CrossRef]
- Tianyang, D.; Jian, Z.; Sibin, G.; Ying, S.; Jing, F. Single-Tree Detection in High-Resolution Remote-Sensing Images Based on a Cascade Neural Network. ISPRS Int. J. Geo Inf. 2018, 7, 367. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Liu, Y.; Oerlemans, A.; Lao, S.; Wu, S.; Lew, M. Deep Learning for Visual Understanding: A Review. Neurocomputing 2016, 187, 27–48. [Google Scholar] [CrossRef]
- Freudenberg, M.; Nölke, N.; Agostini, A.; Urban, K.; Wörgötter, F.; Kleinn, C. Large Scale Palm Tree Detection In High Resolution Satellite Images Using U-Net. Remote Sens. 2019, 11, 312. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Dong, R.; Fu, H.; Yu, L. Large-Scale Oil Palm Tree Detection from High-Resolution Satellite Images Using Two-Stage Convolutional Neural Networks. Remote Sens. 2019, 11, 11. [Google Scholar] [CrossRef] [Green Version]
- Zortea, M.; Nery, M.; Ruga, B.; Carvalho, L.; Bastos, A. Oil-Palm Tree Detection in Aerial Images Combining Deep Learning Classifiers. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 657–660. [Google Scholar]
- Csillik, O.; Cherbini, J.; Johnson, R.; Lyons, A.; Kelly, M. Identification of Citrus Trees from Unmanned Aerial Vehicle Imagery using Convolutional Neural Networks. Drones 2018, 2, 39. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Fu, H.; Yu, L.; Cracknell, A. Deep Learning based Oil Palm Tree Detection and Counting for High-Resolution Remote Sensing Images. Remote Sens. 2016, 9, 22. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Fu, H.; Yu, L. Deep Convolutional Neural Network based Large-Scale Oil Palm Tree Detection for High-Resolution Remote Sensing Images. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Fort Worth, TX, USA, 23–28 July 2017; pp. 846–849. [Google Scholar]
- Mubin, N.; Nadarajoo, E.; Shafri, H.; Hamedianfar, A. Young and Mature Oil Palm Tree Detection and Counting using Convolutional Neural Network Deep Learning Method. Int. J. Remote Sens. 2019, 40, 7500–7515. [Google Scholar] [CrossRef]
- Cheang, E.; Cheang, T.; Tay, Y. Using Convolutional Neural Networks to Count Palm Trees in Satellite Images. arXiv 2017, arXiv:1701.06462. [Google Scholar]
- Fan, Z.; Lu, J.; Gong, M.; Xie, H.; Goodman, E.D. Automatic Tobacco Plant Detection in UAV Images via Deep Neural Networks. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 876–887. [Google Scholar] [CrossRef]
- Trier, Ø.; Salberg, A.B.; Kermit, M.; Rudjord, Ø.; Gobakken, T.; Næsset, E.; Aarsten, D. Tree Species Classification in Norway from Airborne Hyperspectral and Airborne Laser Scanning Data. Eur. J. Remote Sens. 2018, 51, 336–351. [Google Scholar] [CrossRef]
- Windrim, L.; Bryson, M. Forest Tree Detection and Segmentation using High Resolution Airborne LiDAR. arXiv 2018, arXiv:1810.12536. [Google Scholar]
- Pibre, L.; Chaumont, M.; Subsol, G.; Ienco, D.; Derras, M. How to Deal with Multi-Source Data for Tree Detection based on Deep Learning. In Proceedings of the 2017 IEEE Global Conference on Signal and Information Processing (GlobalSIP), Montreal, QC, Canada, 14–16 November 2017. [Google Scholar]
- Chen, S.; Shivakumar, S.; Dcunha, S.; Das, J.; Okon, E.; Qu, C.; Taylor, C.; Kumar, V. Counting Apples and Oranges with Deep Learning: A Data-Driven Approach. IEEE Robot. Autom. Lett. 2017, 2, 781–788. [Google Scholar] [CrossRef]
- Zakharova, M. Automated Coconut Tree Detection in Aerial Imagery Using Deep Learning. Ph.D. Thesis, The Katholieke Universiteit Leuven, Löwen, Belgium, 2017. [Google Scholar]
- Puttemans, S.; Van Beeck, K.; Goedemé, T. Comparing Boosted Cascades to Deep Learning Architectures for Fast and Robust Coconut Tree Detection in Aerial Images. In Proceedings of the 13th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, Madeira, Portugal, 27–29 January 2018. [Google Scholar]
- Zortea, M.; Macedo, M.; Britto, A.; Ruga, B. Automatic Citrus Tree Detection from UAV Images based on Convolutional Neural Networks. In Proceedings of the 2018 31th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), Foz Do Iguaçu, Brazil, 29 October–1 November 2018. [Google Scholar]
- Viola, P.; Jones, M. Rapid Object Detection using a Boosted Cascade of Simple Features. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Kauai, HI, USA, 8–14 December 2001; Volume 1, pp. I-511–I-518. [Google Scholar]
- Dollár, P.; Appel, R.; Belongie, S.; Perona, P. Fast Feature Pyramids for Object Detection. IEEE Trans. Pattern Anal. Mach. Intell. 2014, 36, 1532–1545. [Google Scholar] [CrossRef] [Green Version]
- Ribera, J.; Chen, Y.; Boomsma, C.; Delp, E. Plant Leaf Segmentation for Estimating Phenotypic Traits. In Proceedings of the IEEE International Conference on Image Processing, Beijing, China, 17–20 September 2017. [Google Scholar]
- Xiao, C.; Qin, R.; Huang, X.; Li, J. A Study of using Fully Convolutional Network for Treetop Detection on Remote Sensing Data. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, 4. [Google Scholar] [CrossRef] [Green Version]
- Long, J.; Shelhamer, E.; Darrell, T. Fully Convolutional Networks for Semantic Segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440. [Google Scholar]
- Santos, A.D.; Marcato, J.; Araújo, M.S.; Di Martini, D.; Tetila, E.; Siqueira, H.; Aoki, C.; Eltner, A.; Matsubara, E.; Pistori, H.; et al. Assessment of CNN-Based Methods for Individual Tree Detection on Images Captured by RGB Cameras Attached to UAVs. Sensors 2019, 19, 3595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fromm, M.; Schubert, M.; Castilla, G.; Linke, J.; McDermid, G. Automated Detection of Conifer Seedlings in Drone Imagery Using Convolutional Neural Networks. Remote Sens. 2019, 11, 2585. [Google Scholar] [CrossRef] [Green Version]
- Ubbens, J.; Cieslak, M.; Prusinkiewicz, P.; Stavness, I. The Use of Plant Models in Deep Learning: An Application to Leaf Counting in Rosette Plants. Plant Methods 2018, 14, 6. [Google Scholar] [CrossRef] [Green Version]
- Han, S.; Kerekes, J. Overview of Passive Optical Multispectral and Hyperspectral Image Simulation Techniques. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 4794–4804. [Google Scholar] [CrossRef]
- Fassnacht, F.; Latifi, H.; Hartig, F. Using Synthetic Data to Evaluate the Benefits of Large Field Plots for Forest Biomass Estimation with LiDAR. Remote Sens. Environ. 2018, 213, 115–128. [Google Scholar] [CrossRef]
- Pretzsch, H.; Biber, P.; Ďurskỳ, J. The Single Tree-based Stand Simulator SILVA: Construction, Application and Evaluation. For. Ecol. Manag. 2002, 162, 3–21. [Google Scholar] [CrossRef]
- Selim, S.; Sonmez, N.K.; Coslu, M.; Onur, I. Semi-automatic Tree Detection from Images of Unmanned Aerial Vehicle Using Object-Based Image Analysis Method. J. Indian Soc. Remote. Sens. 2019, 47, 193–200. [Google Scholar] [CrossRef]
- Krisanski, S.; Taskhiri, M.S.; Turner, P. Enhancing Methods for Under-Canopy Unmanned Aircraft System based Photogrammetry in Complex Forests for Tree Diameter Measurement. Remote Sens. 2020, 12, 1652. [Google Scholar] [CrossRef]
- Qiu, L.; Jing, L.; Hu, B.; Li, H.; Tang, Y. A New Individual Tree Crown Delineation Method for High Resolution Multispectral Imagery. Remote Sens. 2020, 12, 585. [Google Scholar] [CrossRef] [Green Version]
- Picos, J.; Bastos, G.; Míguez, D.; Alonso, L.; Armesto, J. Individual Tree Detection in a Eucalyptus Plantation Using Unmanned Aerial Vehicle (UAV)-LiDAR. Remote Sens. 2020, 12, 885. [Google Scholar] [CrossRef] [Green Version]
- Yan, W.; Guan, H.; Cao, L.; Yu, Y.; Li, C.; Lu, J. A Self-Adaptive Mean Shift Tree-Segmentation Method using UAV LiDAR Data. Remote Sens. 2020, 12, 515. [Google Scholar] [CrossRef] [Green Version]
- Weinstein, B.G.; Marconi, S.; Bohlman, S.; Zare, A.; White, E. Individual tree-crown detection in RGB imagery using semi-supervised deep learning neural networks. Remote Sens. 2019, 11, 1309. [Google Scholar] [CrossRef] [Green Version]
- Rouse, J.; Haas, R.; Schell, J.; Deering, D. Monitoring Vegetation Systems in the Great Plains with ERTS. In Proceedings of the Third Earth Resources Technology Satellite—1 Symposium; NASA: Washington, DC, USA, 1974. [Google Scholar]
- Weier, J.; Herring, D. Measuring Vegetation (NDVI & EVI); NASA Earth Observatory: Greenbelt, MD, USA, 2000. [Google Scholar]
- Gu, Y.; Wylie, B.K.; Howard, D.; Phuyal, K.; Ji, L. NDVI Saturation Adjustment: A New Approach for Improving Cropland Performance Estimates in the Greater Platte River Basin, USA. Ecol. Indic. 2013, 30, 1–6. [Google Scholar] [CrossRef]
- Liu, F.; Qin, Q.; Zhan, Z. A Novel Dynamic Stretching Solution to Eliminate Saturation Effect in NDVI and its Application in Drought Monitoring. Chin. Geogr. Sci. 2012, 22, 683–694. [Google Scholar] [CrossRef]
- Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, L. Microsoft COCO: Common Objects in Context. In European Conference on Computer Vision; Springer: Berlin/Heidelberg, Germany, 2014; pp. 740–755. [Google Scholar]
- Pouliot, D.; King, D.; Bell, F.; Pitt, D. Automated Tree Crown Detection and Delineation in High-Resolution Digital Camera Imagery of Coniferous Forest Regeneration. Remote Sens. Environ. 2002, 82, 322–334. [Google Scholar] [CrossRef]
- Ke, Y.; Quackenbush, L. A Review of Methods for Automatic Individual Tree-Crown Detection and Delineation from Passive Remote Sensing. Int. J. Remote Sens. 2011, 32, 4725–4747. [Google Scholar] [CrossRef]
- Dalal, N.; Triggs, B. Histograms of Oriented Gradients for Human Detection. In Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA, 20–25 June 2005; Volume 1, pp. 886–893. [Google Scholar]
- Barker, J.; Sarathy, S.; Tao, A. DetectNet: Deep Neural Network for Object Detection in DIGITS. 2016. Available online: https://tinyurl.com/detectnet (accessed on 30 November 2016).
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going Deeper with Convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar]
- Geiger, A.; Lenz, P.; Stiller, C.; Urtasun, R. Vision meets Robotics: The KITTI Dataset. Int. J. Robot. Res. 2013, 32, 1231–1237. [Google Scholar] [CrossRef] [Green Version]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 7–12 November 2015; pp. 91–99. [Google Scholar]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A. SSD: Single-Shot Multibox Detector. In European Conference on Computer Vision; Springer: Berlin/Heidelberg, Germany, 2016; pp. 21–37. [Google Scholar]
- Tieleman, T.; Hinton, G. Lecture 6.5—RmsProp: Divide the Gradient by a Running Average of its Recent Magnitude. Coursera Neural Networks Mach. Learn. 2012, 4, 26–31. [Google Scholar]
- Everingham, M.; Van Gool, L.; Williams, C.; Winn, J.; Zisserman, A. The Pascal Visual Object Classes (VOC) Challenge. Int. J. Comput. Vis. 2010, 88, 303–338. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Bueno, M.; Pineda, M.; Vida, C.; Fernández-Ortuño, D.; Torés, J.; de Vicente, A.; Cazorla, F.; Barón, M. Detection of White Root Rot in Avocado Trees by Remote Sensing. Plant Dis. 2019, 103, 1119–1125. [Google Scholar] [CrossRef] [PubMed]
- Stow, D.; Nichol, C.; Wade, T.; Assmann, J.; Simpson, G.; Helfter, C. Illumination Geometry and Glying Height Influence Surface Reflectance and NDVI Derived from Multispectral UAS Imagery. Drones 2019, 3, 55. [Google Scholar] [CrossRef] [Green Version]
- Fawcett, D.; Panigada, C.; Tagliabue, G.; Boschetti, M.; Celesti, M.; Evdokimov, A.; Biriukova, K.; Colombo, R.; Miglietta, F.; Rascher, U.; et al. Multi-Scale Evaluation of Drone-Based Multispectral Surface Reflectance and Vegetation Indices in Operational Conditions. Remote Sens. 2020, 12, 514. [Google Scholar] [CrossRef] [Green Version]
- Goodfellow, I.; Bengio, Y.; Courville, A.; Bengio, Y. Deep Learning; MIT Press: Cambridge, UK, 2016; Volume 1. [Google Scholar]
- Marcus, G. Deep Learning: A Critical Appraisal. arXiv 2018, arXiv:1801.00631. [Google Scholar]
- Huang, J.; Rathod, V.; Sun, C.; Zhu, M.; Korattikara, A.; Fathi, A.; Fischer, I.; Wojna, Z.; Song, Y.; Guadarrama, S. Speed/Accuracy Trade-offs for Modern Convolutional Object Detectors. In Proceedings of the IEEE Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7310–7311. [Google Scholar]
- Wang, H.; Yu, Y.; Cai, Y.; Chen, X.; Chen, L.; Liu, Q. A Comparative Study of State-of-the-Art Deep Learning Algorithms for Vehicle Detection. IEEE Intell. Transp. Syst. Mag. 2019, 11, 82–95. [Google Scholar] [CrossRef]
- Lenc, K. Representation of Spatial Transformations in Deep Neural Networks. Ph.D. Thesis, University of Oxford, Oxford, UK, 2018. [Google Scholar]
r | c | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1248 | 384 | 2 | 7 | 5 | 10 | 1.4 | 2.3 | 65 | 75 | 65 | 75 | 5 | 20 |
Method | Computing Time | Almendras | Mancañas | ||||||
---|---|---|---|---|---|---|---|---|---|
CT | CT | AP | AR | AP | AR | ||||
Classic Methods | LMF | 00:00:00 | 10:17 | 0.79 | 0.55 | 0.92 | 0.70 | 0.77 | 0.78 |
Template-matching | 00:26:00 | 07:53 | 0.72 | 0.79 | 0.86 | 0.61 | 0.65 | 0.73 | |
Hough | 12:00:00 | 21:53 | 0.78 | 0.95 | 0.72 | 0.70 | 0.42 | 0.78 | |
HOG+SVM | 07:27:01 | 00:02 | 0.79 | 0.91 | 0.92 | 0.66 | 0.64 | 0.66 | |
Deep Learning | DetectNet/GoogleNet | 02:45:26 | 32:24 | 0.88 | 0.86 | 0.91 | 0.92 | 0.91 | 0.94 |
F. R-CNN/Inception v2 | 01:06:46 | 02:59 | 0.82 | 0.72 | 0.88 | 0.56 | 0.57 | 0.72 | |
F. R-CNN/ResNet-101 | 07:28:26 | 11:52 | 0.80 | 0.72 | 0.87 | 0.34 | 0.36 | 0.52 | |
SSD/Inception v2 | 02:59:34 | 02:02 | 0.13 | 0.26 | 0.25 | 0.05 | 0.091 | 0.21 | |
R-FCN/ResNet-101 | 01:26:30 | 09:34 | 0.87 | 0.82 | 0.92 | 0.57 | 0.56 | 0.72 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pulido, D.; Salas, J.; Rös, M.; Puettmann, K.; Karaman, S. Assessment of Tree Detection Methods in Multispectral Aerial Images. Remote Sens. 2020, 12, 2379. https://doi.org/10.3390/rs12152379
Pulido D, Salas J, Rös M, Puettmann K, Karaman S. Assessment of Tree Detection Methods in Multispectral Aerial Images. Remote Sensing. 2020; 12(15):2379. https://doi.org/10.3390/rs12152379
Chicago/Turabian StylePulido, Dagoberto, Joaquín Salas, Matthias Rös, Klaus Puettmann, and Sertac Karaman. 2020. "Assessment of Tree Detection Methods in Multispectral Aerial Images" Remote Sensing 12, no. 15: 2379. https://doi.org/10.3390/rs12152379
APA StylePulido, D., Salas, J., Rös, M., Puettmann, K., & Karaman, S. (2020). Assessment of Tree Detection Methods in Multispectral Aerial Images. Remote Sensing, 12(15), 2379. https://doi.org/10.3390/rs12152379