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Abstract: The visual-inertial integrated navigation system (VINS) has been extensively studied over 

the past decades to provide accurate and low-cost positioning solutions for autonomous systems. 

Satisfactory performance can be obtained in an ideal scenario with sufficient and static environment 

features. However, there are usually numerous dynamic objects in deep urban areas, and these 

moving objects can severely distort the feature-tracking process which is critical to the feature-based 

VINS. One well-known method that mitigates the effects of dynamic objects is to detect vehicles 

using deep neural networks and remove the features belonging to surrounding vehicles. However, 

excessive feature exclusion can severely distort the geometry of feature distribution, leading to 

limited visual measurements. Instead of directly eliminating the features from dynamic objects, this 

study proposes to adopt the visual measurement model based on the quality of feature tracking to 

improve the performance of the VINS. First, a self-tuning covariance estimation approach is 

proposed to model the uncertainty of each feature measurement by integrating two parts: (1) the 

geometry of feature distribution (GFD); (2) the quality of feature tracking. Second, an adaptive M-

estimator is proposed to correct the measurement residual model to further mitigate the effects of 

outlier measurements, like the dynamic features. Different from the conventional M-estimator, the 

proposed method effectively alleviates the reliance on the excessive parameterization of the M-

estimator. Experiments were conducted in typical urban areas of Hong Kong with numerous 

dynamic objects. The results show that the proposed method could effectively mitigate the effects 

of dynamic objects and improved accuracy of the VINS is obtained when compared with the 

conventional VINS method. 

Keywords: Visual-inertial integrated navigation system (VINS); dynamic objects; adaptive tuning; 

positioning, autonomous systems; urban canyons 

 

1. Introduction 

In recent years, the visual-inertial integrated navigation system (VINS) has had important 

applications in various fields due to its cost-efficiency, for example, unmanned aerial vehicles (UAV) 

[1,2], augmented reality (AR) [3] and autonomous ground vehicle (AGV) positioning [4–6]. There 

were significant achievements from research on the VINS, such as the VINS-Mono [6], visual-inertial 

direct sparse odometry (VI-DSO) [7] and semi-direct visual odometry (SVO) [8]. These existing 

methods have good performances in an ideal environment with sufficient texture information and 

static environmental features. In other words, the VINS relies heavily on the assumption that the 

surrounding features are static. However, the performance of the VINS can be significantly impaired 
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in dynamic outdoor scenarios as motion blur of images damages the quality of features tracking [9]. 

As shown in Figure 1, there are numerous dynamic objects, such as vehicles and pedestrians, in a 

typical urban scenario. As a result, pose estimation from the VINS can significantly drift or even fail 

due to degraded feature tracking caused by dynamic objects [10], such as moving vehicles and 

pedestrians. Our previous study in [11] evaluated the performance of a state-of-the-art VINS method, 

the VINS-Mono [6], in diverse urban canyons with numerous dynamic objects. The results show [11] 

that dynamic objects are one of the major reasons why the performance of the VINS is degraded in 

urban areas. Major directions of researches on mitigating the effects of dynamic objects on the 

accuracy of the VINS include: (1) dynamic object detection [12] based on motion tracking; (2) moving 

object detection and removal based on deep learning [13]; (3) mitigating the effects of dynamic objects 

using robust methods. 

 

Figure 1. Illustration of a typical urban scenario with numerous dynamic objects, such as dynamic 

vehicles and pedestrians. 

The motion tracking-based methods [14,15] are proposed to mitigate the effects of the dynamic 

objects by detecting and remodel their features belonging to dynamic objects. Generally, the principle 

is to identify the features or pixels that are associated with moving objects. A pixel-wise segmentation 

motion approach was introduced in [15], which proposed an online RGB-D data-based motion 

removal method. It proposes to filter out data related to moving objects. However, one of the major 

limitations is that large parallax can degrade the performance of foreground segmentation and cause 

motion tracking failure. Similar researches are conducted in [16–18] where an RGB-D camera was 

used for dynamic object detection and tracking. However, the maximum ranging of the RGB-D 

camera is limited (usually between 8 and 10 meters [19]) which is not satisfactory for outdoor 

applications such as UAVs and high-speed AGVs. Moreover, the motion tracking-based method to 

detect the dynamic object relies heavily on the accuracy of vehicle egomotion estimation [20,21], 

which is a major challenge. 

The straightforward method to mitigate the effects of dynamic objects is to detect and remove 

the features of the dynamic objects from visual simultaneous localization and mapping (SLAM) 

[22,23]. Due to the excessive dynamic objects in complex environments, a detect-SLAM system [24] 

is proposed to integrate SLAM with a deep neural network to detect moving objects and remove the 

unreliable features from moving objects. The DynaSLAM system [25] introduces the convolutional 

neural network (CNN) to segment the images so that features belonging to the dynamic objects are 

rejected. Alternatively, an SSD detector [26] is presented to detect moving objects with a priori 

knowledge and a selection tracking algorithm is proposed to remove dynamic objects. In addition, 

an ML-RANSAC algorithm [23] was proposed to distinguish moving objects from stationary objects 

and classify the outliers belonging to moving objects. Although numerous researches were conducted 

on object detection [27–29], there are still many challenges for dynamic object detection. Many object 

detection systems based on deep learning, such as the state-of-the-art YOLO [29] and FPN [30], can 
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detect objects (vehicles, trucks and pedestrians), but cannot determine the movement status of these 

objects (static or dynamic). More important, these existing methods tend to remove the features from 

dynamic objects. However, the performance of the VINS relies heavily on the number of features [10] 

and the geometry of feature distribution (GFD) [31]. Excessive exclusion of dynamic feature points 

(DFPs) can severely degrade the quality of the feature tracking process. Therefore, removing all the 

DFPs is not acceptable in urban canyons. 

Instead of directly removing all the detected DFPs from visual SLAM, adaptively estimating the 

covariance of visual measurements to further de-weight the effects of DFPs for visual SLAM attracts 

lots of attention [32,33]. The adaptive covariance estimation was proposed in [32] to enhance the 

resilience against dynamic objects in cooperative visual SLAM. However, instant information 

communication with low latency is required which is usually not available for commercial level 

applications. Recently, the state-of-the-art method, the switchable constraints [34] was proposed, 

which can probabilistically detect and de-weight the outlier measurements from factor graph 

optimization (FGO) and improved performance was obtained. However, it relies heavily on the 

accuracy of the initial guess of prior switchable constraints [34]. Moreover, it requires redundancy of 

healthy measurements. In other words, the switchable constraints can deliver decent performance 

only when the number of healthy measurements significantly exceeds the outlier measurements. In 

addition, each feature can derive a switchable constraint factor in FGO which can cause an 

unacceptable computational load in the VINS subsequently. Recently, the dynamic covariance 

estimation (DCE) [35] algorithm was proposed to mitigate the effects of GNSS (global navigation 

satellite systems) outlier measurements and significantly improved accuracy is obtained with real-

time performance. The uncertainty of GNSS measurements and the state are estimated 

simultaneously. However, the method relies heavily on the initial guess about the states to calculate 

reliable residuals [35]. Similar work was done in [36]. Moreover, the M-estimator algorithm [37] is 

applied to further enhance robustness against GNSS outliers in [36]. The principle of the M-estimator 

in FGO is to embed an additional robust function in the standard error function, such as Cauchy [38] 

and Huber [38] functions. However, the performance of the applied M-estimator relies heavily on 

tuning its parameters. In other words, the parameters of the M-estimator have to be carefully tuned 

based on the scenarios to obtain expected performance. Similarly, the M-estimator is also used to 

resist the outlier measurements in the VINS. In [6], the tightly coupled integration of the visual-

inertial system is designed for state estimation of autonomous drones and an M-estimator was used 

to increase the robustness of the VINS. However, the improvement of the performance of the VINS 

through the M-estimator is limited in dynamic scenarios. Similar research was extended in [39,40] 

and the same framework was used. The M-estimator was applied to increase the robustness of the 

standard error function and improved performance was obtained. However, the performance of the 

M-estimator is still limited by parameter tuning. 

In fact, the principle of visual and global navigation satellite systems (GNSS) is similar in 

positioning, both requiring referenced positioning from visual measurements or receptions of 

satellites. The references for visual-based positioning are the tracked features and the ones for GNSS 

positioning are the pseudorange measurements from satellites, which can be seen in Figure 2. The 

major difference is that the VINS requires abundant feature tracking as the pose of features is 

unknown. However, the GNSS only requires a minimum of five satellites to achieve the positioning 

of the GNSS receiver and the positions of satellites are known. Interestingly, similar positioning 

problems can also be seen in the GNSS which is based on signals received from multiple satellites 

[41]. The non-line-of-sight (NLOS) receptions are similar to the dynamic feature points (DFPs) in the 

VINS as both are the unhealthy (outlier) measurements. As shown in Figure 2, the satellite is blocked 

by the building, leading to the NLOS (red satellites) receptions which are similar to the DFP (the red 

one on the right side of Figure 2). Excluding all NLOS satellites will severely distort the geometry 

distribution of satellites in deep urban areas and even cause a lack of satellites for further positioning. 

In our latest research [42] on GNSS positioning, both the NLOS and line-of-sight (LOS) measurements 

are utilized by giving them different weightings and improved positioning performance was obtained. 

Therefore, we believe that remodeling outlier measurement is preferable. Interestingly, our previous 
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work in [11] extensively evaluated the performance of the VINS in urban canyons and we find out 

that the positioning error is closely related to the quality of feature tracking with almost a linear 

relationship [11]. Moreover, our recent work [43] shows that the excessive exclusion of DFPs can 

distort the geometry of feature distribution, which can degrade the performance of the VINS. Inspired 

by the work in [35,36] and our findings in [11,43], this study proposes to estimate the sensor model 

of visual measurements (tracked feature) online based on the quality of feature tracking. First, a self-

tuning covariance estimation approach is proposed to model the uncertainty of the feature 

measurement by integrating two parts: (1) the geometry of feature distribution (GFD); (2) the quality 

of feature tracking. Second, an adaptive M-estimator is proposed to correct the measurement residual 

model to further mitigate the effects of the outlier measurements, such as the dynamic features. 

Unlike conventional M-estimator, the proposed method effectively relax the reliance on the excessive 

parameterization of the M-estimator. 

 

 

Figure 2. The positioning principles of global navigation satellite systems (GNSS) and visual 

odometry. LOS denotes line of satellite. SFP denotes static feature point and DFP denotes dynamic 

feature point. 

The rest of this study is organized as follows: In Section 2, an overview of the proposed method 

is given; then the framework of the VINS is described in Section 3. Next, the online sensor model 

estimation is presented in Section 4. The experiment result is shown in Section 5. Finally, a conclusion 

is drawn. 

2. Overview of the Proposed Adaptive VINS 

The structure of the proposed method is shown in Figure 3. The inputs of the system consist of 

two parts: the inertial measurement unit (IMU) and the monocular camera. The IMU provides 

acceleration and angular velocity measurements at a high frequency. The monocular camera provides 

raw images. In the modeling stage, due to the high data frequency of the IMU, multiple IMU 

measurements are obtained between two consecutive frames. To reduce the computational loads, the 

IMU pre-integration [44] is employed to derive the motion between the consecutive frames. Then the 

pre-integration factor is obtained. In addition, the features are extracted and tracking for visual 

modeling is performed. To adaptively estimate the uncertainty of feature measurements, two 

parameters are considered in this study. The geometry of feature distribution is derived from feature 

extraction. The number of times of the features being tracked is derived from the feature tracking. 

Both are used in the proposed adaptive covariance estimation, which can remodel the uncertainty of 

visual measurements. Then the standard reprojection factor is obtained based on the adaptive 

covariance estimation. In addition, the quality of feature tracking is associated with the parameters 

of the adaptive M-estimator, which can increase the robustness of the standard reprojection factor 

against outlier measurements with the additional robust function. Then the robust reprojection factor 

is obtained. Finally, the pre-integration factor and robust reprojection factor are integrated into an 
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FGO. The optimization result can correct the bias of IMU measurements in turn. In short, the 

contributions of this study are listed as follows: 

(1) This study proposes a self-tuning covariance estimation approach to model the uncertainty 

of each feature measurement by integrating two parts: (1) the geometry of feature 

distribution (GFD); (2) the quality of feature tracking; 

(2) This study proposes an adaptive M-estimator to correct the measurement residual model to 

further mitigate the effects of outlier measurements, like the dynamic features. The proposed 

adaptive M-estimator effectively relaxed the drawback of manual parameterization [36] of 

M-estimator; 

(3) This study employs challenging datasets collected in dynamic urban canyons of Hong Kong 

to validate the effectiveness of the proposed method in mitigating the effects of dynamic 

objects. improved performance is achieved compared with the state-of-the-art VINS solution 

[6]. 

The details about the proposed method are given in the following sections. 

 

Figure 3. Flowchart of the proposed visual-inertial integrated navigation system (VINS) framework 

aided by adaptive covariance estimation and M-estimator. 

3. Tightly Coupled Monocular-based Visual-inertial Integration based on Factor Graph 

Optimization 

3.1. System States 

The objective of FGO is to minimize the residuals derived from multiple sensor measurements 

[45]. In this study, the residuals include the one from the IMU measurements and the one from visual 

measurements. The state vector considered in this study is defined as follows: 

 

χ = [x�, x�, … , x�, x�
�, λ�, λ�, … λ�] (1) 

 

x� = [P��

� , V��

� , q��

� , b�,�, b�,�], ��[1, �] (2) 

 

x�
� = [P�

�, q�
�] (3) 
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where the superscript � is the world frame and the subscript �� is the body frame (same as the 

IMU frame) while the kth image is captured. �� is the IMU state at the kth image. It contains the 

position (���

� ), the velocity (���

� ) and the orientation that is represented by quaternion (���

� ) in the 

world frame and the acceleration bias (��,�) and the gyroscope bias (��,�) in the IMU body frame. n 

is the total number of keyframes utilized for optimization and � is the total number of features 

considered. �� is the inverse depth of the lth feature observed for the first time, l∈ (1, �). ��
� is the 

extrinsic parameter that transforms the camera frame into the IMU frame. To guarantee the 

computation efficiency, we only utilize the measurements inside a sliding window (which can be 

seen in Figure 4) to estimate the states. The images inside in the sliding window are between the 

frames �� and ����, with the time of �� and ����, respectively. Regarding the implementation of 

the VINS, we refer to the framework proposed in [6]. 

 

Figure 4. Illustration of the sliding window used in the proposed graph optimization. The poses inside 

the red and dash rectangle denote the marginalized states. The poses inside the red and solid rectangle 

represent the states considered in factor graph optimization (FGO). 

3.2. IMU Measurement Modeling 

This section presents the modeling of IMU measurements. The IMU measurements are given in 

the body frame, which is affected by the additive noise and bias of acceleration and gyroscope. The 

raw accelerometer and gyroscope measurements at a given time t are expressed as follows: 

a�� = a� + R�
� g� + b��

+ n� (4) 

ω� � = ω� + b��
+ n� (5) 

where a��  and ω��  denote the raw measurements of the IMU, a�  and ω�  are the expected 

measurements of acceleration and angular velocity, g� = [0 0 �]� denotes the gravity vector in 

the world frame, R�
�  denotes the rotation matrix that encodes the transformation the world frame 

into the body frame at time t, b��
 and b��

 denote the acceleration bias and gyroscope bias and n� 

and n�  are the additive noise, which is assumed to be Gaussian white noise, n�~�(0, ��
�) and 

n�~�(0, ��
� ). The values of n� and n� are determined based on the specifications of the applied 

IMU sensor. 

The IMU measurements can be employed to constrain the motion between two epochs using the 

standard IMU mechanism [46], which can work efficiently in the filtering-based sensor fusion, such 

as the extended Kalman filter (EKF) [47]. However, the standard IMU mechanism [46] can cause a 

high computation load in sensor fusion using FGO, due to the high frequency of the IMU 

measurements. Therefore, we employ the state-of-the-art IMU pre-integration technique [44] to 

integrate the IMU measurements, which can significantly alleviate the high computation load in FGO 

and the accuracy is guaranteed, by integrating multiple IMU measurements into a single factor in 

FGO. There are several inertial measurements in the time interval � ∈ [��, ����] between the two 

consecutive frames b�  and b��� . With the given bias estimation, the IMU pre-integration is 

integrated in the b� frame as follows [6]: 

 

Camera Pose IMU Pose

, 

Sliding WindowOutside Sliding Window
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α����

�� = � R�
��

�∈[��,���� ]

�a�� − b��
���� (6) 

β����

�� = � R�
��

�∈[��,���� ]

(a�� − b��
)�� (7) 

γ����

�� = �
1

2
Ω(ω� � − b��

)��
����

�∈[��,���� ]

 (8) 

Ω(ω) =

⎣
⎢
⎢
⎢
⎡

0 −ω� ω� ��

�� 0 −�� ω�

−�� �� 0 ��

�� ω� �� 0 ⎦
⎥
⎥
⎥
⎤

 (9) 

where α����

�� , β����

��  and γ
����

��  are the pre-integration terms between the frames b� and b���, which 

represent the changes of position, velocity and orientation, respectively. R�
�� is the rotation matrix 

that transforms the body frame at time t into the reference frame b�. In fact, this is one of the major 

differences from the IMU mechanism, as the pre-integration is performed in the body frame b� and 

the IMU mechanism is conducted concerning the world frame. ��
�� is a quaternion that transforms 

the body frame at time t into the reference frame b�. ��, �� and �� denote the angular velocities 

in the body frame. 

The IMU pre-integration between the two consecutive frames uses b� as the reference frame. 

Based on the information, the position, the velocity and the orientation in the world frame can be 

derived as follows: 

P����

� = �P��

� + V��

� ∆�� −
1

2
g����

�� + R��

� �����

��  (10) 

V����

� = �V��

� − g�∆��� + R��

� �����

��  (11) 

γ
����

�� = q�
�� ⊗ q����

�  (12) 

The symbol ⊗ means multiplication between two quaternions. According to the two states 

(�����

�  and ���

� ) of ��  and ���� , the residual for IMU pre-integration measurements in the two 

consecutive frames �� and ���� can be defined as follows [6]: 

 

rℬ �Z�����

�� , χ� =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡δα��+1

��

δβ��+1

��

δθ��+1

��

δb�

δb� ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡R�

�� �P����

� − P��

� +
1

2
g����

� − V��

� ∆��� − �����

��  

R�
��������

� + g���� − V��

� � − �����

��

2 �q��

���
⊗ q����

� ⊗ (�
����

�� )���
���

b�,����
− b�,��

b�,����
− b�,�� ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (13) 

 

Where the variable Z�����

��  represents the observation measurements of the IMU between the 

frames �� and ����. The operator [. ]��� is used for extracting the vector part of the quaternion q 

for the orientation difference. Δθ����

��  represents the orientation constraint between the frames �� 

and ���� . δ�����

��  represents the derived position constraint between the frames ��  and ���� . 

δβ����

��  denotes the velocity constraint.δb� and δb� denote the accelerometer and gyroscope biases 

constraints, respectively. �α����

�� , β����

�� , γ����

�� � represents the pre-integration measurements between 
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the frames ��  and ���� . When the estimation of bias changes, the IMU measurements will be 

repropagated based on the new bias estimation. 

3.3. Visual Measurement Modeling 

This section presents the modeling of visual measurement. The direct raw measurement from 

the camera is the raw image at a given epoch t. Similar to the work in [6], we formulate the visual 

measurement residual based on a reprojection error. For a given new image, the features are detected 

using the Shi–Tomasi [48] corner detection algorithm. Meanwhile, the Kanade–Lucas–Tomasi (KLT) 

sparse optical flow algorithm [49] is employed to track the features. The derivation of the reprojection 

error relies heavily on the quality of feature tracking. To guarantee that enough features are detected 

in a frame of the image, new corner features are also detected [48]. During the feature tracking, only 

certain images, the keyframes, are employed to perform the feature tracking to improve efficiency. 

The keyframes are chosen based on two criteria: (1) The first one is the average parallax criteria: if the 

average parallax of the tracked features between the current frame and the latest keyframe override 

a certain threshold, the current frame is treated as a new keyframe. (2) if the number of tracked 

features inside the current image is smaller than a certain threshold, this frame is regarded as a new 

keyframe. Figure 5 shows the feature tracking process where n denotes the total number of keyframes 

inside the sliding window. The lth feature is first, observed in the ith image. Z�
��(���

�� , ���
��) represents 

first observation of the �th feature in the ith image. Z�

��
(���

��
, ���

��
) denotes the observation of the same 

feature in the �th image. We can see from Figure 5 that the feature is tracked for several times. In 

other words, the features are seen in several image fames. 

 

Figure 5. Illustration of the feature-tracking process. 

The traditional reprojection residual is defined in the image plane, which is not suitable for most 

camera models. In this study, following the work in [6], the residual is defined on a unit sphere, which 

is applicable for almost all the camera models. The unit vector for observation of the �th feature in 

the �th image that is projected into the unit sphere, �̅��

��
, is calculated as follows [6]: 

�̅�
�

��
= [I� I�]� ∙ ��

�� ��
��

�

��

���

��
�� (14) 

where [I� I�]� are two arbitrarily selected orthogonal bases on the tangent plane corresponding to 

the feature observation. ��
�� is the back-projection function, which turns a pixel location into a unit 

, ,

FeatureFeature Feature

M : total number of features in the 
sliding window

, : the set of features observed

in the ith and jth images

, : observation of the th feature in the 

ith and jth images

, , , : the pixel location of th

feature in ith and jth images

Keyframe 1 Keyframe nKeyframe i Keyframe j
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vector using the camera's intrinsic parameters. To formulate the residual corresponding to the 

measurement �̅��

��
, the expected observation ��

��
 is needed. The direct method is to derive ��

��
 based 

on the current state �. To make full use of the feature-tracking process which provides continuous 

geometry constraints, we derive ��

��
 based on the keyframe �. For the sake of clearer explanation, 

we divide the formulation into the following steps: 

Step 1: obtain feature � from the pixel position in image � to the body frame (IMU frame) as 

follows: 

S� = R�
�

1

��

��
�� ��

���
��

���
��

�� + P�
� (15) 

R�
� and P�

� represent the rotation matrix and the translation matrix from the camera frame to the 

body frame. Then the pixel location (���
�� , ���

��) in the ith image is transformed into the body frame. 

Step 2: obtain feature � in the ith image from the body frame to the world frame and then 

translate the feature to the jth image in the world frame as follows: 

S� = R��

� (S�) + P��

� − P��

� (16) 

R��

�  and P��

�  are the rotation matrix and the translation matrix which transforms the lth feature 

detected in the ith image from the body frame to the world frame. P��

� encodes the transformation 

matrix which transforms the lth feature detected in the jth image frame from the body frame to the 

world frame. 

Step 3: obtain feature � in the jth image from the world frame to the body frame and then 

transform the feature into the camera frame as follows: 

S� = R�

��(S�) − P�
� (17) 

��

��
= R�

� (S�) (18) 

R�

��
 represents the rotation matrix which transforms the same feature in the jth image from the world 

frame to the ��  frame. �
�

��
 denotes the predicted feature measurement on the unit sphere by 

transforming its first observation in the ith image to the jth image. R�
�  is the rotation matrix that 

encodes the transformation from the body frame of IMU to the camera frame.  P�
�  is the 

transformation matrix that transforms the camera frame to the body frame of IMU. The R�
�  and P�

� 

compose the extrinsic parameters of camera and IMU. 

Step 4: therefore, the residual for the lth feature measurement in keyframe �  is defined as 

follows: 

r� �Z��

��
, χ� = [I� I�]�. (�̅��

��
−

��

��

��
�

��
�

) (19) 

r�(∗)  represents the residual of the lth feature measurement in the jth image. ��
�

��
 denotes the 

observation measurement of the lth feature in the jth image. Be noted that the degree of freedom of 

the feature has two dimensions and therefore the residual is projected in the tangent plane. ���
�

��
 

denotes the unit vector for the observation of the lth feature in the jth frame. 

3.4. Marginalization 

Each feature measurement corresponds to a factor in FGO. Therefore, the computational 

complexity will increase dramatically over time. The straightforward way is to remove part of the 

old states and their associated measurements. However, this will fail to make use of historical data. 

To reduce the computational loads and guarantee the accuracy, the marginalization is used. The 

process of marginalization is to marginalize some older visual measurements. During the system 

optimization, some of the unsatisfactory IMU states and features are marginalized from the sliding 
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window into a prior factor. Two strategies were proposed [6] to select marginalized measurements. 

Firstly, if the second latest frame is a keyframe, it will be kept in the sliding window and meanwhile, 

the oldest frame is marginalized out with its corresponding measurements. Conversely, if the second 

latest frame is a non-keyframe, the visual measurements will be left out and the IMU measurements 

that are connected to this non-keyframe are kept, which can maintain the sparsity of the system. The 

marginalization is carried out by the Schur complement [50]. A new prior is constructed based on all 

marginalized measurements related to the removed state and the residual for the prior factor can be 

derived accordingly. 

3.5. Visual-Inertia Optimization 

The objective of the FGO is to minimize the sum of prior and the Mahalanobis norm of all 

measurement residuals to obtain a maximum posterior estimation. Based on the derived residuals 

from three parts: (1) residual from IMU pre-integration, (2) residual from the visual measurement 

and (3) residual from marginalization, the objective function of the system can be formulated as 

follows: 

���
�

��r� − H���
�

+ � �rℬ �������

�� , ���
�

����

��

�

+ � �r�����

��
, ���

��

��

�

(�,�)����ℬ

� (20) 

 

where �r�, H� �  is the prior information from the marginalization operation, which encodes 

marginalized information (see the states inside the dashed rectangle of Figure 4). The variable rℬ(. ) 

is the residual term for IMU pre-integration (see Equation (13)). The variable r�(. ) is the residual 

term for visual re-projection (see Equation (19)). ℬ denotes the set of all IMU measurements and � 

is the set of features that were observed at least twice in the current sliding window. P����

��  denotes 

the information matrix for IMU pre-integration. P
�

��
 denotes the information matrix for visual re-

projection, which represents the uncertainty of feature measurements. In [6], P
�

��
 is fixed and is 

correlated with the focal length. The information matrix is the inverse of the covariance matrix. The 

fixed information matrix can work well in an ideal scenario. Unfortunately, the positioning result will 

be significantly misled by unmodeled outliers. Therefore, in the next section, we propose an online 

sensor model to adaptively model the uncertainty of visual measurements. 

4. Online Sensor Model Estimation 

According to our previous work in [11], the result shows that the dynamic feature points from 

dynamic objects are one of the major factors which degrade the performance of the VINS in the urban 

areas. In addition, the positioning error is highly correlated with the quality of feature tracking. We 

propose to mitigate the effects of dynamic objects by adaptively estimating the uncertainty of visual 

measurements based on the quality of feature tracking from two aspects, the adaptive covariance 

estimation and the adaptive M-estimator in the remainder of this section. 

4.1. Adaptive Covariance Estimation 

Based on our findings in [11], we propose to correlate the uncertainty of a given visual 

measurement with two parts: (1) the quality of feature tracking which is determined by the number 

of times that the feature is tracked (NTFT). The more times we see the same feature, the better is the 

feature quality; (2) the geometry distribution factor (��,�) which is determined by the geometry of 

feature distribution (GFD). Assuming that a set of tracked features at a given epoch t from the jth 

image are denoted by F�
�
 as follows: 

F�
�

= �f�,�
�

, f�,�
�

, … , f�,�
�

� (21) 
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where m represents the number of features in the jth image. Each feature f�,�
�

 is represented by f�,�
�

=

���,�, ��,�, ��,�,� , �. ��,� and ��,� denote the pixel position of the feature in the image. ��,�,� denotes the 

number of times that feature l is tracked. 

Each feature corresponds to a landmark that constrains the pose of the camera in the VINS. 

Different geometry distribution of features can result in the different performance of state estimation 

of the system. The ideal condition is that all tracked features are uniformly distributed surrounding 

the center of the camera. Unfortunately, this is usually not available due to the complex 

environmental conditions in urban canyons. In other words, the distribution of features relies 

strongly on the distributions of surrounding objects, such as buildings, vehicles and others. Figure 6 

shows the geometry distribution of the features in two different cases. Figure 6a shows a decent 

geometry distribution of features where the features distribute over the whole image. Figure 6b 

shows a case where a majority of the features located in the middle of the figure. 

As shown in Figure 2, feature-based VINS positioning is similar to satellite-based GNSS 

positioning. The precision of GNSS positioning is highly related to the geometry distribution of 

satellites concerning the position of the GNSS receiver. The quality of the distribution is described 

using 3D position dilution of precision (PDOP) [46]. Inspired by this fact, we adopt a similar idea 

from GNSS positioning to describe the quality of geometry distribution of features, ��,�. 

Firstly, with the given estimated initial guess about the position of the camera and the detected 

features using standard state initialization [51], the observation matrix correlating the positions of 

both the camera and the 3D position of feature is derived as follows: 

H = �

(�� − �)λ� (�� − �)λ� (�� − �)λ�

(�� − �)λ� (�� − �)λ� (�� − �)λ�

⋮ ⋮ ⋮
(�� − �)λ� (�� − �)λ� (�� − �)λ�

�

�×�

 (22) 

where (x, y, z) denotes the position of the camera which can be derived from the system state (P��

� ) at 

epoch t and (��, ��, ��) denotes the 3D position of the mth feature during epoch t. Based on the 

derivation of PDOP, the Q matrix can be derived as follows: 

Q = (H�H)�� (23) 

where Q is a 3x3 matrix as follows: 

Q = �

��
� ��� ���

��� ��
� ���

��� ��� ��
�

� (24) 

where the ��
�  ,  ��

�  and ��
�  denote the uncertainty associated with the geometry distribution. 

Smaller g�,� means that the features are more decentralized which can lead to better VINS estimation 

and vice versa. Therefore, g�,� is calculated as follows: 

��,� = ���
� + ��

� + ��
� (25) 
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Figure 6. Illustration of the (a) decentralized feature distribution and (b) partially centralized feature 

distribution due to the environmental conditions. Circles represent the detected and tracked features. 

The red circles are features tracked by more times than the blue ones. 

Therefore, the adaptive information matrix (Σ
�

��
) is derived as follows: 

Σ�

��
= P�

��
��,�,� ∙

1

��,�

∙ � (26) 

with P
�

��
= �

��

�.�
0

0
��

�.�

� (27) 

where P�

��
 represents the original information matrix from [6], the constant 1.5 denotes the standard 

deviation of pixels. The F� is the focal length of the virtual camera and the value is set to 460 in the 

framework [6]. The parameter of focal length describes the undistorted image. � is the scaling factor 

which is experimentally determined and F� denotes the focal length of the given camera. Note that 

the covariance and the information matrix are mutually inversed. 

4.2. Adaptive M-Estimator 

The objective of the FGO is to minimize the summation of the residual function (20) to approach 

the optimal state set �. Unfortunately, the nonlinear function (20) is always a non-convex problem 

that has multiple sub-optimal, the local minimums phenomenon. The outlier measurements, which 

dominate the overall residual, can easily lead to local minimum estimation. Instead of de-weighting 

the outlier measurement by tuning the covariance matrix, the M-estimator [52] is a promising 

technique that enhances the resilience of the optimizer by using an additional robust function. 

However, the M-estimator relies heavily on parameter tuning. Figure 7 shows the state-of-the-art 

Huber-based M-estimator with different parameters based on (27). The curvature of the M-estimator 

relies heavily on different k values, which is related to the robustness of M-estimator. The smaller 

variable k (black curve in Figure 7) could lead to a smoother curve of Huber function. As a result, the 

smoother curve can be more robust in mitigating the effects of outlier measurements. However, a k 
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with a too-small value can lead to an extremely small gradient of the error function (20), making it 

difficult for the optimizer to approach the optimal state. The research in [35,36] shows that extensive 

parameter tuning is required to obtain satisfactory performance using the M-estimator. 

�(�) = �

1

2
��, |�| ≤ �

� �|�| −
1

2
k� , otherwise

 (28) 

 

where � denotes the residual measurement, k denotes the parameter that needs to be tuned and �(∗) 

represents the robust Huber function. 

Different from the offline tuned M-estimator [53] and the residual-based M-estimator [38] which 

relies on the initial guess about the state estimation, an adaptive M-estimator based on the Huber 

function by correlating the parameters of the M-estimator with the NTFT is proposed in this study, 

which could correct the visual residual model to further mitigate the effects of dynamic feature 

points. The parameter of the Huber function is estimated as follows at the given epoch t: 

 

��r����
�

��
, ��, ��,�,�� = �

1

2
(r����

�

��
, ��)�, | r����

�

��
, ��| ≤ ��

�� ��r����
�

��
, ��� −

1

2
��� , Otherwise

 (29) 

 

�� = �� ��,�,� (30) 

where r����
�

��
, �� is the visual residual of feature �  in the �th image, ��  is the parameter of the 

Huber function and ��  is a scaling factor correlating ��,�,�  and ��  which is pre-determined. 

Therefore, an adaptive M-estimator is derived as (28). 

 

Figure 7. Huber M-estimator with different coefficients. The x-axis denotes the value of residual, 

corresponding to r����
�

�� , ��. The y-axis denotes the value of robust function given the residual. 

4.3. Visual-Inertia Optimization with Online Sensor Model 

Based on the VINS system derived in Section 3 and the online sensor model in sections 4.1 and 

4.2, the new objective function is as follows: 
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���
�

��r� − H���
�

+ � �rℬ �������

�� , ���
�

����

��

�

+ � ���r�����

��
, ��, ��,�,���

��

��

�

(�,�)����ℬ

� (31) 

where �(∗)  is the proposed adaptive M-estimator based on Huber function. The variable Σ
�

��
 

denotes the adaptive information matrix based on Equation (26). Similar to Equation (20), the 

�r�, H� � denotes the prior information from the marginalization operation. rℬ(. ) is the residual term 

for IMU pre-integration. The r�(. )  is the visual residual term. The detailed information of the 

residual terms is presented in Section 3.2 and 3.3. The major difference with the Equation (20) is the 

robust Huber function �(∗) and the adaptive information matrix Σ�

��
, which are derived in sections 

4.1 and 4.2. 

5. Experimental Results 

5.1. Experimental Setup 

To validate the effectiveness of the proposed method, two experiments were conducted in 

typical urban canyons of Hong Kong. The experiment setup is shown in the left side of Figure 8. An 

Xsens MTi 10 IMU was employed to collect raw IMU measurements at a frequency of 200 Hz. A 

monocular camera (BFLY-U3-23S6C-C) was employed to collect color images at a frequency of 10 Hz. 

In addition, the NovAtel SPAN-CPT, a GNSS (GPS, GLONASS and BeiDou) RTK/INS (with fiber-

optic gyroscopes) integrated navigation system, was used to provide the ground truth of positioning. 

The gyro bias in-run stability of the FOG was 1 degree per hour and its random walk was 0.067 degree 

per hour. The baseline between the rover and the GNSS base station was about 7 km. All the data 

were collected and synchronized based on the time stamp provided by the robot operation system 

(ROS) [54]. The coordinate systems between all the sensors were calibrated before the experiments. 

Figure 8a,b shows the two evaluated urban canyons. The tested Urban Canyon 1 contains mainly 

static environmental structures and limited dynamic objects. The tested Urban Canyon 2 was 

significantly more challenging with numerous dynamic objects and complex environmental 

structures. More important, the dataset in Urban Canyon 2 was collected during the evening period 

with unstable and challenging illumination condition where was interesting to see how the proposed 

method can work. 

 

Figure 8. Sensor setup and scenes of the evaluated dataset. 

To verify the performance of the proposed method, several methods were compared. 

(1) VINS: the original VINS solution from [6]. 
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(2) VINS–AC: VINS-aided by adaptive covariance estimation proposed in Section 4.1. 

a. VINS-Adaptive covariance (��,�): only consider ��,� during covariance estimation 

b. VINS-Adaptive covariance (��,�, ��,�,�): consider both ��,� and ��,�,�during covariance 

estimation. 

(3) VINS–AC–ME: VINS-aided by adaptive covariance estimation proposed in Section 4.1 and 

adaptive M-estimator in Section 4.2. 

Regarding the accuracy evaluation of the listed four methods above, we make use of the popular 

EVO toolkit [55], which was extensively used for the evaluation of SLAM algorithms. The parameters 

used in the experiments are shown in Table 1. The window size n was set to 11 frames in the 

optimization, which includes 10 keyframes and 1 newest frame. F� was the focal length and both of 

the � and �� are the scaling factor. 

Table 1. Parameter values used in this study. 

Parameters Value Parameters Value 

F� 460 b� 0.001 m/s2 

� 0.02 b� 0.0001 rad/s 

�� 0.02 n� 0.1 m/s2 

� 11 n� 0.01 m/s 

5.2. Evaluation of the Dataset Collected in Urban Canyon 1 

An experiment in Urban Canyon 1 was firstly conducted to validate the performance of the 

proposed method. The positioning results for the listed four methods are shown in Table 2. The mean 

error was defined by the RPE (relative pose error) in the EVO toolkit [55]. The mean error of the VINS 

was 0.33 meters, with the maximum error reaching 1.84 meters. Be noted that this was original the 

performance based on the work in [6]. With the geometry distribution of features (g�,�) considered 

in the adaptive covariance, the positioning error decreases to 0.32 meters. The positioning error was 

slightly improved by 3.03%, which was calculated by the division of improvement and the error of 

original VINS. Furthermore, with the help of the number of feature-tracking times (��,�,� ) in the 

adaptive covariance estimation, the mean error decreases to 0.30 meters, with an improvement of 

9.09%. With the help of the adaptive M-estimator, the mean error stays at 0.30 meters, with the 

maximum error decreasing to 1.44 meters. The positioning error of the proposed method (VINS–AC–

ME) was slightly mitigated by 9.09%. The fifth row shows the percentage of drift which is calculated 

by the formulation as follows: 

|P���� − P��|

D
% (32) 

where P����  denotes the pose estimation finally epoch from VINS and P��  denotes the pose 

estimation at the last epoch from the ground truth. D  denotes the total driving distance. The 

percentage evaluates the accumulated drift of VINS at the final epoch. Different from the relative 

positioning error (RPE), the “% drift per distance” relies heavily on drift direction. As the following 

Figure 9 shows that the proposed method VINS–AC–ME drifts significantly, while the mean error 

decreases to 0.3 meters from 0.33 meters. The result shows that the proposed method can help to 

improve the performance of VINS even in the evaluated Urban Canyon 1 with limited dynamic 

objects. 
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Table 2. Positioning performance comparisons of listed methods in Urban Canyon 1. 

All Data VINS [6] VINS–AC (��,�) 
VINS–AC 

(��,�, ��,�,�) 
VINS–AC–ME 

Mean error 0.33 m 0.32 m 0.30 m 0.30 m 

Std 0.31 m 0.30 m 0.30 m 0.29 m 

Max error 1.84 m 1.35 m 1.70 m 1.44 m 

% drift per meters 2.16% 1.85% 2.69% 2.71% 

Improvement - 3.03% 9.09% 9.09% 

Percentage of 

Outliers 
8.6% 8.6% 8.6% 8.6% 

The trajectories of the listed methods and the reference trajectory are shown in Figure 9. The 

total length of the trajectory was 1186.081 meters. Overall, the trajectory of the VINS–AC–ME (see 

blue curve) was the one closest to the reference trajectory (see black curve). The relative positioning 

error throughout the test is shown in Figure 10. The accuracy of the proposed method was slightly 

improved with the help of the proposed online sensor model adaption. This was because the static 

feature points dominate the visual measurements in urban canyons. However, the proposed method 

can obtain slightly improved performance in the evaluated Urban Canyon 1. 

 

Figure 9. Trajectories of the VINS and proposed method and reference trajectory in Urban Canyon 1. 
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Figure 10. Relative positioning errors of tested methods in Urban Canyon 1. 

The last row of Table 2 shows the percentage of outlier features, which was calculated by 

the division of the total number of outlier features and the total number of the tracked features 

throughout the evaluated dataset. During the calculation, we classify the outlier measurement 

based on the ��,�,�. One feature was identified as an outlier measurement if the variable ��,�,� 

was less than 10. Be noted that this value was only used for evaluation purposes and was not 

used in the model adaption of visual measurements. Based on this rule, 8.6% of the features were 

outlier measurements. 

5.3. Evaluation of the Data Collected in Urban Canyon 2 

To challenge the performance of the proposed method, we conduct the other experiment in 

Urban Canyon 2 with numerous dynamic objects and the data were collected at night (see Figure 8b). 

In this experiment, the number of DFPs was far more than that in Urban Canyon 1, with a percentage 

of 19.6% which can be seen in Table 3. Therefore, we believe that Urban Canyon 2 was more 

challenging for our proposed online sensor model compared to the evaluated Urban Canyon 1. 

The positioning results of the listed methods are shown in Table 3. The mean error of the original 

VINS was 0.79 meters, with the maximum error reaching 5.58 meters. The mean error decreases to 

0.69 meters with the geometry distribution of features (g�,�) considered in the adaptive covariance. 

The number of feature-tracking times (��,�,�) was also considered in the adaptive covariance and the 

mean error decreases to 0.64 meters, with an improvement of 18.99%. With the help of the adaptive 

M-estimator, the mean error decreases to 0.59 meters, with an improvement of 25.32%. 

Similarly, the % drift per meter was also shown in the fifth row of Table 3, which was calculated 

based on (31). Interestingly, we can see that the value of “% drift per meter” was even larger after 

applying the proposed method (3.73%), compared with the original VINS (2.1%). This was mainly 

because the drift direction of the proposed method was significantly different from the original VINS, 

which can be seen in Figure 11. However, the proposed method provides more accurate relative 

positioning which can be seen by the mean error. Therefore, the VINS can provide accurate 

positioning relatively in a short period. Integration of the proposed VINS, which is subjected to drift, 

and the drift-free GNSS positioning is a promising solution to provide accurate and globally reference 

positioning. 
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Table 3. Positioning performance comparisons of listed methods in Urban Canyon 2. 

All Data VINS [6] VINS–AC (��,�) 
VINS–AC 

(��,�, ��,�,�) 
VINS–AC–ME 

Mean error 0.79 m 0.69 m 0.64 m 0.59 m 

Std 0.96 m 0.86 m 0.84 m 0.75 m 

Max error 5.58 m 6.39 m 7.32 m 7.26 m 

% drift per meters 2.1% 2.04% 4.10% 3.73% 

Improvement - 12.66% 18.99% 25.32% 

Percentage of 

outliers 
19.6% 19.6% 19.6% 19.6% 

 

Figure 11 shows the trajectories of the listed methods and the reference trajectory. The total 

length of the trajectory was about 1984.448 meters. We can see that the proposed method (blue curve) 

is the one closest to the reference trajectory (black curve). The details about the relative positioning 

error are shown in Figure 12. 

To show the details about the improvement, four epochs are selected in Figure 12 and the 

snapshots of the selected epochs are shown in Figure 13. The corresponding positioning errors are 

shown in Table 4. We can see from Table 4 that the error of the VINS reaches the maximum value of 

5.59 meters during epoch 260 (A). With the geometry of features distribution (g�,�) considered in the 

adaptive covariance, the error of the VINS–AC (g�,�) decreases to 2.81 meters. Moreover, the number 

of feature-tracking times (��,�,�) was also introduced to the adaptive covariance and the error of the 

VINS–AC (g�,� , ��,�,� ) decreases to 1.62 meters, which shows that g�,�  and ��,�,�  can model the 

uncertainty of each feature measurement to improve the performance of the VINS. With the help of 

the adaptive M-estimator, the error of the proposed method (VINS–AC–ME) decreases to 1.02 meters. 

A similar condition appears during epoch 343 (B). The proposed method outperforms the VINS in 

positioning accuracy. Based on the proposed adaptive covariance (26), g�,� and ��,�,� were used to 

evaluate the uncertainty of the visual measurements and Figure 14 and Figure 15 show that the 

system tends to rely on the visual measurements during epoch 260 (A) and epoch 343 (B). However, 

we find out that the proposed method leads to a large positioning error during epoch 29 (C). The 

error of the VINS–AC (g�,�) increases to 6.39 meters and the error of the VINS–AC (g�,�, ��,�,�) even 

increases to 7.26 meters. The error of the VINS–AC–ME was also 7.26 meters. This was due to the fact 

that the proposed system tends to assign a higher weight to the visual measurement, while the quality 

of the tracked features was poor during the epoch. 

As can be seen from Figure 13c, the feature tracked on a blurred image. Therefore, the 

positioning error increases significantly during epoch 29 (C). Interestingly, the error of the VINS–AC 

(g�,�, ��,�,�) can reach 7.32 meters during epoch 127 (D), which was far larger than that of the VINS–

AC ( g�,�)  (1.43 meters). The error was mainly caused by other factors, such as the unstable 

illumination conditions. With the help of the adaptive M-estimator, the error of the VINS–AC–ME 

decreases to 1.32 meters, which shows that the adaptive M-estimator can enhance the resistance to 

outliers. 

Figure 16 shows that the adaptive M-estimator can correct the visual residual model by using an 

additional robust function, especially in challenging urban canyons. The red curve denotes the visual 

residual on the VINS–AC (g�,�, ��,�,�) and the blue curve denotes the residual on the VINS–AC–ME. 

The major difference between the two methods was whether the M-estimator was utilized. Overall, 

we can see from Figure 16 that the residual with large values (see red curve) was significantly 

mitigated. 
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Figure 11. Trajectories of the VINS and proposed method and reference trajectory in Urban Canyon 2. 

 

Figure 12. Relative positioning errors of tested methods in Urban Canyon 2. 
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Figure 13. Images of tested Urban Canyon 2 in the four selected epochs concerning Figure 12. Green 

circles denote the static feature points and the red circles denote the dynamic feature points. 

Table 4. Positioning performance comparison between listed methods on the four selected epochs in 

Figure 12. 

Mean Error VINS 
VINS–AC 

(��,�) 

VINS–AC 

(��,�, ��,�,�) 
VINS–AC–ME 

Epoch 260 (A) 5.59 m 2.81 m 1.62 m 1.02 m 

Epoch 343 (B) 5.12 m 0.98 m 0.78 m 0.72 m 

Epoch 29 (C) 0.47 m 6.39 m 7.26 m 7.26 m 

Epoch 127 (D) 1.65 m 1.43 m 7.32 m 1.32 m 

 

Figure 14. (top) Geometry of feature distribution (g�,�) on the error of the VINS–AC (g�,�); (bottom) 

error of the VINS–AC (g�,�). 
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Figure 15. (top) Geometry of feature distribution (g�,�) and the number of feature tracking times (��,�,�) 

on the error of the VINS–AC (g�,� , ��,�,�); (bottom) error of the VINS–AC (g�,�, ��,�,�). 

 

Figure 16. Residual comparison between VINS–AC (g�,�, ��,�,�) and VINS–AC–ME. Red curve 

denotes the visual residual on the VINS–AC (g�,�, ��,�,�) and the blue curve denotes the residual 

on the VINS–AC–ME. 

6. Conclusions and Future Work 

Achieving accurate positioning via VINS in an urban canyon is a challenging problem, due to 

the numerous expected dynamic objects. Instead of directly eliminating the features from dynamic 

objects, this study proposes to adopt the visual measurement model based on the quality of feature 

tracking to improve the performance of the VINS. To model the uncertainty of visual measurements 

and improve the system's resistance to outliers, adopting the adaptive covariance and the adaptive 

M-estimator to evaluate the performance of the VINS is proposed in this study. The accuracy is 

improved in both of the two experiments, especially in Urban Canyon 2, which shows the 

effectiveness of the proposed method. 

This study only contributes to mitigating the effects of DFPs. The remaining errors were mainly 

caused by other factors, such as the unstable illumination conditions and feature extraction failure. 
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In the future, we will further study how to acquire and estimate the quality of the detected features 

for VINS and its integration with other sensors (e.g., GNSS) in urban canyons. 

Author Contributions: Conceptualization, X.W.B. and L.-T.H.; methodology, X.W.B.; software, X.W.B.; formal 

analysis, X.W.B. and W.S.W.; data collection, X.W.B. and W.S.W.; writing—original draft preparation, X.W.B.; 

writing—review and editing, X.W.B., W.S.W. and L.-T.H.; supervision, L.-T.H. All authors have read and agreed 

to the published version of the manuscript. 

Funding: This research was funded by The Hong Kong Polytechnic University. The project ZVKZ was 

“Positioning and Navigation for Autonomous Driving Vehicle by Sensor Integration”. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Bloesch, M.; Omari, S.; Hutter, M.; Siegwart, R. Robust visual inertial odometry using a direct EKF-based 

approach. In Proceedings of the 2015 IEEE/RSJ international conference on intelligent robots and systems 

(IROS), Hamburg, Germany, 28 September–2 October 2015; pp. 298–304. 

2. Li, R.; Liu, J.; Zhang, L.; Hang, Y. LIDAR/MEMS IMU integrated navigation (SLAM) method for a small 

UAV in indoor environments. In Proceedings of the 2014 DGON Inertial Sensors and Systems (ISS), 

Karlsruhe, Germany, 16–17 September 2014; pp. 1–15. 

3. Siegl, H.; Pinz, A. A mobile AR kit as a human computer interface for cognitive vision. In Proceedings of 

the 5th International Workshop on Image Analysis for Multimedia Interactive Services, WIAMIS, Lisboa, 

Portugal, 21–23 April 2004. 

4. Qin, T.; Pan, J.; Cao, S.; Shen, S. A general optimization-based framework for local odometry estimation 

with multiple sensors. arXiv 2019, arXiv:1901.03638. 

5. Pfrommer, B.; Sanket, N.; Daniilidis, K.; Cleveland, J. Penncosyvio: A challenging visual inertial odometry 

benchmark. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), 

Singapore, 29 May–3 June 2017; pp. 3847–3854. 

6. Qin, T.; Li, P.; Shen, S. Vins-mono: A robust and versatile monocular visual-inertial state estimator. IEEE 

Trans. Robot. 2018, 34, 1004–1020. 

7. Von Stumberg, L.; Usenko, V.; Cremers, D. Direct sparse visual-inertial odometry using dynamic 

marginalization. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation 

(ICRA), Brisbane, Australia, 21–25 May 2018; pp. 2510–2517. 

8. Xu, W.; Choi, D.; Wang, G. Direct visual-inertial odometry with semi-dense mapping. Comput. Electr. Eng. 

2018, 67, 761–775. 

9. Rebecq, H.; Horstschaefer, T.; Scaramuzza, D. Real-time Visual-Inertial Odometry for Event Cameras using 

Keyframe-based Nonlinear Optimization. In Proceedings of the BMVC, London, UK 4–7 September 2017 

10. Saputra, M.R.U.; Markham, A.; Trigoni, N. Visual SLAM and structure from motion in dynamic 

environments: A survey. ACM Comput. Surv. (CSUR) 2018, 51, 37. 

11. Bai, X.; Wen, W.; Hsu, L.-T. Performance Analysis of Visual/Inertial Integrated Positioning in Diverse 

Typical Urban Scenarios of Hong Kong. In Proceedings of Asian-Pacific Conference on Aerospace 

Technology and Science, Taiwan, 28–31 August 2019. 

12. Yazdi, M.; Bouwmans, T. New trends on moving object detection in video images captured by a moving 

camera: A survey. Comput. Sci. Rev. 2018, 28, 157–177. 

13. Mane, S.; Mangale, S. Moving Object Detection and Tracking Using Convolutional Neural Networks. In 

Proceedings of 2018 Second International Conference on Intelligent Computing and Control Systems 

(ICICCS), Madurai, India, 14–15 June 2018; pp. 1809–1813. 

14. Sun, Y.; Liu, M.; Meng, M.Q.-H. Improving RGB-D SLAM in dynamic environments: A motion removal 

approach. Robot. Auton. Syst. 2017, 89, 110–122. 

15. Sun, Y.; Liu, M.; Meng, M.Q.-H. Motion removal for reliable RGB-D SLAM in dynamic environments. 

Robot. Auton. Syst. 2018, 108, 115–128. 

16. Wang, Y.; Huang, S. Motion segmentation based robust RGB-D SLAM. In Proceedings of the 11th World 

Congress on Intelligent Control and Automation, Shenyang, China, 29 June–4 July 2014; pp. 3122–3127. 

17. Herbst, E.; Ren, X.; Fox, D. Rgb-d flow: Dense 3-d motion estimation using color and depth. In Proceedings 

of the 2013 IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, 6–10 May 

2013; pp. 2276–2282. 



Remote Sens. 2020, 12, 1686 23 of 24 

 

18. Mur-Artal, R.; Tardós, J.D. Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d 

cameras. IEEE Trans. Robot. 2017, 33, 1255–1262. 

19. Endres, F.; Hess, J.; Engelhard, N.; Sturm, J.; Cremers, D.; Burgard, W. An evaluation of the RGB-D SLAM 

system. In Proceedings of the ICRA, Saint Paul, MN, USA, 14–18 May 2012; pp. 1691–1696. 

20. Yamaguchi, K.; Kato, T.; Ninomiya, Y. Vehicle ego-motion estimation and moving object detection using a 

monocular camera. In Proceedings of the 18th International Conference on Pattern Recognition (ICPR’06), 

Hong Kong, China, 20-24 August 2006; pp. 610–613. 

21. Zhou, D.; Frémont, V.; Quost, B.; Wang, B. On modeling ego-motion uncertainty for moving object 

detection from a mobile platform. In Proceedings of the 2014 IEEE Intelligent Vehicles Symposium 

Proceedings, Dearborn, MI, USA, 8–11 June 2014; pp. 1332–1338. 

22. Milz, S.; Arbeiter, G.; Witt, C.; Abdallah, B.; Yogamani, S. Visual slam for automated driving: Exploring the 

applications of deep learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern 

Recognition Workshops, Salt Lake City, UT, USA, 18–22 June 2018; pp. 247–257. 

23. Bahraini, M.S.; Rad, A.B.; Bozorg, M. SLAM in Dynamic Environments: A Deep Learning Approach for 

Moving Object Tracking Using ML-RANSAC Algorithm. Sensors 2019, 19, 3699. 

24. Zhong, F.; Wang, S.; Zhang, Z.; Wang, Y. Detect-SLAM: Making object detection and slam mutually 

beneficial. In Proceedings of the 2018 IEEE Winter Conference on Applications of Computer Vision 

(WACV), Lake Tahoe, NV, USA, 12–15 March 2018; pp. 1001–1010. 

25. Bescos, B.; Fácil, J.M.; Civera, J.; Neira, J. DynaSLAM: Tracking, mapping, and inpainting in dynamic 

scenes. IEEE Robot. Autom. Lett. 2018, 3, 4076–4083. 

26. Xiao, L.; Wang, J.; Qiu, X.; Rong, Z.; Zou, X. Dynamic-SLAM: Semantic monocular visual localization and 

mapping based on deep learning in dynamic environment. Robot. Auton. Syst. 2019, 117, 1–16. 

27. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.-Y.; Berg, A.C. Ssd: Single shot multibox 

detector. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 

8–16 October 2016; pp. 21–37. 

28. Labbe, M.; Michaud, F. Online global loop closure detection for large-scale multi-session graph-based 

SLAM. In Proceedings of the 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, 

Chicago, IL, USA, 14-18 September2014; pp. 2661–2666. 

29. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In 

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 

27–30 June 2016; pp. 779–788. 

30. Lin, T.-Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object 

detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, 

HI, USA, 21–26 July 2017; pp. 2117–2125. 

31. Belter, D.; Nowicki, M.; Skrzypczyński, P. Improving accuracy of feature-based RGB-D SLAM by modeling 

spatial uncertainty of point features. In Proceedings of the 2016 IEEE International Conference on Robotics 

and Automation (ICRA), Stockholm, Sweden, 16–21 May 2016; pp. 1279–1284. 

32. Denim, F.; Nemra, A.; Louadj, K.; Boucheloukh, A.; Hamerlain, M.; Bazoula, A.B. Cooperative Visual 

SLAM based on Adaptive Covariance Intersection. J. Adv. Eng. Comput. 2018, 2, 151–163. 

33. Demim, F.; Boucheloukh, A.; Nemra, A.; Louadj, K.; Hamerlain, M.; Bazoula, A.; Mehal, Z. A new adaptive 

smooth variable structure filter SLAM algorithm for unmanned vehicle. In Proceedings of the 2017 6th 

International Conference on Systems and Control (ICSC), Batna, Algeria, 7–9 May 2017; pp. 6–13. 

34. Sünderhauf, N.; Protzel, P. Switchable constraints for robust pose graph SLAM. In Proceedings of the 2012 

IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura, Portugal, 7-12 October 

2012; pp. 1879–1884. 

35. Pfeifer, T.; Lange, S.; Protzel, P. Dynamic Covariance Estimation—A parameter free approach to robust 

Sensor Fusion. In Proceedings of the 2017 IEEE International Conference on Multisensor Fusion and 

Integration for Intelligent Systems (MFI), Daegu, South Korea, 16–18 November2017; pp. 359–365. 

36. Watson, R.M.; Gross, J.N. Robust navigation in GNSS degraded environment using graph optimization. 

arXiv 2018, arXiv:1806.08899. 

37. Tyler, D.E. A distribution-free M-estimator of multivariate scatter. Ann. Stat. 1987, 15, 234–251. 

38. Agamennoni, G.; Furgale, P.; Siegwart, R. Self-tuning M-estimators. In Proceedings of the 2015 IEEE 

International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 26–30 May 2015; pp. 

4628–4635. 



Remote Sens. 2020, 12, 1686 24 of 24 

 

39. Lin, Y.; Gao, F.; Qin, T.; Gao, W.; Liu, T.; Wu, W.; Yang, Z.; Shen, S. Autonomous aerial navigation using 

monocular visual-inertial fusion. J. Field Robot. 2018, 35, 23–51. 

40. Qiu, K.; Qin, T.; Xie, H.; Shen, S. Estimating metric poses of dynamic objects using monocular visual-inertial 

fusion. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems 

(IROS), Madrid, Spain, 1–5 October2018; pp. 62–68. 

41. Hsu, L.-T.; Gu, Y.; Kamijo, S. NLOS correction/exclusion for GNSS measurement using RAIM and city 

building models. Sensors 2015, 15, 17329–17349. 

42. Wen, W.; Bai, X.; Kan, Y.-C.; Hsu, L.-T. Tightly Coupled GNSS/INS Integration Via Factor Graph and Aided 

by Fish-eye Camera. IEEE Trans. Veh. Technol. 2019, 68, 10651–10662. 

43. Bai, X.; Wen, W.; Hsu, L.-T.; Li, H. Perception-aided Visual-Inertial Integrated Positioning in Dynamic 

Urban Areas (accepted). In Proceedings of the ION/IEEE PLANS, Portland, OR, USA, 23–25 September 

2020. 

44. Forster C, Carlone L, Dellaert F, Scaramuzza D. On-Manifold Preintegration for Real-Time Visual--Inertial 

Odometry. IEEE Trans. Rob. 2016, 33, 1–21. 

45. Dellaert, F. and M. Kaess, Factor graphs for robot perception. Foundations and Trends® in Robotics, 2017. 6(1-

2): p. 1-139. 

46. Groves, P.D. Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems; Artech House: 

Norwood, MA, USA, 2013. 

47. Thrun, S., Probabilistic algorithms in robotics. Ai Magazine, 2000. 21(4): p. 93-93. 

48. Shi, J. Good features to track. In Proceedings of the 1994 Proceedings of IEEE Conference on Computer 

Vision and Pattern Recognition, Seattle, WA, USA, 21–23 June 1994; pp. 593–600. 

49. Senst, T.; Eiselein, V.; Sikora, T. II-LK–a real-time implementation for sparse optical flow. In Proceedings 

of the International Conference Image Analysis and Recognition, Póvoa de Varzim, Portugal, 21–23 June 

2010, pp. 240–249. 

50. Zhang, F. The Schur Complement and Its Applications; Springer Science & Business Media: Berlin, Germany, 

2006; Volume 4. 

51. Qin, T.; Shen, S. Robust initialization of monocular visual-inertial estimation on aerial robots. In 

Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 

Vancouver, BC, Canada, 24–28 September 2017; pp. 4225–4232. 

52. Lucas, A.J.C.i.S.-T.; Methods. Robustness of the student t based M-estimator. Commun. Stat.-Theory Methods 

1997, 26, 1165–1182. 

53. Li, W.; Cui, X.; Lu, M.J.T.S.; Technology. A robust graph optimization realization of tightly coupled 

GNSS/INS integrated navigation system for urban vehicles. Tsinghua Sci. Technol. 2018, 23, 724–732. 

54. Quigley, M.; Conley, K.; Gerkey, B.; Faust, J.; Foote, T.; Leibs, J.; Wheeler, R.; Ng, A.Y. ROS: An open-source 

Robot Operating System. In Proceedings of the ICRA Workshop on Open Source Software, Available 

online: https://www.willowgarage.com/sites/default/files/icraoss09-ROS.pdf (accessed on 23 May 2019), p. 

5. 

55. Grupp, M. Evo: Python Package for the Evaluation of Odometry and Slam. Available online: 

https://github.com/MichaelGrupp/evo (accessed on 10 December 2019). 

 

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access 

article distributed under the terms and conditions of the Creative Commons 

Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). 

 

 


