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Abstract: Cloud top height (CTH) is an essential pareter for the general circulation model
in understanding the impact of clouds on the Earth’s radiation budget and global climate
change. This paper compares the CTH products, derived from the Moderate Resolution Imaging
Spectroradiometer (MODIS), onboard the Aqua and Terra satellites with ground-based Ka band radar
data in Beijing from 2014 to 2017. The aim was to investigate the data accuracy and the difference in
CTH measurements between passive satellite data and active ground-based radar data. The results
show that MODIS, on average, underestimates CTH relative to radar by −1.08 ± 2.48 km, but with
a median difference of −0.65 km and about 48% of differences are within 1 km. Statistically, MODIS
CTHs which are greater than 6 km show lower discrepancy to radar CTH than those of MODIS CTHs
less than 4 km. The CTH difference is independent of cloud fraction and cloud layer. It shows strong
dependence on cloud depth, decreasing as cloud depth increases. There is a tendency for MODIS to
underestimate high thin clouds but overestimate low thin clouds relative to radar. Total ozone, SO2,
CO, NO2, aerosol PM10, total water vapor and temperature inversion show unobvious influences
in the CTH discrepancy. It is shown that the MODIS CO2-slicing technique performs much better
than IRW (infrared window) technique when cloud layer is higher than 2 km. The average difference
calculated from all comparisons by CO2-slicing technique and IRW technique is 0.09 ± 1.58 km,
and −2.20 ± 2.73 km, respectively.
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1. Introduction

Clouds cover more than 50% of the globe. They play important roles in regulating the energy
budget and hydrological cycle of the Earth–atmosphere system [1–4]. However, clouds are one of
the least-understood components, as well as being one of the largest uncertainty sources, in general
circulation model (GCM) simulations [5–7]. Cloud top height (CTH) is a fundamental parameter,
describing the vertical distribution of clouds, which partly determines whether clouds exert a warming
or cooling effect on the planetary radiation budget.

MODIS measures the infrared (IR) brightness temperature of the cloud to derive CTH and most
passive satellite imaging instruments in operation are using similar method to derive CTH [8–13].
Since its launch in 2000, MODIS onboard the Aqua and Terra satellites has provided long-term
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CTH products containing a high volume of data and these datasets are being widely used by the
meteorological community [2,11,12,14–24]. Alongside improvements in the CTH retrieval algorithm,
investigations into the uncertainties of the CTH products of MODIS have been performed. For example,
Holz et al. carried out a detailed evaluation of global MODIS cloud products using two months of
Lidar observations on the CALIPSO platform, and a global mean difference of −1.4 ± 2.9 km was
reported [25]. Garay et al. compared MODIS CTH with ship-based observations in the southeastern
Pacific and found MODIS retrievals were biased high by more than 2 km [26]. Xi et al. compared the
marine boundary layer CTH derived from CERES-MODIS with ARM radar-lidar measurements in
the Azores and a 0.063 km bias was found [22]. After the Collection-6 MODIS CTH products were
released in 2014, Håkansson et al. compared them with CloudSat-CPR (Cloud Profiling Radar) data
and reported that the global mean difference was −0.61 ± 2.53 km [18].

Millimeter wavelength radar can penetrate the interior of clouds and is a powerful method for
observing the macroscopic and microphysical properties of clouds. The CTH can be measured directly
by radar returning echoes. Therefore, the radar provides a reliable approach in measuring the CTH,
and an effective approach in investigating the reliability of the CTH retrieval algorithm, which was
developed for passive remote sensors [27–31].

In MODIS CTH retrieval algorithm, the atmospheric profiles input for the clear-sky radiance
calculation affect the retrieval accuracy because their differences with the actual profiles determine
the calculation accuracy directly. To be a globally adaptive algorithm, MODIS applies a latitudinal
clear-sky radiance bias adjustment in mitigating the difference between observed and calculated
radiance [9]. However, such an adjustment, calculated from historical data, might be too slow for
capturing real-time local weather properties, and a latitudinal adjustment is too coarse for regions
greatly affected by human activities, resulting in uncertainties with regional preferences.

The aim of this paper is to investigate the difference of the MODIS CTH products with ground-based
radar data obtained in Beijing, over a long-term period, and to investigate its relationship with the
cloud properties and atmospheric parameters. Beijing (39.96◦N, 116.37◦E) is located in northern
China, has a continental monsoon climate and four distinct seasons. The dry and cold winter is
governed by the northwest monsoon from the continent, while the wet and hot summer is dominated
by the southeast monsoon from the ocean. Spring and autumn are the transitions between these two
monsoons. Air pollution events have begun to occur more frequently, owing to the development
of industry. Diverse cloud distributions and complex atmospheric conditions challenge the MODIS
CTH retrieval algorithm. Investigating the difference under various and complex conditions benefits
a thorough understanding of the accuracy of the MODIS CTH products. Baum et al. stated that
“A mission of the National Aeronautics and Space Administration (NASA) Earth Observation System is
to provide long-term data products of superior accuracy and reliability from sensors on the Aqua and
Terra platforms” [14]. Thus, investigating the accuracy in a diverse range of regions comprehensively
is a necessary step for establishing cloud product datasets of climate quality and climate data records.
In addition, comparison results provide references for the application of MODIS data in climate models
and the improvement of the retrieval algorithm.

The rest of this paper is organized as follows: Descriptions of the MODIS data, radar data
and other measurement data of atmospheric properties are provided in Section 2. An overview
of the distribution of MODIS CTH and Ka radar CTH and their differences is given in Section 3.
Section 4 presents a detailed analysis of the influences of cloud properties and atmospheric parameters
on CTH uncertainties. Conclusions and some discussion points are given in Section 5.

2. Materials and Methods

2.1. MODIS CTH Retrieval Algorithm

MODIS is a key instrument on the Aqua and Terra satellites that scans the entire globe every
1–2 days (NASA’s Earth Observing System Home Page. Available online: https://eospso.nasa.gov//;
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Remote Sens. 2020, 12, 1616 3 of 17

accessed on 18 May 2020). It measures radiance in 36 spectral bands, covering the spectral range
from 0.42 to 14.24 µm, at three spatial resolutions (250, 500 and 1000 m). The swath dimensions
are 2330 km (cross-track) by 10 km (along-track at nadir) (MODIS Home Page. Available online:
https://modis.gsfc.nasa.gov/; accessed on 18 May 2020). The MODIS CTH retrieval algorithm has
undergone several updates. The latest version (Collection 6) is a combination of the CO2-slicing
technique (also known as the radiance rationing technique) and the 11-µm infrared window technique
(IRW technique).

The IRW technique is based on the assumption that clouds are black bodies, i.e., the emissivity of
cloud is assumed to be 1 [32,33]. The measured 11-µm infrared brightness temperature is regarded as
the brightness temperature of the cloud top, which can be written as,

Rλ = Bλ(Tc), (1)

where λ is wavelength, Rλ is the measured brightness temperature and Bλ is the brightness temperature
of a black body at the temperature of Tc. The measured 11-µm brightness temperature is used
to compare with the brightness temperature profile derived from a gridded temperature profile
product, that is provided by the National Centers for Environmental Prediction (NCEP) Global
Forecast System, using a radiative transfer model called the Pressure Layer Fast Algorithm for
Atmospheric Transmittances (PFAAST) [34]. The MODIS CTH is then provided by the match in
brightness temperature.

The CO2-slicing technique has a long history [9,35–37]. A detailed description is presented
in Menzel et al. [9], so only a brief account is given in the present paper. Equations (2)–(4) present the
core principles,

Rv −Rclr(v)= NE[Rbcd(v, Pc) −Rclr(v)], (2)

Rbcd(v, Pc)= Rclr(v) −
∫ Ps

Pc

τ(v, p)
dB[v, T(p)]

dp
dp, (3)

R(v1) −Rclr(v1)

R(v2) −Rclr(v2)
=

NE1
∫ Pc

Ps
τ(v1, p) dB[ v1,T(p)]

dp dp

NE2
∫ Pc

Ps
τ(v2, p) dB[v2, T(p)]

dp dp
, (4)

where v is the frequency, R(v) is the measured radiance, N (0~1) is the cloud coverage of the field of
view (FOV), E is the emissivity of the clouds, Rclr is the clear-sky radiance, Rbcd (v,Pc) is the opaque
cloud radiance from pressure level Pc, τ(v, p) is the fractional transmittance of radiation at frequency
v from the atmospheric pressure level p arriving at the top of the atmosphere (p = 0), Pc is the
cloud-top pressure, B(v, T(p)) is the Planck radiance at wavelength v at temperature T(p), and Ps is the
surface pressure. For a cloud element in a FOV, Equation (2) describes the relationship between the
observed radiance R(v) and cloud radiance. The radiance from cloud can be expressed by Equation (3).
Equation (4) is derived from Equation (2) and Equation (3). For two neighboring wavelengths, located
within the 15-µm CO2 absorption region, the differences in the emissivity are assumed to be negligible
(i.e., E1 ≈ E2). The CTH can be derived from the ratio by comparing it with the model calculation
input, with the atmospheric temperature profile and transmittance profile (NCEP-PFAAST), at two
nearby wavelengths.

In the Collection-6 retrieval algorithm, the CO2-slicing technique is limited to ice clouds (mid-
to high-level clouds), which are identified according to the cloud emissivity ratios. When the difference
between cloud radiance and clear-sky radiance is so small that the CO2-slicing technique is unsuitable
to retrieve the CTH, MODIS uses the IRW technique. The MODIS CTH products used throughout this
paper are the Collection-6 1 km CTH products (MYD06/MOD06) from the Aqua and Terra satellites [38].

https://modis.gsfc.nasa.gov/
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2.2. Ka Band Radar

The Ka band polarization Doppler radar (KPDR; wavelength: 8.55 mm), located at the Institute of
Atmospheric Physics (IAP), Beijing, China (39.967◦N, 116.367◦E), was set up in 2010 [39]. The primary
technical specifications of KPDR are presented in Table 1. KPDR was set to work 24 hours every day,
mostly in a vertically pointing mode. In 2013, 2018 and 2019, KPDR was taken offline during almost the
whole of the summer period. Therefore, this paper uses the radar data collected from 1 January 2014
to 31 December 2017 to compare with MODIS data. The effective vertically pointing observation time
accounted for more than 85% of the four years.

Table 1. Technical specifications of the KPDR at the IAP, Beijing, China.

Parameter Technical Specification

Frequency 35.075 GHz

Peak power 29 kW

Pulse length 0.2 µs

Type Magnetron

Diameter 1.5 m

Gain 54 dB

Scanning mode Vertically pointing, plan position indicator,
range–height indicator

Beam width 0.4◦

Vertical resolution 30 m

KPDR uses a magnetron transmitter, which transmits stronger signals than an all-solid transmitter,
and a threshold of −45 dBz is used for cloud identification. A data-quality control algorithm, using the
threshold method and median filter method, is applied to eliminate the non-atmospheric reflectivity or
clutter [40]. For a radar cloudy profile, cloud top height is the height of the top cloudy bin. The vertical
resolution of KPDR is 30 m and the CTH uncertainty of a radar cloudy profile is 30 m theoretically.
The KPDR CTH (expressed as H) of a single layer cloud containing large number of continuous cloudy
profiles is the mean top height of all cloudy profiles. Two methods are used to calculate the KPDR CTH
for multi-layer clouds. One method is the mean top height of all cloudy profiles, which is similar with
single layer cloud (also expressed as H); the other method is the average CTH of all profiles from the
top-level cloud (expressed as H′). In Section 4.1.4, contrast between the H and H′ is presented which
illustrates very close statistics.

2.3. Other Data

As expressed in Equations (1) to (4), the errors of the MODIS CTH retrieval algorithm can
be partly produced by methods, including calculating the uncertainties from the radiative transfer
model, the inaccurate descriptions of atmospheric parameters. This paper focuses on quantifying
the CTH differences between MODIS and KPDR, analyzing the relationships of these differences
with the physical properties of cloud and investigating impacts of local atmospheric parameters on
CTH differences.

Part of the cloud properties and atmospheric properties data, including the cloud fraction,
temperature, total water vapor (TWV) and total ozone data, are from the ERA5 dataset of the ECMWF
(European Centre for Medium-Range Weather Forecasts; http://apps.ecmwf.int/datasets/; accessed on
18 May 2020). In addition, the surface PM10 (coarse particulate matter), NO2, CO and SO2 data from
synergistic measurements at a site within 3 km of the IAP, recorded by the China National Environmental
Monitoring Center (China National Environmental Monitoring Center; http://106.37.208.233:20035/;
accessed on 18 May 2020), are used to investigate their influences on CTH uncertainties.

http://apps.ecmwf.int/datasets/
http://106.37.208.233:20035/
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2.4. Data Collocation Method

KPDR scans three profiles every second with a beam width of 0.4◦. The MODIS onboard the
Aqua and Terra satellites passes over the IAP, roughly twice a day. The 1 km spatial resolution is
applicable for the nadir area but inapplicable for other areas owing to the changed MODIS viewing
geometry. The spatial and temporal resolution of the KPDR and MODIS data are different and therefore
a data collocation approach is necessary. Naud and Muller averaged MODIS CTH data over a ± 0.1
latitude–longitude box and compared these data with the maximum CTH measured simultaneously
by a surface W-band radar system [21]. Dong et al. compared surface data averaged over a 1 h
interval with satellite data averaged within a 30 km × 30 km area [16]. Chang et al. compared aircraft
lidar CTH data averaged over a 10 s interval with satellite measurements [15]. These collocation
methods are designed in different ways according to the observation conditions, which provide us
with references for data collocation. In order to minimize the discrepancies resulting from the spatial
and temporal sampling differences, four collocation methods were contrasted and the optimal one
obtained, as presented in Appendix A. Based on the optimal collocation scheme that the MODIS CTH
averaged within 5 km is compared with the mean KPDR CTH within 10 min (± 5 min), the CTH
difference investigations should provide reliable results. The KPDR cloud base height (CBH) is the
mean base height of all cloudy profiles, and cloud depth is equal to the CTH minus the CBH.

3. Results Overview of CTHs Derived from MODIS and KPDR

From 2014 to 2017, about 4000 valid MODIS CTHs (> 0) are obtained from the area within 5 km,
and 30 km of the IAP, respectively. The monthly distributions of CTHs, derived from MODIS and
KPDR, are presented in Figure 1. The value of the KPDR CTH, hereinafter, is termed Hr and the value
of MODIS CTH is termed Hm. It is shown that all of the monthly Hm values, including those averaged
in the 5 km area and 30 km area, are lower than the monthly Hr values. In each month, the mean Hr is
greater than 6 km, and summer (June to August) has a higher CTH than other seasons. The mean Hm

in each month is lower than 6 km and decreases by 1–3 km relative to Hr. The standard deviation (STD)
of Hm is higher than that of Hr, indicating a larger range of variation. A raw comparison based on
monthly statistics shows that there is an obvious discrepancy (>2 km) between Hr and Hm. One reason
behind such a discrepancy is that the temporal resolution of the two datasets is different. Besides,
it will also be associated with the uncertainties in CTH retrieval.
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As shown in Figure 1, the mean Hm within 5 km is closer to the Hr than the Hm within 30 km,
indicating that the collocation scheme using a 5 km radius should be better for collocating the MODIS
CTH data with the KPDR CTH data than with a 30 km radius. Based on the 5 km collocation scheme,
all effective comparison collocations (about 2300) are presented in Figure 2a. The distribution of the
difference between MODIS and KPDR (Dmr, equal to Hm minus Hr) is shown in Figure 2b.
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Figure 2. All CTH comparisons collocated from MODIS and KPDR (a) and the distribution of their
differences Dmr (b). The mean Dmr and median Dmr are indicated with different lines.

Figure 2b illustrates a non-Gaussian distribution of the Dmr. The mean difference (mean), STD,
median, inter-quartile range (IQR), the difference with a peak probability density (termed ‘peak’),
and the mean absolute difference (termed ‘model’) are calculated and presented in Table 2. The MODIS
CTH is, in general, lower than the KPDR CTH. There are about 62% of cases of Dmr within 1.5km, 48%
within 1 km, 25% within 0.5 km, and 13% within 0.25 km. It is found that the difference declines greatly
when Hm is higher than 6 km (see Figure 2a). Comparisons show that Hm > 6 km has closer values to
Hr than Hm < 4 km. In other words, Hm > 6 km is more accurate than Hm <4 km.

Table 2. Dmr statistics from all comparisons, comparisons of Hm < 4 km, and comparisons of Hm > 6
km (units: km).

Dmr Mean STD Median IQR Peak Model

All −1.08 2.48 −0.65 2.19 −0.38 1.84

Hm < 4 km −2.73 2.83 −2.00 4.25 −1.18 2.46

Hm > 6 km 0.03 1.58 −0.17 1.39 −0.25 1.06

4. Factors Affecting Retrieval Accuracy and Their Impacts

4.1. Influences from Cloud Properties

4.1.1. Dmr and Cloud Depth

When clouds are optically thick, they can be approximated as a black body (E ≈ 1). The CTH
retrieval for an optically thick cloud should be less complex than optically thin clouds (E < 1). The cloud
optical thickness, which is determined by the cloud water content and particle size, is different from



Remote Sens. 2020, 12, 1616 7 of 17

the cloud depth. Although, statistically, optically thick clouds are generally geometrically thick too.
The MODIS cloud optical thickness is not presently available for all comparisons, but cloud depth
can be measured by KPDR. Therefore, cloud depth is used as a proxy for the cloud optical depth to
investigate the impacts from cloud thickness. The relationship between Dmr and cloud depth is shown
in Figure 3.Remote Sens. 2020, 12, x FOR PEER REVIEW 7 of 18 
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It is apparent that the value of Dmr relates closely to the cloud depth (Figure 3a). For thin clouds
(cloud depth <1 km), Dmr occurs between −12 and 9 km. However, when the clouds become thicker,
especially larger than 2 km, the Dmr range narrows considerably toward zero. For comparisons of
cloud depth > 1 km (47% of all comparisons), the mean Dmr is −0.47 ± 1.68 km. Table 3 shows the
statistical results of Dmr in different cloud depth ranges.

Table 3. Dmr for different cloud depths (CD) (units: km).

Dmr CD ∈(0,1) CD ∈(1,2) CD ∈(2,3) CD ∈(3,4) CD ∈(4,5) CD > 5

Mean −1.62 −0.73 −0.50 −0.30 −0.16 −0.07

STD 2.92 2.00 1.45 1.30 1.53 1.29

Median −1.10 −0.49 −0.34 −0.20 −0.15 −0.28

IQR 3.39 1.80 1.30 1.21 1.23 1.26

Peak −0.81 −0.39 −0.10 −0.10 −0.02 −0.41

Model 2.45 1.44 1.01 0.86 0.98 0.92

Note that both the CO2-slicing technique and IRW technique are based on the infrared radiative
properties of the whole cloud layer. Normally, the infrared brightness temperature, measured by
MODIS, is from the radiation center of the cloud layer, which might be different to the actual cloud
top, as the radiation center is generally near to the central position of the cloud layer for optically thin
clouds, whereas the radiation center of optically thick clouds is near the cloud top [14]. The retrieved
Hm of optically thin clouds is therefore lower than the actual CTH, even when other retrieval errors
are not considered. In other words, relative to the actual CTH, the Hm for optically thin clouds
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may be underestimated to a larger extent than for optically thick clouds. However, this is not the
decisive reason behind the dependence on cloud depth. Cloud depth determines cloud emissivity.
Clouds are assumed to be black bodies, which is nearly correct for thick clouds, but less so for thin
clouds. Due to more information from the surface obtained by MODIS, understanding the emissivity
of optically thin clouds is difficult with respect to the retrieval algorithm, and poor estimation will lead
to large uncertainties.

4.1.2. Dmr and CBH

The CBH indicates to what level clouds belong. To reduce the impacts of cloud depth on Dmr,
we analyze the Dmr by dividing cloud depth into several groups: <1, 1–2, 2–3, 3–4, and ≥4 km.
Figure 4b–f present the Dmr changes as a function of CBH within the five cloud depth ranges. When the
cloud depth is >2 km (Figure 4d–f), the Dmr is independent of the CBH. When the cloud depth is < 1 km,
the mean Dmr gets lower as the CBH increases. One reason for this is that the CBH value limits the
range of Dmr variation when the cloud depth is restricted within an appointed range. That is, when the
CBH is <3 km and the cloud depth is <1 km, the Hr must be less than 4 km, and then the Dmr should
be no less than −4 km. Hence, the relationship between Dmr and CBH is not confirmed, although the
mean or median Dmr changes as the CBH decreases. In Figure 4b, when the CBH is less than 1 km,
positive Dmr values are dominant, while negative Dmr values appear dominantly when the CBH is
larger than 5 km. There is a tendency for MODIS to underestimate high thin clouds, but overestimate
low thin clouds. Overall, the relationship between Dmr and CBH is unobvious from Figure 4.

Remote Sens. 2020, 12, x FOR PEER REVIEW 8 of 18 

 

4.1.2. Dmr and CBH 

The CBH indicates to what level clouds belong. To reduce the impacts of cloud depth on Dmr, 
we analyze the Dmr by dividing cloud depth into several groups: <1, 1–2, 2–3, 3–4, and ≥4 km. Figures 
4b–f present the Dmr changes as a function of CBH within the five cloud depth ranges. When the cloud 
depth is >2 km (Figures. 4d–f), the Dmr is independent of the CBH. When the cloud depth is < 1 km, 
the mean Dmr gets lower as the CBH increases. One reason for this is that the CBH value limits the 
range of Dmr variation when the cloud depth is restricted within an appointed range. That is, when 
the CBH is <3 km and the cloud depth is <1 km, the Hr must be less than 4 km, and then the Dmr 
should be no less than −4 km. Hence, the relationship between Dmr and CBH is not confirmed, 
although the mean or median Dmr changes as the CBH decreases. In Figure 4b, when the CBH is less 
than 1 km, positive Dmr values are dominant, while negative Dmr values appear dominantly when the 
CBH is larger than 5 km. There is a tendency for MODIS to underestimate high thin clouds, but 
overestimate low thin clouds. Overall, the relationship between Dmr and CBH is unobvious from 
Figure 4. 

 
Figure 4. Relationship between Dmr and CBH for all comparisons (a), for cloud depth <1 km (b), for 
cloud depth between 1 km and 2 km (c), for cloud depth between 2 km and 3 km (d), for cloud depth 
between 3 km and 4 km (e), and for cloud depth ≥4 km (f). 

4.1.3. Dmr and Cloud Fraction 

Two cloud fraction datasets (MODIS cloud fraction and ERA5 cloud fraction) are used to 
investigate the relationship between cloud fraction and Dmr (see Figure 5). Since large differences are 
mostly from clouds with low depth, only collocations with cloud depths of <2 km are presented in 
Figure 5. The number of accessible MODIS cloud fraction data is less than the ERA5 cloud fraction 
data, meaning there are fewer points in Figure 5a than in Figure 5b. In spite of this, the scatterplots 
based on the two datasets all show that Dmr is not closely correlated with the cloud fraction, although 
statistical analysis based on both fraction datasets shows that the mean difference (−1.06 ± 2.50 km) 
for cloud fraction >50% is a little higher than the mean difference (−1.15 ± 2.63 km) for cloud fraction 
<50%. 

Figure 4. Relationship between Dmr and CBH for all comparisons (a), for cloud depth <1 km (b), for
cloud depth between 1 km and 2 km (c), for cloud depth between 2 km and 3 km (d), for cloud depth
between 3 km and 4 km (e), and for cloud depth ≥4 km (f).

4.1.3. Dmr and Cloud Fraction

Two cloud fraction datasets (MODIS cloud fraction and ERA5 cloud fraction) are used to investigate
the relationship between cloud fraction and Dmr (see Figure 5). Since large differences are mostly
from clouds with low depth, only collocations with cloud depths of <2 km are presented in Figure 5.
The number of accessible MODIS cloud fraction data is less than the ERA5 cloud fraction data,
meaning there are fewer points in Figure 5a than in Figure 5b. In spite of this, the scatterplots based on
the two datasets all show that Dmr is not closely correlated with the cloud fraction, although statistical
analysis based on both fraction datasets shows that the mean difference (−1.06 ± 2.50 km) for cloud
fraction >50% is a little higher than the mean difference (−1.15 ± 2.63 km) for cloud fraction <50%.
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Figure 5. Relevance of MODIS cloud fraction, (a) and ERA5 cloud fraction, (b) in Dmr from collocations with
cloud depth <2 km. Collocations with cloud depth <2 km and Hm >6 km are illustrated with red points.

4.1.4. Dmr and Cloud Layer and Season

Two methods are used to compute the CTH of radar data for multi-layer cloud (see Section 2.2).
The differences in CTH for cloud with different layers through different calculation methods are compared.

There are about 31% comparisons containing multi-layer clouds (cloud will be regarded as layered
if the height gap between two cloudy bins is larger than 150 m). In Figure 6a, the distribution of Dmr in
terms of single layer and multi-layer cloud are presented and calculated using two calculation methods.
For multi-layer cloud, it can be seen that the statistical results from two calculation methods are close to each
other (see black dashed line and red line in Figure 6a). In addition, the discrepancy for multi-layer cloud is
close to that of single-layer cloud in Beijing. Based on this statistic results, the comparisons in other Sections
use the H as a representative for the H′. Figure 6b presents the distribution of Dmr in spring, summer,
autumn and winter in Beijing. The mean Dmr in winter is −1.58 km (±2.30 km), which is the largest of the
four seasons. The mean Dmr in summer is −0.89 km (±2.78 km), which is the smallest difference of the four
seasons and lower than the average difference due to more thick clouds occurring in summer. Summer in
Beijing has the largest STD due to more diverse distribution of cloud compared with the other seasons.
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4.2. Influences from Atmospheric Parameters

Calculations of clear-sky radiances for each MODIS band play crucial roles in the CTH retrieval
algorithm. For the IRW technique, clear-sky radiances are used as a reference to determine the CTH.
For the CO2-slicing technique, the clear-sky radiance affects the radiance ratio (observed radiance
minus clear-sky radiance). The MODIS clear-sky radiances are estimated by a radiative transfer
model named PFAAST and biases of input atmospheric parameters to actual parameters may lead to
computation uncertainty, resulting in retrieval uncertainty. Emphasis of this Section is on investigation
of the influences from atmospheric parameters on the CTH difference.

4.2.1. Dmr, TWV and Ozone

TWV and ozone are two important parameters determining clear-sky infrared temperature
brightness due to their absorptions in infrared band. Collocations with depths of <2 km have relatively
large Dmr and are compared to investigate the possible influences. As shown in Figure 7a, the points
are scattered “everywhere” and Dmr is not sensitive to the TWV. Here, the relevance of TWV in Dmr is
unobvious. In Figure 7b, the Dmr values get slowly closer to zero as total ozone gets higher, and there
is a weak decline in the tendency of the discrepancy as total ozone increases.
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4.2.2. Dmr and Temperature Inversion

The IRW technique retrieves the CTH by comparing the measured brightness temperature with
the calculated vertical brightness temperature profile produced from PFAAST. When temperature
inversion is present, multiple matches might be found, and then biases will be produced. In this Section,
two types of datasets, with temperature inversion and without temperature inversion, are separated
and compared to investigate the relevance of temperature inversion in the Dmr (Figure 8). Large Dmr

values appear in both datasets and a distinct difference between the two datasets is not found. In the
presence of temperature inversion, large Dmr occurs at different inversion heights and lapse rates.
Statistical analysis shows that Dmr is not sensitive to temperature inversion over Beijing.
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Figure 8. Relevance of temperature inversion in the Dmr. The Dmr values from collocations without
temperature inversion are shown in (a). In the presence of temperature inversion, (b) shows the relationship
between Dmr and temperature inversion height, (c) is the relationship between Dmr and the temperature
inversion base, and (d) illustrates the relationship between Dmr and a negative temperature lapse rate.

4.2.3. Dmr and Surface Atmospheric Properties

An abnormal atmospheric status, such as severe air pollution or dust, may lead to considerable
bias between the measured brightness temperature and calculated brightness temperature because
input atmospheric profiles for abnormal weather may not be adjusted appropriately in time for model
calculation. Synergistic surface observations of PM10, CO, NO2 and SO2 are applied in this Section
to investigate their impacts on CTH retrieval (Figure 9). For PM10 particles, the average difference
has a weak decrease as the concentration increases. Similar results are found for CO, NO2 and SO2.
The Pearson correlation coefficients between the PM10, SO2, CO, NO2 and the Dmr for cloud with depth
< 1 km and Hm >6 km are −0.13, −0.13, −0.14, and −0.13, respectively. Therefore, it can be concluded
that air pollution or dust are not crucial sources of large Dmr.
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4.3. Dmr, Retrieval Method and Viewing Angle

Figure 10a presents all Dmr values retrieved from the IRW technique and CO2-slicing technique
with individual colors. It is found that the CO2-slicing technique performs much better than the IRW
technique for mid- and high-level clouds (CBH >2 km), while IRW technique is better for low-level
cloud (CBH ≤2 km). Most large differences are produced by the IRW technique. Table 4 presents
the statistical results of the two retrieval methods. The mean Dmr for the CO2-slicing technique is
0.09 km, whereas it is −2.20 km for the IRW technique. The CO2-slicing technique shows a weak
tendency of overestimation for clouds when the CBH is less than 2 km. In Section 4.1.2, it is found that
MODIS tends to underestimate high thin cloud but overestimate low thin clouds, which is also shown
in Figure 10a. When the CBH is less than 1 km, the IRW technique tends to overestimate the CTH
(0.04 ± 1.29 km). However, when the CBH is above 4 km, most CTHs are underestimated by the IRW
technique (−4.14 ± 2.60 km). Overall, the IRW technique produces more large uncertainties.
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Figure 10. (a) Distribution of Dmr calculated from two retrieval techniques: CO2-slicing technique
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Table 4. Statistics of the Dmr retrieved by the CO2-slicing technique and IRW technique (units: km).

Dmr Mean STD Median IQR Peak Model

CO2-slicing 0.09 1.58 −0.13 1.40 −0.25 1.19

IRW −2.20 2.73 −1.58 3.62 −0.95 2.33

The MODIS viewing geometry changes during each overpass over Beijing, resulting in various
measuring paths that may cause uncertainties in CTH retrieval. Figure 10b shows the relationship
between the Dmr and sensor viewing angle (sensor zenith angle). The mean Dmr increases as the sensor
zenith angle increases, due to the longer measuring path and changing viewing geometry. However,
the impacts of viewing angles are also associated with cloud depth. For thick cloud, what the MODIS
measures can be regarded as the radiance from the cloud. For optically thin cloud, radiance that the
MODIS measures is from the cloud, the atmosphere and the surface together. As the viewing angle
increases, the radiance obtained by MODIS may be from longer radiative path. Then, more uncertainties
will be produced. Therefore, the CTH retrieved for thin clouds is more sensitive to the viewing angle
than for thick clouds.
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5. Discussion

Knowledge of the emissivity of clouds, especially for thin clouds, is a challenge for the CTH
retrieval algorithm and leads to large uncertainties since clouds are assumed to be black bodies, which is
relatively accurate for thick clouds, but less so for thin clouds. The results found in this paper further
reveal the potential limitations of passive infrared remote sensing on the CTH; that is, the black-body
cloud assumption is conditional and restricts the retrieval accuracy. The CO2-slicing technique is
a better solution for effective emissivity estimation, resulting in good accuracy. However, for the IRW
technique, it is likely that poor estimations of cloud effective emissivity lead to large uncertainties.

6. Conclusions

MODIS CTH products have been widely applied in the meteorological community since the
instrument’s launch in 2000. This paper investigates the accuracy of MODIS CTH by comparisons
with measurements from a ground-based Ka band radar over Beijing. Thorough investigation is
a complex task, since the retrieval accuracy depends on the instrument’s calibration, the properties
of the spectral response functions, the atmospheric profiles, cloud identification, the calculation of
the radiance at the top of the atmosphere. The focus of this paper is to study the distribution of the
difference, and its relationship with cloud properties and atmospheric properties, not including the
instrument’s observational properties.

It is found that MODIS underestimates the CTH by, on average, −1.08 ± 2.48 km, relative
to the radar data. The discrepancy is dominantly and strongly associated with the cloud depth.
Statistical analysis shows that the differences decline as the cloud depth increases. It is found that
atmospheric parameters causing potential calculation errors have few relevance to the discrepancy.
The large differences arise primarily from the retrieval of CTH for thin and high-level clouds by the
IRW technique, for example, the mean difference is -4.86 ± 2.49 km when CBH ≥5 km and CD ≤2 km.
On the contrary, the CO2-slicing technique illustrates a better performance. For thin clouds, MODIS
tends to underestimate high-level clouds, but overestimate low-level clouds. Some of these qualitative
conclusions have also been confirmed in several previous comparison work. However, the quantitative
results, presented in this paper, for Beijing area are more specific.

As addressed above, the accuracy of the MODIS CTH retrieval algorithm is affected by multiple
factors; for instance, theoretical assumptions, the instrument calibration for radiance observation,
the instrument spectral response function, the sensor viewing angle, the atmospheric description,
the cloud mask and the calculation of top-of-the-atmosphere radiance. A shortage of information on
the instrument’s status and model simulations limits a complete analysis of the causes of differences.
Our statistical analysis, based on four years of ground-based KPDR measurements, provides guidance
for the application of MODIS CTH products and a reference for improvements in the retrieval algorithm.
We hope that further analysis will be performed in the future when more auxiliary data are accessible.
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Appendix A

A detailed description of the scheme developed to collocate MODIS CTH data with KPDR data
is presented.

The time that KPDR requires to scan a certain cloud path depends on the speed of the moving
cloud. If the speed of a moving cloud is 10 km/h (roughly the speed of a light breeze), KPDR takes
about 6 min to scan 1 km and about 30 min to scan 5 km. If the wind speed is 36 km/h, then KPDR
will scan 36 km in 1 h. MODIS CTH data around KPDR also cover various spatial areas depending
on the viewing geometry of each overpass. Since both datasets show various temporal and spatial
resolutions, we try several data collocation methods using different KPDR observation intervals and
MODIS spatial areas to compare and find the optimal collocation scheme.

KPDR is stationary and its location is used as a standard for the preliminary selection of MODIS
data. MODIS CTH is computed by three different methods: (1) MODIS CTH is the CTH of the MODIS
pixel nearest to KPDR (referred to as Hm0); (2) MODIS CTH is the average CTH of MODIS pixels
within 5 km to KPDR (referred to as Hm5); and (3) MODIS CTH is the average CTH of MODIS pixels
within 30 km to KPDR (referred to as Hm30).

The observation time (Tm0) of the nearest MODIS pixel is used as a reference for selection of KPDR
data. KPDR CTH is calculated based on two time intervals; one is averaged based on all cloudy profiles
occurring within Tm0 ± 5 min (termed Hr5); and the other is averaged within 30 min (Tm0 ± 30 m,
termed Hr30).

We perform four collocations: (1) Hm0 versus Hr5; (2) Hm5 versus Hr5; (3) Hm5 versus Hr30;
and (4) Hm30 versus Hr30. From 1 January 2014 to 31 December 2017 there are 2241 comparisons for
the collocation of Hm0 versus Hr5, 2317 comparisons for Hm5 versus Hr5, 2522 comparisons for Hm5

versus Hr30, and 2888 comparisons for Hm30 versus Hr30. Figure A1 shows the distribution of the
differences using the four collocation schemes, and the quantified differences are presented in Table A1.
Overall, the collocation scheme of Hm5 versus Hr5 shows a lower mean, median and peak difference
among the four collocation schemes. In addition, the Dm5r5 (equal to Hm5 minus Hr5) is close to the
average difference of the four collocation schemes. Therefore, the scheme of Hm5 versus Hr5 is used in
this paper for data collocation.
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Table A1. Statistics of the CTH difference between MODIS and KPDR using four collocation schemes
(units: km).

Scheme Mean STD Median IQR Peak Model

Dm0r5 −1.018 2.782 −0.670 2.195 −0.501 1.836

Dm5r5 −1.076 2.484 −0.645 2.510 −0.384 2.051

Dm5r30 −1.305 2.506 −0.760 2.419 −0.537 1.945

Dm30r30 −1.343 2.293 −0.958 2.436 −0.683 1.897

Average −1.198 2.511 −0.770 2.417 −0.701 1.929
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