Inundation Exposure Assessment for Majuro Atoll, Republic of the Marshall Islands Using A High-Accuracy Digital Elevation Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Digital Elevation Models
Accuracy Assessment
2.3. Tidal Datums
2.4. Inundation Assessment Parameters
2.5. Inundation Mapping
2.5.1. Deterministic
2.5.2. Modified Deterministic
2.5.3. Probabilistic
3. Results
3.1. Cumulative Vertical Uncertainty and Corresponding Minimum Inundation Levels
3.2. Inundation Maps
3.2.1. Hydrostatic Inundation
3.2.2. Event-Based Inundation
4. Discussion
4.1. The Use of High-Accuracy Elevation Data for Coastal Assessments
4.2. Implications of Results for Vulnerability Assessments
4.3. Limitations and Caveats for the Use of Results
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Woodroffe, C.D. Reef-island topography and the vulnerability of atolls to sea-level rise. Glob. Planet. Chang. 2008, 62, 77–96. [Google Scholar] [CrossRef]
- Holthus, P.; Crawford, M.; Makroro, C.; Sullivan, S. Vulnerability Assessment of Accelerated Sea Level Rise—Case Study: Majuro Atoll, Marshall Islands; South Pacific Regional Environment Programme: Apia, Samoa, 1992. [Google Scholar]
- Ford, M. Shoreline Changes on an Urban Atoll in the Central Pacific Ocean: Majuro Atoll, Marshall Islands. J. Coast. Res. 2012, 279, 11–22. [Google Scholar] [CrossRef]
- Ford, M.R.; Kench, P.S. Multi-decadal shoreline changes in response to sea level rise in the Marshall Islands. Anthropocene 2015, 11, 14–24. [Google Scholar] [CrossRef] [Green Version]
- Storlazzi, C.D.; Elias, E.P.; Berkowitz, P. Many Atolls May be Uninhabitable Within Decades Due to Climate Change. Sci. Rep. 2015, 5, 14546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Owen, S.D.; Kench, P.S.; Ford, M. Improving understanding of the spatial dimensions of biophysical change in atoll island countries and implications for island communities: A Marshall Islands’ case study. Appl. Geogr. 2016, 72, 55–64. [Google Scholar] [CrossRef]
- Kench, P.S.; Ford, M.R.; Owen, S.D. Patterns of island change and persistence offer alternate adaptation pathways for atoll nations. Nat. Commun. 2018, 9, 605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Storlazzi, C.D.; Gingerich, S.B.; Van Dongeren, A.; Cheriton, O.M.; Swarzenski, P.W.; Quataert, E.; Voss, C.I.; Field, D.W.; Annamalai, H.; Piniak, G.A.; et al. Most atolls will be uninhabitable by the mid-21st century because of sea-level rise exacerbating wave-driven flooding. Sci. Adv. 2018, 4, eaap9741. [Google Scholar] [CrossRef] [Green Version]
- Wetzel, F.T.; Kissling, W.D.; Beissmann, H.; Penn, D.J. Future climate change driven sea-level rise: Secondary consequences from human displacement for island biodiversity. Glob. Chang. Biol. 2012, 18, 2707–2719. [Google Scholar] [CrossRef]
- Bellard, C.; Leclerc, C.; Courchamp, F. Impact of sea level rise on the 10 insular biodiversity hotspots. Glob. Ecol. Biogeogr. 2014, 23, 203–212. [Google Scholar] [CrossRef]
- Bevacqua, A.; Yu, D.; Zhang, Y. Coastal vulnerability: Evolving concepts in understanding vulnerable people and places. Environ. Sci. Policy 2018, 82, 19–29. [Google Scholar] [CrossRef]
- Helweg, D.; Nash, S.A.B.; Polhemus, D.A. The Pacific Islands Climate Science Center Five-Year Science Agenda, 2014–2018; U.S. Geological Survey Open-File Report 2014-1075; U.S. Geological Survey: Reston, VA, USA, 2014. [CrossRef] [Green Version]
- Palaseanu-Lovejoy, M.; Poppenga, S.K.; Danielson, J.J.; Tyler, D.J.; Gesch, D.B.; Kottermair, M.; Andrea, J.; Edward, C.; Thatcher, C.A.; Barbee, M.M. One-Meter Topobathymetric Digital Elevation Model. for Majuro Atoll, Republic of the Marshall Islands, 1944 to 2016; U.S. Geological Survey Scientific Investigations Report 2018-5047; U.S. Geological Survey: Reston, VA, USA, 2018. [CrossRef]
- Storlazzi, C.D. Challenges of forecasting flooding on coral reef–lined coasts. Eos 2018, 99. [Google Scholar] [CrossRef]
- Spada, G.; Bamber, J.L.; Hurkmans, R.T.W.L. The gravitationally consistent sea-level fingerprint of future terrestrial ice loss. Geophys. Res. Lett. 2013, 40, 482–486. [Google Scholar] [CrossRef] [Green Version]
- Slangen, A.B.A.; Carson, M.; Katsman, C.A.; van de Wal, R.S.W.; Köhl, A.; Vermeersen, L.L.A.; Stammer, D. Projecting twenty-first century regional sea-level changes. Clim. Chang. 2014, 124, 317–332. [Google Scholar] [CrossRef]
- Hoeke, R.K.; McInnes, K.L.; Kruger, J.C.; McNaught, R.J.; Hunter, J.R.; Smithers, S.G. Widespread inundation of Pacific islands triggered by distant-source wind-waves. Glob. Planet. Chang. 2013, 108, 128–138. [Google Scholar] [CrossRef] [Green Version]
- Ford, M.; Merrifield, M.A.; Becker, J.M. Inundation of a low-lying urban atoll island: Majuro, Marshall Islands. Nat. Hazards 2018, 91, 1273–1297. [Google Scholar] [CrossRef]
- Terry, J.P.; Chui, T.F.M. Evaluating the fate of freshwater lenses on atoll islands after eustatic sea-level rise and cyclone-driven inundation: A modelling approach. Glob. Planet. Chang. 2012, 88–89, 76–84. [Google Scholar] [CrossRef]
- Gesch, D.B. Analysis of Lidar Elevation Data for Improved Identification and Delineation of Lands Vulnerable to Sea-Level Rise. J. Coast. Res. 2009, 10053, 49–58. [Google Scholar] [CrossRef]
- Cooper, H.M.; Chen, Q. Incorporating uncertainty of future sea-level rise estimates into vulnerability assessment: A case study in Kahului, Maui. Clim. Chang. 2013, 121, 635–647. [Google Scholar] [CrossRef]
- Cooper, H.M.; Fletcher, C.H.; Chen, Q.; Barbee, M.M. Sea-level rise vulnerability mapping for adaptation decisions using LiDAR DEMs. Prog. Phys. Geogr. 2013, 37, 745–766. [Google Scholar] [CrossRef]
- Gesch, D.B. Consideration of Vertical Uncertainty in Elevation-Based Sea-Level Rise Assessments: Mobile Bay, Alabama Case Study. J. Coast. Res. 2013, 63, 197–210. [Google Scholar] [CrossRef]
- Schmid, K.; Hadley, B.; Waters, K. Mapping and Portraying Inundation Uncertainty of Bathtub-Type Models. J. Coast. Res. 2014, 295, 548–561. [Google Scholar] [CrossRef]
- Gesch, D.B. Best Practices for Elevation-Based Assessments of Sea-Level Rise and Coastal Flooding Exposure. Front. Earth Sci. 2018, 6. [Google Scholar] [CrossRef] [Green Version]
- West, H.; Horswell, M.; Quinn, N. Exploring the sensitivity of coastal inundation modelling to DEM vertical error. Int. J. Geogr. Inf. Sci. 2018, 32, 1172–1193. [Google Scholar] [CrossRef] [Green Version]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The Shuttle Radar Topography Mission. Rev. Geophys. 2007, 45. [Google Scholar] [CrossRef] [Green Version]
- Abrams, M.; Bailey, B.; Tsu, H.; Hato, M. The ASTER Global DEM. Photogramm. Eng. Remote Sens. 2010, 76, 344–348. [Google Scholar]
- Tadono, T.; Nagai, H.; Ishida, H.; Oda, F.; Naito, S.; Minakawa, K.; Iwamoto, H. Generation of the 30 M-Mesh Global Digital Surface Model by ALOS PRISM. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, XLI-B4, 157–162. [Google Scholar] [CrossRef]
- Zink, M.; Bachmann, M.; Brautigam, B.; Fritz, T.; Hajnsek, I.; Moreira, A.; Wessel, B.; Krieger, G. TanDEM-X: The New Global DEM Takes Shape. IEEE Geosci. Remote Sens. Mag. 2014, 2, 8–23. [Google Scholar] [CrossRef]
- Digital Globe Advanced Elevation Suite. Available online: www.digitalglobe.com/products/advanced-elevation-suite (accessed on 9 August 2019).
- Grohmann, C.H. Evaluation of TanDEM-X DEMs on selected Brazilian sites: Comparison with SRTM, ASTER GDEM and ALOS AW3D30. Remote Sens. Environ. 2018, 212, 121–133. [Google Scholar] [CrossRef] [Green Version]
- Australian Government Bureau of Meteorology. Pacific Sea Level and Geodetic Monitoring Project. Available online: www.bom.gov.au/pacific/projects/pslm/ (accessed on 9 August 2019).
- Holgate, S.J.; Matthews, A.; Woodworth, P.L.; Rickards, L.J.; Tamisiea, M.E.; Bradshaw, E.; Foden, P.R.; Gordon, K.M.; Jevrejeva, S.; Pugh, J. New Data Systems and Products at the Permanent Service for Mean Sea Level. J. Coast. Res. 2013, 29, 493–504. [Google Scholar] [CrossRef]
- NOAA. Technical Considerations for Use of Geospatial Data in Sea Level Change Mapping and Assessment; National Oceanic and Atmospheric Administration Technical Report NOS 2010-01; NOAA: Silver Spring, MD, USA, 2010; p. 130.
- Habel, S.; Fletcher, C.H.; Rotzoll, K.; El-Kadi, A.I. Development of a model to simulate groundwater inundation induced by sea-level rise and high tides in Honolulu, Hawaii. Water Res. 2017, 114, 122–134. [Google Scholar] [CrossRef]
- Gallien, T.W.; Schubert, J.E.; Sanders, B.F. Predicting tidal flooding of urbanized embayments: A modeling framework and data requirements. Coast. Eng. 2011, 58, 567–577. [Google Scholar] [CrossRef]
- Bates, P.D.; De Roo, A.P.J. A simple raster-based model for flood inundation simulation. J. Hydrol. 2000, 236, 54–77. [Google Scholar] [CrossRef]
- Paprotny, D.; Morales-Nápoles, O.; Vousdoukas, M.I.; Jonkman, S.N.; Nikulin, G. Accuracy of pan-European coastal flood mapping. J. Flood Risk Manag. 2018, 12, e12459. [Google Scholar] [CrossRef]
- Poulter, B.; Halpin, P.N. Raster modelling of coastal flooding from sea-level rise. Int. J. Geogr. Inf. Sci. 2007, 22, 167–182. [Google Scholar] [CrossRef]
- Rotzoll, K.; Fletcher, C.H. Assessment of groundwater inundation as a consequence of sea-level rise. Nat. Clim. Chang. 2012, 3, 477–481. [Google Scholar] [CrossRef]
- Habel, S.; Fletcher, C.H.; Rotzoll, K.; El-Kadi, A.I.; Oki, D.S. Comparison of a simple hydrostatic and a data-intensive 3D numerical modeling method of simulating sea-level rise induced groundwater inundation for Honolulu, Hawai’i, USA. Environ. Res. Commun. 2019, 1, 041005. [Google Scholar] [CrossRef]
- Bloetscher, F.; Romah, T. Tools for assessing sea level rise vulnerability. J. Water Clim. Chang. 2015, 6, 181–190. [Google Scholar] [CrossRef]
- Bloetscher, F.; Sairam, N.; Nagarajan, S.; Berry, L.; Hoermann, S. Assessing Sea Level Rise Vulnerability and Costs in a Data Limited Environment. Int. J. Eng. Technol. Manag. Res. 2017, 4, 13–31. [Google Scholar] [CrossRef]
- Cooper, H.M.; Chen, Q.; Fletcher, C.H.; Barbee, M.M. Assessing vulnerability due to sea-level rise in Maui, Hawai’i using LiDAR remote sensing and GIS. Clim. Chang. 2012, 116, 547–563. [Google Scholar] [CrossRef]
- Cooper, H.M.; Zhang, C.; Selch, D. Incorporating uncertainty of groundwater modeling in sea-level rise assessment: A case study in South Florida. Clim. Chang. 2015, 129, 281–294. [Google Scholar] [CrossRef]
- Hummel, M.A.; Berry, M.S.; Stacey, M.T. Sea Level Rise Impacts on Wastewater Treatment Systems Along the U.S. Coasts. Earth’s Future 2018, 6, 622–633. [Google Scholar] [CrossRef] [Green Version]
- Knott, J.F.; Daniel, J.S.; Jacobs, J.M.; Kirshen, P. Adaptation Planning to Mitigate Coastal-Road Pavement Damage from Groundwater Rise Caused by Sea-Level Rise. Transp. Res. Rec. J. Transp. Res. Board 2018, 2672, 11–22. [Google Scholar] [CrossRef]
- McLeod, G.M.; Allen, T.R.; Behr, J.G. Geospatial Risk Assessment of Marine Terminal Infrastructure to Storm Surge Inundation and Sea Level Rise. Transp. Res. Rec. J. Transp. Res. Board 2018, 2672, 19–29. [Google Scholar] [CrossRef]
- Novac, J. Quality Assessment of Elevation Data. In Digital Elevation Model Technologies and Applications: The DEM Users Manual, 3rd ed.; Maune, D.F., Nayegandhi, A., Eds.; American Society for Photogrammetry and Remote Sensing: Bethesda, MD, USA, 2018; pp. 455–544. [Google Scholar]
- Temme, A.J.A.M.; Heuvelink, G.B.M.; Schoorl, J.M.; Claessens, L. Geostatistical Simulation and Error Propagation in Geomorphometry. In Developments in Soil Science; Hengl, T., Reuter, H.I., Eds.; Elsevier: Amsterdam, The Netherlands, 2009; Volume 33, pp. 121–140. [Google Scholar]
- Wechsler, S.F.; Kroll, C.N. Quantifying DEM uncertainty and its effect on topographic parameters. Photogramm. Eng. Remote Sens. 2006, 72, 1081–1090. [Google Scholar] [CrossRef] [Green Version]
- Enwright, N.; Wang, L.; Borchert, S.; Day, R.; Feher, L.; Osland, M. The Impact of Lidar Elevation Uncertainty on Mapping Intertidal Habitats on Barrier Islands. Remote Sens. 2017, 10, 5. [Google Scholar] [CrossRef] [Green Version]
- Torio, D.D.; Chmura, G.L. Assessing Coastal Squeeze of Tidal Wetlands. J. Coast. Res. 2013, 290, 1049–1061. [Google Scholar] [CrossRef]
- Fisher, P. Improved modeling of elevation error with Geostatistics. GeoInformatica 1998, 2, 215–233. [Google Scholar] [CrossRef]
- Hunter, G.J.; Goodchild, M.F. Dealing with error in spatial databases: A simple case study. Photogramm. Eng. Remote Sens. 1995, 61, 529–537. [Google Scholar]
- Zerger, A.; Smith, D.I.; Hunter, G.J.; Jones, S.D. Riding the storm: A comparison of uncertainty modelling techniques for storm surge risk management. Appl. Geogr. 2002, 22, 307–330. [Google Scholar] [CrossRef]
- Amante, C.J. Uncertain seas: Probabilistic modeling of future coastal flood zones. Int. J. Geogr. Inf. Sci. 2019, 33, 2188–2217. [Google Scholar] [CrossRef]
- Fereshtehpour, M.; Karamouz, M. DEM Resolution Effects on Coastal Flood Vulnerability Assessment: Deterministic and Probabilistic Approach. Water Resour. Res. 2018, 54, 4965–4982. [Google Scholar] [CrossRef]
- Fraile-Jurado, P.; Álvarez-Francoso, J.I.; Guisado-Pintado, E.; Sánchez-Carnero, N.; Ojeda-Zújar, J.; Leatherman, S.P. Mapping inundation probability due to increasing sea level rise along El Puerto de Santa María (SW Spain). Nat. Hazards 2017, 87, 581–598. [Google Scholar] [CrossRef]
- Kovanen, J.; Oksanen, J.; Sarjakoski, T. Near real-time coastal flood inundation simulation with uncertainty analysis and GPU acceleration in a web environment. Comput. Geosci. 2018, 119, 39–48. [Google Scholar] [CrossRef]
- Leon, J.X.; Heuvelink, G.B.M.; Phinn, S.R. Incorporating DEM uncertainty in coastal inundation mapping. PLoS ONE 2014, 9, e108727. [Google Scholar] [CrossRef]
- Marbaix, P.; Nicholls, R.J. Accurately determining the risks of rising sea level. Eos 2007, 88, 441–442. [Google Scholar] [CrossRef]
- Winans, R.; (National Oceanic and Atmospheric Administration, Honolulu, HI, USA); Carlson, E.; (National Geodetic Survey, Honolulu, HI, USA). Personal communication, 2018.
- Amante, C.J. Estimating Coastal Digital Elevation Model Uncertainty. J. Coast. Res. 2018, 34, 1382–1397. [Google Scholar] [CrossRef] [Green Version]
- Enwright, N.M.; Griffith, K.T.; Osland, M.J. Incorporating Future Change into Current Conservation Planning: Evaluating Tidal Saline Wetland Migration along the U.S. Gulf of Mexico Coast under Alternative Sea-Level Rise and Urbanization Scenarios; USGS Data Series 969; U.S. Geological Survey: Reston, VA, USA, 2015. [CrossRef]
- Mitsova, D.; Esnard, A.-M.; Li, Y. Using enhanced dasymetric mapping techniques to improve the spatial accuracy of sea level rise vulnerability assessments. J. Coast. Conserv. 2012, 16, 355–372. [Google Scholar] [CrossRef]
- Storlazzi, C.D. The Impact of Sea-Level Rise and Climate Change on Department of Defense Installations on Atolls in the Pacific Ocean. (RC-2334, U.S. Geological Survey Administrative Report for the U.S. Department of Defense Strategic Environmental Research and Development Program); U.S. Geological Survey: Reston, VA, USA, 2017.
- Gesch, D.B.; Danielson, J.J.; Palaseanu-Lovejoy, M. Inundation Exposure Assessment for Majuro Atoll, Republic of the Marshall Islands; USGS Data Release; U.S. Geological Survey: Reston, VA, USA, 2019. [CrossRef]
- Cubasch, U.; Wuebbles, D.; Chen, D.; Facchini, M.C.; Frame, D.; Mahowald, N.; Winther, J.-G. Climate Change 2013: The Physical Basis; Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Flick, R.E.; Chadwick, D.B.; Briscoe, J.; Harper, K.C. “Flooding” versus “Inundation”. Eos 2012, 93, 365–366. [Google Scholar] [CrossRef] [Green Version]
- PacIOOS Wave Run-Up Forecast. Available online: https://www.pacioos.hawaii.edu/shoreline-category/runup/ (accessed on 15 August 2019).
- Anderson, T.R.; Fletcher, C.H.; Barbee, M.M.; Romine, B.M.; Lemmo, S.; Delevaux, J. Modeling multiple sea level rise stresses reveals up to twice the land at risk compared to strictly passive flooding methods. Sci. Rep. 2018, 8, 14484. [Google Scholar] [CrossRef] [Green Version]
- Barnard, P.L.; Erikson, L.H.; Foxgrover, A.C.; Hart, J.A.F.; Limber, P.; O’Neill, A.C.; van Ormondt, M.; Vitousek, S.; Wood, N.; Hayden, M.K.; et al. Dynamic flood modeling essential to assess the coastal impacts of climate change. Sci. Rep. 2019, 9, 4309. [Google Scholar] [CrossRef] [Green Version]
- Sampson, C.C.; Fewtrell, T.J.; Duncan, A.; Shaad, K.; Horritt, M.S.; Bates, P.D. Use of terrestrial laser scanning data to drive decimetric resolution urban inundation models. Adv. Water Resour. 2012, 41, 1–17. [Google Scholar] [CrossRef]
- Mean Sea Level Trend 720-017 Majuro B & C, Marshall Islands. Available online: https://tidesandcurrents.noaa.gov/sltrends/sltrends_global_station.shtml?stnid=720-017 (accessed on 15 August 2019).
- DeConto, R.M.; Pollard, D. Contribution of Antarctica to past and future sea-level rise. Nature 2016, 531, 591–597. [Google Scholar] [CrossRef] [PubMed]
- Webb, A.P.; Kench, P.S. The dynamic response of reef islands to sea-level rise: Evidence from multi-decadal analysis of island change in the Central Pacific. Glob. Planet. Chang. 2010, 72, 234–246. [Google Scholar] [CrossRef]
DEM | Grid Spacing | Accuracy Specification (RMSE 1 in m) |
---|---|---|
UAS-SfM 2 | 1 m | 0.30 |
SRTM 3 | 1-arc-s (30 m) | 9.73 |
ASTER GDEM 4 | 1-arc-s (30 m) | 10.20 |
AW3D30 5 | 1-arc-s (30 m) | 5.0 |
TanDEM-X 6 | 0.4-arc-s (12 m) | 6.08 |
DG-AES 7 | 2 m | 2.43 |
DEM | Mean Error (m) | Measured Accuracy (RMSE in m) | Minimum Increment (m) 68% Confidence | Minimum Increment (m) 95% Confidence |
---|---|---|---|---|
UAS-SfM | 0.022 | 0.179 | 0.357 | 0.700 |
SRTM | 0.114 | 2.234 | 4.467 | 8.756 |
ASTER GDEM | 5.170 | 6.136 | 12.272 | 24.054 |
AW3D30 | −0.026 | 1.237 | 2.475 | 4.851 |
TanDEM-X | −1.904 | 2.771 | 5.542 | 10.862 |
DG-AES | −0.032 | 0.374 | 0.748 | 1.466 |
Method | 1.25 ft (0.381 m) | 2.5 ft (0.762 m) | 3.75 ft (1.143 m) | |||
---|---|---|---|---|---|---|
Marine Inundation | Low-Lying Areas | Marine Inundation | Low-Lying Areas | Marine Inundation | Low-Lying Areas | |
Deterministic | 4.50% | 1.92% | 13.03% | 5.42% | 41.27% | 0.79% |
Modified Deterministic 68% confidence | 2.12–7.48% | 0.93–3.40% | 7.43–21.62% | 3.37–7.95% | 21.45–53.81% | 0.83–7.93% |
Modified Deterministic 95% confidence | 0.06–12.86% | 0.40–5.34% | 4.58–40.94% | 0.78–1.94% | 13.20–65.42% | 0.21–5.51% |
Probability of Inundation | 1.25 ft (0.381 m) | 2.5 ft (0.762 m) | 3.75 ft (1.143 m) | |||
---|---|---|---|---|---|---|
Marine Inundation | Low-Lying Areas | Marine Inundation | Low-Lying Areas | Marine Inundation | Low-Lying Areas | |
68% chance (IPCC: “Likely”) | 3.13% | 1.17% | 9.46% | 3.90% | 33.62% | 0.43% |
95% chance (IPCC: “Extremely Likely”) | 0.54% | 0.42% | 5.38% | 1.90% | 20.44% | 0.09% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gesch, D.; Palaseanu-Lovejoy, M.; Danielson, J.; Fletcher, C.; Kottermair, M.; Barbee, M.; Jalandoni, A. Inundation Exposure Assessment for Majuro Atoll, Republic of the Marshall Islands Using A High-Accuracy Digital Elevation Model. Remote Sens. 2020, 12, 154. https://doi.org/10.3390/rs12010154
Gesch D, Palaseanu-Lovejoy M, Danielson J, Fletcher C, Kottermair M, Barbee M, Jalandoni A. Inundation Exposure Assessment for Majuro Atoll, Republic of the Marshall Islands Using A High-Accuracy Digital Elevation Model. Remote Sensing. 2020; 12(1):154. https://doi.org/10.3390/rs12010154
Chicago/Turabian StyleGesch, Dean, Monica Palaseanu-Lovejoy, Jeffrey Danielson, Charles Fletcher, Maria Kottermair, Matthew Barbee, and Andrea Jalandoni. 2020. "Inundation Exposure Assessment for Majuro Atoll, Republic of the Marshall Islands Using A High-Accuracy Digital Elevation Model" Remote Sensing 12, no. 1: 154. https://doi.org/10.3390/rs12010154