Improving the AMSR-E/NASA Soil Moisture Data Product Using In-Situ Measurements from the Tibetan Plateau
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area and In-Situ SM Data
2.2. AMSR-E/NASA and JAXA SM Products
3. Methodology
3.1. The Simplified RTM and the AMSR-E/NASA Algorithm to Retrieve SM
3.2. Evaluation of the AMSR-E/NASA SM Retrieval Algorithm
3.3. Comparison Strategy
4. Results
4.1. Intra- and Inter Annual Variation of AMSR-E/NASA and AMSR-E JAXA SM
4.2. Evaluation of AMSR-E/NASA and AMSR-E/JAXA SM Products
4.3. Improvement and Mapping of the AMSR-E/NASA SM Product
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Karthikeyan, L.; Pan, M.; Wanders, N.; Kumar, D.N.; Wood, E.F. Four decades of microwave satellite soil moisture observations: Part 1. A review of retrieval algorithms. Adv. Water Resour. 2017, 109, 106–120. [Google Scholar] [CrossRef]
- Karthikeyan, L.; Pan, M.; Wanders, N.; Kumar, D.N.; Wood, E.F. Four decades of microwave satellite soil moisture observations: Part 2. Product validation and inter-satellite comparisons. Adv. Water Resour. 2017, 109, 236–252. [Google Scholar] [CrossRef]
- Njoku, E.G.; Jackson, T.J.; Lakshmi, V.; Chan, T.K.; Nghiem, S.V. Soil moisture retrieval from AMSR-E. IEEE Trans. Geosci. Remote Sens. 2003, 41, 215–229. [Google Scholar] [CrossRef]
- Njoku, E.; Koike, T.; Jackson, T.; Paloscia, S. Retrieval of Soil Moisture from AMSR Data; Vsp Publishing: Utrecht, The Netherlands, 1999; pp. 525–533. [Google Scholar]
- Jackson, T.J.; Cosh, M.H.; Bindlish, R.; Starks, P.J.; Bosch, D.D.; Seyfried, M.; Goodrich, D.C.; Moran, M.S.; Du, J.Y. Validation of advanced microwave scanning radiometer soil moisture products. IEEE Trans. Geosci. Remote Sens. 2010, 48, 4256–4272. [Google Scholar] [CrossRef]
- Koike, T.; Njoku, E.; Jackson, T.J.; Paloscia, S. Soil moisture algorithm development and validation for the ADEOS-II/AMSR. In Proceedings of the IGARSS 2000, IEEE 2000 International Geoscience and Remote Sensing Symposium, Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment. Proceedings (Cat. No.00CH37120), Honolulu, HI, USA, 24–28 July 2000. [Google Scholar]
- Paloscia, S.; Macelloni, G.; Santi, E.; Koike, T. A multifrequency algorithm for the retrieval of soil moisture on a large scale using microwave data from SMMR and SSM/I satellites. IEEE Trans. Geosci. Remote Sens. 2001, 39, 1655–1661. [Google Scholar] [CrossRef]
- Cho, E.; Su, C.; Ryu, D.; Kim, H.; Choi, M. Does AMSR2 produce better soil moisture retrievals than AMSR-E over Australia? Remote Sens. Environ. 2017, 188, 95–105. [Google Scholar] [CrossRef]
- Feng, X.; Li, J.; Cheng, W.; Fu, B.; Wang, Y.; Lü, Y.; Shao, M. Evaluation of AMSR-E retrieval by detecting soil moisture decrease following massive dryland re-vegetation in the Loess Plateau, China. Remote Sens. Environ. 2017, 196, 253–264. [Google Scholar] [CrossRef]
- Lu, H.; Koike, T.; Fujii, H.; Ohta, T.; Tamagawa, K. Development of a Physically-based Soil Moisture Retrieval Algorithm for Spaceborne Passive Microwave Radiometers and its Application to AMSR-E. J. Remote Sens. Soc. Jpn. 2009, 29, 253–262. [Google Scholar]
- Zeng, J.; Zhen, L.; Quan, C.; Bi, H.; Qiu, J.; Zou, P. Evaluation of remotely sensed and reanalysis soil moisture products over the Tibetan Plateau using in-situ observations. Remote Sens. Environ. 2015, 163, 91–110. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, K.; Qin, J.; Zhao, L.; Tang, W.; Han, M. Evaluation of AMSR-E retrievals and GLDAS simulations against observations of a soil moisture network on the central Tibetan Plateau. J. Geophys. Res. Atmos. 2013, 118, 4466–4475. [Google Scholar] [CrossRef]
- Zeng, J.; Zhen, L.I.; Chen, Q.; Haiyun, B.I. A simplified physically-based algorithm for surface soil moisture retrieval using AMSR-E data. Front. Earth Sci. 2014, 8, 427–438. [Google Scholar] [CrossRef]
- Lacava, T.; Brocca, L.; Faruolo, M.; Matgen, P.; Moramarco, T.; Pergola, N.; Tramutoli, V. A multi-sensor (SMOS, AMSR-E and ASCAT) satellite-based soil moisture products inter-comparison. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012. [Google Scholar]
- Kang, C.S.; Kanniah, K.D. Validation of AMSR-E soil moisture product and the future perspective of soil moisture estimation using SMOS data over tropical region. In Proceedings of the 2013 IEEE International Geoscience and Remote Sensing Symposium—IGARSS, Melbourne, Australia, 21–26 July 2013. [Google Scholar]
- Yang, K.; Qin, J.; Zhao, L.; Chen, Y.; Han, M. A Multi-Scale Soil Moisture and Freeze-Thaw Monitoring Network on the Third Pole. Bull. Am. Meteorol. Soc. 2013, 94, 1907–1916. [Google Scholar] [CrossRef]
- Njoku, E.G.; Chan, S.K. Vegetation and surface roughness effects on AMSR-E land observations. Remote Sens. Environ. 2006, 100, 190–199. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, K.; Qin, J.; Cui, Q.; Lu, H.; La, Z.; Han, M.; Tang, W. Evaluation of SMAP, SMOS, and AMSR2 soil moisture retrievals against observations from two networks on the Tibetan Plateau. J. Geophys. Res. Atmos. 2017, 122, 5780–5792. [Google Scholar] [CrossRef]
- Lu, H.; Koike, T.; Yang, K.; Hu, Z.; Xu, X.; Rasmy, M.; Kuria, D.; Tamagawa, K. Improving land surface soil moisture and energy flux simulations over the Tibetan plateau by the assimilation of the microwave remote sensing data and the GCM output into a land surface model. Int. J. Appl. Earth Obs. Geoinf. 2012, 17, 43–54. [Google Scholar] [CrossRef]
- Liu, Q.; Shi, J.; Du, J.; Zhang, S. Soil moisture retrieval by remote sensing and multi-year trend analysis of the soil moisture in Tibetan Plateau. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012. [Google Scholar]
- Zhao, T.J.; Zhang, L.X.; Shi, J.C.; Jiang, L.M. A physically based statistical methodology for surface soil moisture retrieval in the Tibet Plateau using microwave vegetation indices. J. Geophys. Res. 2011, 116, 5229. [Google Scholar] [CrossRef]
- Zhao, L.; Yang, K.; Qin, J.; Chen, Y.; Tang, W.; Lu, H.; Yang, Z. The scale-dependence of SMOS soil moisture accuracy and its improvement through land data assimilation in the central Tibetan Plateau. Remote Sens. Environ. 2014, 152, 345–355. [Google Scholar] [CrossRef]
- Yang, K.; Zhu, L.; Chen, Y.; Zhao, L.; Qin, J.; Lu, H.; Tang, W.; Han, M.; Ding, B.; Fang, N. Land surface model calibration through microwave data assimilation for improving soil moisture simulations. J. Hydrol. 2016, 533, 266–276. [Google Scholar] [CrossRef]
- Wang, L.; Li, Z.; Ren, X. The effects of vegetation in soil moisture retrieval using microwave radiometer data. In Proceedings of the IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium, Anchorage, AK, USA, 20–24 September 2004. [Google Scholar]
- Parkinson, C.L. Aqua: an Earth-Observing Satellite mission to examine water and other climate variables. IEEE Trans. Geosci. Remote Sens. 2003, 41, 173–183. [Google Scholar] [CrossRef]
- Du, J.; Kimball, J.S.; Jones, L.A.; Kim, Y.; Glassy, J.; Watts, J.D. A global satellite environmental data record derived from AMSR-Eand AMSR2 microwave earth observations. Earth Syst. Sci. Data Discuss. 2017, 9, 791–808. [Google Scholar] [CrossRef]
- Kolassa, J.; Gentine, P.; Prigent, C.; Aires, F.; Alemohammad, S.H. Soil moisture retrieval from AMSR-E and ASCAT microwave observation synergy. Part 2: Product evaluation. Remote Sens. Environ. 2017, 195, 202–217. [Google Scholar] [CrossRef]
- Njoku, E.; Chan, T.; Crosson, W.; Limaye, A. Evaluation of the AMSR-E data calibration over land. Holography 2004, 11, 1–28. [Google Scholar]
- Njoku, E.G.; Ashcroft, P.; Chan, T.K.; Li, L. Global survey and statistics of radio-frequency interference in AMSR-E land observations. IEEE Trans. Geosci. Remote Sens. 2005, 43, 938–947. [Google Scholar] [CrossRef]
- Mo, T.; Choudhury, B.J.; Schmugge, T.J.; Wang, J.R.; Jackson, T.J. A model for microwave emission from vegetation-covered fields. J. Geophys. Res. Ocean. 1982, 87, 11229–11237. [Google Scholar] [CrossRef]
- Lu, H.; Koike, T.; Fujii, H.; Ohta, T.; Tamagawa, K. Monitoring soil moisture change in North Africa with using satellite remote sensing and land data assimilaiton system. In Proceedings of the 2009 IEEE International Geoscience and Remote Sensing Symposium, Cape Town, South Africa, 12–17 July 2009. [Google Scholar]
- Li, L.; Njoku, E.G.; Im, E.; Chang, P.S.; Germain, K.S. A preliminary survey of radio-frequency interference over the U.S. in Aqua AMSR-E data. IEEE Trans. Geosci. Remote Sens. 2004, 42, 380–390. [Google Scholar] [CrossRef]
- Mladenova, I.; Lakshmi, V.; Jackson, T.J.; Walker, J.P.; Merlin, O.; de Jeu, R.A.M. Validation of AMSR-E soil moisture using L-band airborne radiometer data from National Airborne Field Experiment 2006. Remote Sens. Environ. 2011, 115, 2096–2103. [Google Scholar] [CrossRef]
- Xie, Q.; Meng, Q.; Zhang, L.; Wang, C.; Sun, Y.; Sun, Z. A Soil Moisture Retrieval Method Based on Typical Polarization Decomposition Techniques for a Maize Field from Full-Polarization Radarsat-2 Data. Remote Sens.-Basel. 2017, 9, 168. [Google Scholar] [CrossRef] [Green Version]
- Qi, Y.; Lu, L.; Jiang, L.; Tao, J.; Du, J.; Shi, J. Tibetan Plateau Soil Moisture Products Intercomparison and the Field Observations; American Geophysical Union Fall Meeting: Washington, DC, USA, 2002. [Google Scholar]
- Xi, J.; Wen, J.; Tian, H.; Zhang, T. Applicability evaluation of AMSR-E remote sensing soil moisture products in Qinghai-Tibet plateau. Trans. Chin. Soc. Agric. Eng. 2014, 30, 194–202. [Google Scholar]
- Zeng, J.; Zhen, L.; Quan, C.; Bi, H.; Ping, Z. A physically-based algorithm for surface soil moisture retrieval in the Tibet Plateau using passive microwave remote sensing. In Proceedings of the 2013 IEEE International Geoscience and Remote Sensing Symposium—IGARSS, Melbourne, Australia, 21–26 July 2013. [Google Scholar]
Microwave Sensors | SM Products | Period | IA (°) | Frequency (GHz) | SR | Unit | Spatial Coverage | Algorithms |
---|---|---|---|---|---|---|---|---|
SMMR | / | 1978–1987 | 50.2 | 6.6, 10.7 | / | / | Global | / |
SSM/I | / | 1987–2007 | 53.1 | 19.35 | / | / | Global | / |
TRMM/TMI | L3 | 1997–2015 | 52.8 | 10.7 | 25 km | cm3/cm3 | 180W-180E, 50S-50N | LPRM (Owe et al., 2008) |
AMSR-E | JAXA | 2002–2011 | 55 | 6.9, 10.7, 36.5 | 25 km | cm3/cm3 | Global | LUT (Du et al., 2009) |
NASA | 2002–2011 | 55 | 6.9, 10.7, 36.5 | 25 km | cm3/cm3 | Global | Njoku (Njoku et al., 2003 and 2006) | |
IRSA | 2002–2011 | 55 | 6.9,10.7 | 25 km | cm3/cm3 | Global | QP (Shi et al.2006) | |
VUA | 2002–2011 | 55 | 6.9, 10.7 | 25 km | cm3/cm3 | Global | LPRM (Owe et al., 2008) | |
WindSat | L3 | 2003–2012 | 50.1 | 6.8, 10.7 | 25 km | cm3/cm3 | 180W-180E, 64S-83N | LPRM (Owe et al., 2008) |
AMSR2 | L3 | 2012–present | 55 | 6.93, 7.3, 10.65 | 25 km | cm3/cm3 | Global | LPRM/LUT (Owe et al., 2008, Du et al., 2009) |
MWRI/FY3 | L2 | 2011–present | 53 | 10.65 | 25 km | cm3/cm3 | Global | QP (Shi et al.2006) |
MIRAS/SMOS | CATDS-L3 | 2010–present | 2.5–62.5 | 1.41 | 25 km | cm3/cm3 | Global | L-MEB (Kerr et al.,2012) |
SMAP | L3 | 2015–present | 40 | 1.41, 1.26 (SAR) | 3/9/36 km | cm3/cm3 | 180W-180E, 85S-85N | SCA (O’Neill et al.,2016) |
AMSR-E/NASA | AMSR-E/JAXA | |||||||
---|---|---|---|---|---|---|---|---|
MAE | RMSE | R | Std. Dev | MAE | RMSE | R | Std. Dev | |
Pixel 1 | 0.09 | 0.11 | 0.72 | 0.017 | 0.06 | 0.10 | 0.91 | 0.128 |
Pixel 2 | 0.08 | 0.10 | 0.72 | 0.016 | 0.07 | 0.09 | 0.88 | 0.143 |
Pixel 3 | 0.09 | 0.12 | 0.66 | 0.014 | 0.07 | 0.11 | 0.80 | 0.175 |
Pixel 4 | 0.12 | 0.16 | 0.64 | 0.019 | 0.09 | 0.10 | 0.88 | 0.123 |
Pixel 5 | 0.20 | 0.25 | 0.48 | 0.013 | 0.12 | 0.15 | 0.82 | 0.175 |
Pixel 6 | 0.06 | 0.07 | 0.67 | 0.017 | 0.03 | 0.04 | 0.87 | 0.101 |
Pixel 7 | 0.12 | 0.15 | 0.61 | 0.018 | 0.07 | 0.10 | 0.83 | 0.105 |
Pixel 8 | 0.15 | 0.18 | 0.54 | 0.014 | 0.09 | 0.11 | 0.86 | 0.118 |
Pixel 9 | 0.15 | 0.18 | 0.60 | 0.012 | 0.12 | 0.15 | 0.88 | 0.085 |
Pixel 10 | 0.13 | 0.15 | 0.41 | 0.015 | 0.08 | 0.10 | 0.86 | 0.078 |
Pixel 11 | 0.20 | 0.22 | 0.62 | 0.014 | 0.10 | 0.12 | 0.84 | 0.167 |
Pixel 12 | 0.19 | 0.20 | 0.72 | 0.018 | 0.07 | 0.09 | 0.79 | 0.145 |
Average | 0.13 | 0.16 | 0.62 | 0.015 | 0.08 | 0.11 | 0.85 | 0.129 |
Cases | A1 | A0 |
---|---|---|
(a) AMSR-E/NASA MPDI + NASA SM | 1 | 0.09 |
(b) AMSR-E/NASA MPDI + in-situ SM | 8 | −0.15 |
(c) RTM MPDI + NASA SM | 1 | 0.06 |
(d) RTM MPDI + in-situ SM | 8 | −0.36 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, Q.; Menenti, M.; Jia, L. Improving the AMSR-E/NASA Soil Moisture Data Product Using In-Situ Measurements from the Tibetan Plateau. Remote Sens. 2019, 11, 2748. https://doi.org/10.3390/rs11232748
Xie Q, Menenti M, Jia L. Improving the AMSR-E/NASA Soil Moisture Data Product Using In-Situ Measurements from the Tibetan Plateau. Remote Sensing. 2019; 11(23):2748. https://doi.org/10.3390/rs11232748
Chicago/Turabian StyleXie, Qiuxia, Massimo Menenti, and Li Jia. 2019. "Improving the AMSR-E/NASA Soil Moisture Data Product Using In-Situ Measurements from the Tibetan Plateau" Remote Sensing 11, no. 23: 2748. https://doi.org/10.3390/rs11232748
APA StyleXie, Q., Menenti, M., & Jia, L. (2019). Improving the AMSR-E/NASA Soil Moisture Data Product Using In-Situ Measurements from the Tibetan Plateau. Remote Sensing, 11(23), 2748. https://doi.org/10.3390/rs11232748