remote sensin N
?J & bpy

Article

Hyperspectral Dimensionality Reduction Based on
Multiscale Superpixelwise Kernel Principal
Component Analysis

Lan Zhang 2, Hongjun Su 3 and Jingwei Shen 1-2/*
2] 8] g

1 Chonggqing Engineering Research Center for Remote Sensing Big Data Application,

School of Geography Science, Southwest University, Chongging 400715, China;

albizia0914@email swu.edu.cn

State Cultivation Base of Eco-agriculture for Southwest Mountainous Land, Southwest University,
Chongqing 400715, China

School of Earth Sciences and Engineering, Hohai University, Nanjing 211100, China; hjsu@hhu.edu.cn
Correspondence: sjwgis@swu.edu.cn

check for
Received: 26 April 2019; Accepted: 20 May 2019; Published: 23 May 2019 updates

Abstract: Dimensionality reduction (DR) is an important preprocessing step in hyperspectral image
applications. In this paper, a superpixelwise kernel principal component analysis (SuperKPCA)
method for DR that performs kernel principal component analysis (KPCA) on each homogeneous
region is proposed to fully utilize the KPCA'’s ability to acquire nonlinear features. Moreover, for
the proposed method, the differences in the DR results obtained based on different fundamental
images (the first principal components obtained by principal component analysis (PCA), KPCA, and
minimum noise fraction (MNF)) are compared. Extensive experiments show that when 5, 10, 20, and
30 samples from each class are selected, for the Indian Pines, Pavia University, and Salinas datasets:
(1) when the most suitable fundamental image is selected, the classification accuracy obtained by
SuperKPCA can be increased by 0.06%—-0.74%, 3.88%—4.37%, and 0.39%—4.85%, respectively, when
compared with SuperPCA, which performs PCA on each homogeneous region; (2) the DR results
obtained based on different first principal components are different and complementary. By fusing
the multiscale classification results obtained based on different first principal components, the
classification accuracy can be increased by 0.54%-2.68%, 0.12%-1.10%, and 0.01%-0.08%, respectively,
when compared with the method based only on the most suitable fundamental image.

Keywords: unsupervised dimensionality reduction; superpixel segmentation; kernel principal
component analysis (KPCA); fundamental image; hyperspectral image (HSI)

1. Introduction

Hyperspectral imagery (HSI) typically contains hundreds of narrow-band radiation information,
which provides more discriminative features for feature recognition or classification. However, the
spectral values of adjacent bands in hyperspectral images usually have a strong correlation [1], and
the high spectral resolution makes the data redundant and generates a “dimension disaster” problem
during supervised learning [2]. This effect makes dimensionality reduction an important preprocessing
step in hyperspectral image applications.

Principal component analysis (PCA) is one of the most widely used unsupervised dimensionality
reduction models [3]. The principal components (PCs) obtained by PCA are linearly independent
and are sorted by variance in descending order. Information mainly exists in the first few PCs.
However, as a linear orthogonal transform method, it is difficult for PCA to handle the complex
nonlinear characteristics in HSIs. These nonlinear characteristics are mainly derived from various
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nonlinear factors in the imaging process, such as nonlinear scattering from the bidirectional reflectance
distribution function (BRDF) and electromagnetic wave interference of adjacent objects [4,5].

Among several nonlinear extensions of PCA [6-9], kernel PCA (KPCA) [9] uses a kernel function
to nonlinearly map the original data to a high-dimensional feature space, and by performing PCA
in the high-dimensional feature space, the nonlinear dimensionality reduction is subtly realized. In
addition to inheriting several related properties from PCA, KPCA does not suffer from some practical
problems faced by other nonlinear PCA extensions, such as nonconvergence or convergence to local
minima [10]. KPCA and its extensions have proven to be powerful tools for feature extraction and
image denoising [10-17].

On the other hand, image segmentation technology has been widely used in the field of image
classification, as it can simultaneously utilize spatial and spectral information of HSIs [18-26]. By
segmenting the image into multiple homogeneous regions and performing corresponding operations on
each homogeneous region, the classification performance can be greatly improved. Since the real surface
is extremely complicated in most cases, it is sometimes difficult for a single segmentation algorithm
or a single segmentation scale to make full use of the rich spatial information in HSIs. Therefore, the
strategy of fusing the classification results obtained by different segmentation algorithms [27] and
the strategy of fusing the classification results of different segmentation scales [28-32] can generally
improve the classification accuracy.

Recently, the strategy of fusing the classification results based on multiscale segmentation has
been applied to the field of dimensionality reduction and has achieved competitive results [33]. A real
surface usually contains multiple homogeneous regions. Dimensionality reduction based only on the
globally optimal projection direction tends to ignore the difference between different homogeneous
regions, and at the same time, different homogeneous regions are usually of different sizes, so it is
usually difficult for a single segmentation scale to accurately capture the difference in size between
these different homogeneous regions. To solve these problems, Jiang et al. proposed segmenting
HSI into superpixels of multiple scales. By performing PCA on each superpixel of each scale, the
low-dimensional representations of HSI at different scales are obtained. The final classification
result is obtained by fusing the classification results of each scale using the majority voting (MV)
decision fusion strategy. This method was named multiscale segmentation-based superpixelwise
PCA (MSuperPCA) by Jiang et al., and the method based on single-scale segmentation was named
superpixelwise PCA (SuperPCA). Extensive experiments show that the low-dimensional representation
obtained by performing PCA on each superpixel is separable, compact, and anti-noise, leading to an
improvement in classification accuracy [33].

However, as mentioned earlier, PCA cannot handle the nonlinear characteristics prevalent in HSIs.
Therefore, a method called superpixelwise KPCA (SuperKPCA) is proposed to make full use of the
advantages of KPCA in obtaining nonlinear low-dimensional representation of images, and to make full
use of the advantages of image segmentation technology in acquiring different homogeneous regions
and improving the classification performance. More specifically, image segmentation technology is
first used to acquire homogeneous regions, and then KPCA is used to reduce the dimensionality
of each homogeneous region to obtain a more accurate nonlinear low-dimensional representation
of the hyperspectral image. The specific implementation process is shown in Figure 1. Each of the
homogeneous regions is represented by a matrix, and the columns of the matrix represent spectral
vectors of the pixels.
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Figure 1. Schematic of SuperKPCA.

Since classification performance can be further improved by fusing the classification results after
multiscale segmentation, the multiscale segmentation strategy is used in this article to make better use
of the spatial information of different homogeneous regions. By extracting the same kernel PCs for
each homogeneous region (superpixel) under each segmentation scale, the nonlinear low-dimensional
features of HSI at different segmentation scales are obtained. Finally, the support vector machine
(SVM) [34,35] is used to classify the low-dimensional representations at different scales. By using
the majority voting decision fusion strategy to fuse the classification results of each scale, the final
classification result is obtained. For the convenience of writing, the above method is named multiscale
segmentation-based SuperKPCA (MSuperKPCA).

An HSI usually contains hundreds of bands, but the input of most image segmentation algorithms
is usually a grayscale image or an RGB image. Therefore, most studies select the first PC obtained by
PCA as the fundamental image for segmentation [29-31,33]. Although the first PC can contain the
main information of the hyperspectral image, the second and third PCs usually contain some useful
information. Therefore, in some studies, the first three PCs obtained by PCA are regarded as the three
bands of the color image and are used as the fundamental image for segmentation [18,22]. However,
since the second and third PCs may contain noise while containing useful information, there is still
room for improvement in the classification accuracy of these studies.

It is well known that the PCs obtained by PCA and KPCA are arranged in descending order of the
magnitude of the eigenvalues, and the PCs obtained by minimum noise fraction (MNF) transformation
are sorted according to the image quality [36]. Usually, the first PC contains most of the information
of a hyperspectral image. That is, the first PCs obtained by the three algorithms represent different
main information of a hyperspectral image. Therefore, the segmentation results obtained based on
different first PCs can be different, and correspondingly, dimensionality reduction and classification
results can also be different. Inspired by the multiclassifier strategy [27], this study attempts to fuse
the classification results based on different fundamental images. First, the first PCs obtained by PCA,
KPCA, and MNF are obtained; second, each of the first PCs are treated as a fundamental image, and
multiscale segmentation, dimensionality reduction, and classification (using SVM) are performed.
Finally, the majority voting decision fusion strategy is used to fuse all the classification results. For the
convenience of writing, this idea is referred to as 3-MSuperKPCA. The specific implementation process
is shown in Figure 2.
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Figure 2. Schematic illustration of the MSuperKPCA algorithm based on different fundamental images

for HSI classification.

To the best of our knowledge, the extension of KPCA to the field of superpixel segmentation
and its use for unsupervised dimensionality reduction is rarely seen in previous studies. Extensive
experiments have shown that by segmenting the hyperspectral image into multiple homogeneous
regions and performing KPCA on each homogeneous region separately, the proposed superpixel-based
KPCA method is superior to the superpixel-based PCA method in most cases, whether it is based on
single-scale segmentation or multiscale segmentation. At the same time, as far as we know, in the field
of superpixel-based unsupervised dimensionality reduction, the influence of different fundamental
images on dimensionality reduction results has rarely been studied. Extensive experiments have
shown that the dimensionality reduction results obtained based on different fundamental images are
different and complementary for the proposed method, and by fusing multiscale classification results
based on different fundamental images, the classification performance can often be further improved.

The remainder of this paper is outlined as follows. Section 2 briefly introduces the algorithm
used, and Section 3 presents the experimental data and results. Sections 4 and 5 are the discussion and
conclusions, respectively.

2. Proposed Methods

2.1. Multiscale Superpixel Segmentation

As a preprocessing step, the superpixel segmentation algorithm needs to have a lower
computational complexity while adhering well to the boundary of the features. The existing methods
for generating superpixels mainly include two types: gradient-based methods [37-39] and graph-based
methods [40—43]. In this paper, the entropy rate segmentation (ERS) [40] algorithm is adopted to
generate a 2-D superpixel map due to its promising performance in both efficacy and efficiency. The
ERS algorithm is a graph-based clustering method that has been widely applied [21,22,29,30,44—46].

The objective function of ERS consists of two components: an entropy rate term and a balancing
term, and therefore favors compact, homogeneous clusters with similar sizes. By setting an optimal
value for the number of superpixels, the fundamental image is segmented into corresponding numbers
of similarly sized regions. In fact, both the ERS algorithm and the SLIC algorithm [37], which are
also widely used, tend to form homogeneous regions of similar size. However, in real hyperspectral
images, the size of the features is usually inconsistent, and it is usually difficult for a single optimal
number of superpixels (segmentation scale) to accurately describe the homogenous regions of different
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sizes. Therefore, with reference to previous studies [30,33], this study uses a multiscale segmentation
strategy to compensate for the shortcomings of a single segmentation scale. That is, first the number of
fundamental superpixels S is determined. When the segmentation scale is ¢, the number of superpixels
S¢ is equal to:

Se=[272%xSs] (c=0,1,%2,...,%c) (1)

That is, the fundamental image is segmented into 2c + 1 scales, where [ | denotes the integer part
of adecimal, 1 < S; < p, and p is the total number of pixels in the hyperspectral image. The segmented
image F can be expressed as:

Sc
F:kL:JOXIC( c=0,+1,+2,...,+c X]C(ﬂng(p(k;&g) ()

where X} denotes the k-th superpixel in the c-th scale.

2.2. Kernel Principal Component Analysis

As mentioned before, PCA can only perform linear transformations, and therefore cannot handle
the complex nonlinear features that are widely present in hyperspectral images. Therefore, kernel PCA
is hypothesized to improve the performance of dimensionality reduction in this study. The kernel
method is a method of processing nonlinear data through kernel mapping, that is, the original data are
first mapped to the feature space by a kernel mapping function, and then the corresponding linear
operation is performed in this feature space. By nonlinear mapping, linearly inseparable samples
in the original space are linearly separable in the feature space or linearly separable with higher
probability. The linear transformation method can then be used to implement dimensionality reduction
in the feature space, which greatly increases the ability of linear transformation methods to process
nonlinear data.

Suppose a hyperspectral image is represented as X € , where M, N, and D represent the
number of rows, columns, and bands of a hyperspectral image, respectively. Here, X is reshaped into
a2-Dmatrix, X = [x1,%),...,xp] € RP*’ (P =MxN) , in which each x;(1 < i < P) represents the
energy spectrum of the i-th pixel.

To derive KPCA, x; is mapped into a possibly higher dimensional space F, x; — ¢(x;), and the
standard PCA is performed in this feature space. Here, ¢(-) denotes the feature map. However,
explicitly performing the nonlinear mapping and computing the dot product ¢(x;) - qb(x j) in the feature
space is computationally expensive. The trick herein is that KPCA is always carried out using a kernel
function k(xl-, x]-), which replaces the dot product. In other words, to compute the kernel PCs, the

RMXNXD

following steps are required: (1) compute the kernel matrix k;; = (k(xl-, x]-))l,], and normalize it; (2)
compute its normalized eigenvectors; and (3) compute projections onto the eigenvectors to extract the
kernel PCs.

In this paper, the radial basis function (RBF) kernel, often put forward as a universal kernel, is
chosen and used. The RBF kernel is defined as:

k(xl-,x]-) = exp(—llxi - x]-||2/202) (©)]

2 2

is chosen according to an empirical selection criterion: 0% =
(m - mean(var(X))) [12,17,47,48], where m is a predetermined value. In this paper, the value of
m is naively set to 1.

The value for o

2.3. Classification and Fusion

As stated earlier, the first PCs obtained by PCA, KPCA, and MNF represent different main
information of a hyperspectral image. Therefore, the three first PCs are used as the fundamental images
when performing segmentation. Then, each of the three fundamental images is segmented to multiple
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scales based on the ERS algorithm with different superpixels. For each scale of each fundamental
image, KPCA is used to obtain a nonlinear low-dimensional representation of each homogeneous
region. By combining all the regions, dimension-reduced hyperspectral images based on different
fundamental images are formed. Then, SVM is chosen for classification, as it is one of the most widely
used pixel classifiers. Here, Cpcas, Ckpcas, Cmnrs represent the classification results based on the first
PCs of PCA, KPCA, and MNF, respectively. Since each fundamental image is segmented to 2c + 1
scales (c represents the segmentation scale), there will be 2c 4 1 different classification results for each
fundamental image. Therefore, it is necessary to integrate the classification results through an effective
decision fusion strategy. Similar to previous studies [30,33], a simple and efficient decision fusion
strategy based on majority voting is utilized to obtain the final classification result. That is, for 2c + 1
candidate categories of each pixel, the number of occurrences of each candidate category is counted,
and the final category is the candidate category with the most occurrences.

Specifically, let I3, Iy, . .., o1 represent the class labels of a specific pixel under different scales,
respectively. Let Ny, N», ..., Nj denote the number of each class occurrence, where (2c + 1) = ?i 1N;.
The class label I of a specific pixel can be obtained by:

I = arg maxN; 4)
jE1,2,.,M)

Formula (4) is used to fuse the three classification results Cpcas, Cxpcas, Cvnrs, and then the three
fused results can be obtained. The specific implementation of this idea (the proposed MSuperKPCA
method) is described in Algorithm 1. Notably, Algorithm 1 only shows the implementation process
when the fundamental image is the first PC obtained by PCA. The implementation process based on
other fundamental images is similar to Algorithm 1.

Algorithm 1: Proposed MSuperKPCA for an HSI

1. INPUT: (1) data: a hyperspectral image X € RM*N*D and its training sample set and testing sample set

(2) parameters: the reduced dimensions d, the number of fundamental superpixels S, the segmentation scale ¢
2. OUTPUT: a 2-D classification map

3. Begin

4. calculate the number of superpixels at each scale: S ={S_¢, S_c41,...,5-1,50,51,...,S¢c-1,Sc}

5. convert all values of X to decimals: X = X./max(X(:))

6. use PCA to get the first PC F); of X and convert it to unit format

7. for each number of superpixels in S do

8 (1) use ERS to segment Fj, into corresponding numbers of superpixels

9 (2) perform KPCA on the hyperspectral data in each superpixel and take the first d PCs

10. (3) combine the dimensionality reduction results in each superpixel and get X € RM*Nxd

11. (4) use SVM to classify the dimensionality reduction result

12. end for

13. for each pixel in the hyperspectral image X do

14.  take the category with the most occurrences among 2c + 1 candidate categories as the final classification
result

15. end for

14. End

For the proposed 3-MSuperKPCA method, the formula used for fusion is slightly different from
Equation (4):

= arg max N’; (5)
jel1,2,..,M)
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Here, N’ represents the total number of times the specific pixel is predicted to be class j among
the three multiscale classification results. That is, the three multiscale classification results are fused at
one time to obtain the final classification result.

3. Experiments and Results

3.1. Datasets Description and Experimental Setting

Three publicly available hyperspectral scenes, which can be downloaded from http://www.ehu.
eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes, are used.

(1) Indian Pines: The Indian Pines image was acquired by the AVIRIS (airborne visible/infrared
imaging spectrometer) sensor in June 1992. This image contains 220 bands of size 145 x 145 with
a spatial resolution of 20 m/pixel and spectral coverage ranging from 0.4 to 2.5 um. Twenty water
absorption bands are discarded, and a total of 200 bands are processed. The reference of this image
contains 10,249 labeled pixels and 16 different land covers, most of which are crops.

(2) Pavia University: The University of Pavia image was collected by the ROSIS (reflective optics
system imaging spectrometer) optical sensor on July 8, 2002. This image comprises 610 x 340 pixels
with a spatial resolution of 1.3 m/pixel and spectral coverage ranging from 0.43 to 0.86 pm. Twelve
noisy and water bands are removed, and the remaining 103 spectral channels are used. The reference
of this image contains 42,776 labeled pixels and 9 classes.

(3) Salinas: The Salinas image was captured by a 224-band AVIRIS sensor at a spatial resolution of
3.7 m/pixel and a spectral range of 0.4-2.5 pm. This image consists of 512 x 217 pixels. After removing
20 water absorption bands, 204 spectral bands are preserved for the experiments. The reference of this
image contains 54,129 labeled pixels and 16 classes.

In this study, the training samples used are the 10 sets of random samples published in a previous
study [33]. For each land cover type, T =5, 10, 20 and 30 training samples are randomly selected, leaving
the rest for testing, and at a maximum half of the total samples in alfalfa, grass or pasture-mowed and
oats classes of the Indian Pines image are selected, as they have relatively small sample sizes. The
sample size for each class in the three datasets is shown in Table 1.

Table 1. The sample size for each class in the three used datasets.

Indian Pines Pavia University Salinas
Class Categories Samples Categories Samples Categories Samples

1 alfalfa 46 asphalt 6631 weeds_1 2009
2 corn-no till 1428 meadows 18,649 weeds_2 3726
3 corn-min 830 gravel 2099 fallow 1976
4 corn 237 trees 3064 fallow plow 1394
5 grass or pasture 483 metal sheets 1345 fallow smooth 2678
6 grass or trees 730 bare boil 5029 stubble 3959
7 grass or pasture-mowed 28 bitumen 1330 celery 3579
8 hay-windrowed 478 bricks 3682 grapes 11,271
9 oats 20 shadows 947 soil 6203
10 soybean-no till 972 corn 3278
11 soybean-min 2455 lettuce 4 wk 1068
12 soybean-clean 593 lettuce 5 wk 1927
13 wheat 205 lettuce 6 wk 916
14 woods 1265 lettuce 7 wk 1070
15 buildings-grass-tree-drives 386 vineyard untrained 7268
16 stone-steel towers 93 vineyard trellis 1807

total 10249 total 42776 total 54,129

In our work, the SVM algorithm adopting a spectral Gaussian kernel is implemented with the
help of the library for SVMs (LIBSVM) [49]. For the SVM classifier, there are two key parameters that
need to be set: the error penalty parameter C and the kernel parameter gamma. Similar to the code
disclosed in a previous study [33], the value of C is set to 100,000, and the value of gamma is selected
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within the given set { 0.01,0.1,1,5,10, 15, 20, 30, 40, 50, 100, 200, 300, 400, 500, 600, 700, 800 : Instead of
using cross validation to select the optimal value of C, this study randomly selects the appropriate
number of samples from the ground-truth data for training, uses the remaining samples for testing,
and then records the highest classification accuracy obtained from the candidate gamma values in the
given set to simplify the calculation. All experiments are repeated ten times with a different training
set to minimize the difference in classification accuracy caused by different training samples, and the
average classification accuracy is recorded.

This study mainly compares the proposed methods with the SuperPCA and MSuperPCA methods
proposed in a previous study [33] to verify the feasibility and superiority of the kernel method in the
field of dimensionality reduction based on superpixels. At the same time, global PCA and global
KPCA are used as the base reference. More comparisons with other traditional methods can be found
in the previous study [33]. Three measurements, namely, the overall accuracy (OA), average accuracy
(AA), and kappa coefficient (kappa), are used to evaluate the experimental results.

3.2. Parameters Settings

3.2.1. Analysis of the Influence of the Number of Superpixels

Figure 3, Figure 4, and Figure 5 show the influence of the number of superpixels on the overall
classification accuracy (OA/%) of the proposed SuperKPCA method when the datasets are Indian
Pines, Pavia University, and Salinas, respectively, where the number of superpixels is selected from
{ 1,5,10,15, 20, 25, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 150, 200, 300 } For each figure, the number
of training samples is 5, 10, 20, and 30 from the first to the last row, and the blue, orange, gray, and red
bars represent the OA when the reduced dimensions are 5, 10, 20, and 30, respectively. “FImage: PCA”
indicates that the fundamental image used for segmentation is the first PC obtained by PCA. “FImage:
KPCA (0 = smvar)” indicates that the fundamental image for segmentation is the first PC obtained by
KPCA, and the parameter o of the RBF kernel is determined by the formula ¢ = sqrt(m - mean(var(X)))
when acquiring the first PC. Correspondingly, “FImage:KPCA(o = 1)” indicates that the parameter o of
the RBF kernel is equal to 1 when acquiring the first PC. “FImage: MNF” indicates that the fundamental
image used for segmentation is the first PC obtained by MNE. Note that when dimensionality reduction
is performed after the segmentation is completed, the values of o are all determined by the formula
o = sqrt(m - mean(var(X))) in all experiments in this study.

From Figures 3-5, the following conclusions can be drawn:

(1) As the number of superpixels increases, the OAs of the three datasets tend to rise first and then
decrease. Moreover, by setting a suitable number of superpixels, the classification accuracy is usually
higher than that when the number of superpixels is 1 (no superpixel segmentation), which indicates
that the superpixel-based KPCA is more efficient than traditional global KPCA.

(2) As the training samples increase, the difference in the OAs obtained at different superpixel
numbers decreases. This decrease suggests that when there are enough training samples, a similarly
high classification accuracy can be obtained by using a plurality of different superpixel numbers, which
is more evident in the Indian Pines and Salinas datasets.

(3) In the Indian Pines and Salinas datasets, when superpixel segmentation is not performed,
the difference in the OAs obtained by different reduced dimensions is greater than the difference in
the OAs obtained when the appropriate number of superpixels is set. This finding shows that in
these two datasets, when the appropriate number of superpixels is set, a small number of reduced
dimensions can obtain good overall classification accuracy. However, the situation is different in the
Pavia University dataset; when the number of training samples is 5, the change in the OA exhibits no
obvious trend with an increase in the reduced dimension. When the number of training samples is 10,
20, and 30, the OA shows an increasing trend with the increase in the reduced dimension, which is
different from the performance of the OA in the other two datasets, where OAs with fewer dimensions
are essentially the same as OAs with more dimensions. This result may be because the texture features
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of the Pavia University dataset are more complex than the Indian Pines and Salinas datasets (see the
classification maps below). That is, even if superpixel segmentation is used, the useful information is
less concentrated in the first few PCs than in the other two datasets.
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Figure 3. Influences of the number of superpixels on the overall accuracy (OA) of the proposed
superpixelwise kernel principal component analysis (SuperKPCA) method for the Indian Pines dataset,
where ”"T” represents the number of pixels of the training sample: (a,d,g,j) the fundamental image is
obtained by principal component analysis (PCA); (b,e,h k) the fundamental image is obtained by kernel
PCA (KPCA), and the parameter o of the radial basis function kernel is determined by the formula
o = sqrt(m - mean(var(X))) when acquiring the fundamental image; and (cf,11) the fundamental image
is obtained by minimum noise fraction (MNF).
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Figure 4. Influences of the number of superpixels on the overall accuracy (OA) of the proposed
superpixelwise kernel principal component analysis (SuperKPCA) method for the Pavia University
dataset, where ”"T” represents the number of pixels of the training sample: (a,d,g,j) the fundamental
image is obtained by principal component analysis (PCA); (b,e,h k) the fundamental image is obtained
by kernel KPCA (KPCA), and the parameter o of the radial basis function kernel is equal to 1 when
acquiring the fundamental image; and (c)(f)(i)(1) the fundamental image is obtained by minimum noise

fraction (MNF).
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Figure 5. Influences of the number of superpixels on the overall accuracy (OA) of the proposed
superpixelwise kernel principal component analysis (SuperKPCA) method for the Salinas dataset,
where "T” represents the number of pixels of the training sample: (a,d,g,j) the fundamental image is
obtained by principal component analysis (PCA); (b,e,h k) the fundamental image is obtained by kernel
PCA (KPCA), and the parameter o of the radial basis function kernel is determined by the formula
o = sqrt(m - mean(var(X))) when acquiring the fundamental image; and (c,f,L1) the fundamental image
is obtained by minimum noise fraction (MNF).

(4) When the fundamental image used for segmentation is the first PC obtained by PCA, for
Indian Pines, Pavia University, and Salinas images, when the number of training samples is 5, the
optimal number of superpixels is 30, 15, and 25, respectively; when the number of training samples
is 10, the optimal number of superpixels is 80, 20, and 40, respectively; when the number of training
samples is 20, the optimal number of superpixels is 80, 30, and 80, respectively; when the number of
training samples is 30, the optimal number of superpixels is 90, 30, and 80, respectively. The optimal
reduced dimension for all three datasets is 30 when the fundamental image used for segmentation is
the first PC obtained by PCA, except when the number of training samples is 20 and 30, the optimal
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reduced dimension for Indian Pines is 20. When the fundamental image used for segmentation is the
first PC obtained by KPCA or MNF, most of the optimal reduced dimensions are also 30. This finding
suggests that although the subsequent kernel PCs may contain noise, the information in these kernel
PCs still contributes to the improvement in classification accuracy.

(5) When the fundamental image is the first PC obtained by PCA or MNE, the OAs of Indian Pines
and Pavia University images are roughly similar to, or smaller than, the OAs obtained by the first PC
of PCA. However, when the fundamental image is the first PC obtained by KPCA or MNE, the OAs of
the Salinas image are significantly higher than those of OAs obtained based on the first PC of PCA.
This result is especially true when the number of training samples is small, such as 5 and 10, which at
least indicates that it is not always possible to obtain an optimal segmentation result by using the first
PC obtained by PCA as the fundamental image when performing segmentation. This finding will be
further analyzed in the later sections.

3.2.2. Analysis of the Impact of the Segmentation Scale ¢

Based on the above experimental results, the optimal number of superpixels and reduced
dimensions for the three datasets under different training sample numbers and fundamental images
can be obtained. Notably, in most cases, the optimal reduced dimension is 30, but in a few cases, the
optimal reduced dimension is 20 or even 5. Since there is a large difference in the number of superpixels
when performing multiscale segmentation, for example, when the basic number of superpixels is 80
and the segmentation scale c is 8, the number of superpixels includes 5, 7, 10, 14, 20, 28, 40, 56, 80, 113,
160, 226, 320, 452, 640, 905, and 1280. It can be seen from Figures 3 and 4 that when the number of
superpixels is small, more reduced dimensions are usually required to obtain higher classification
accuracy. Therefore, in the following experiments, the reduced dimensions are all set to 30. The number
of superpixels is the optimal number obtained in the previous experiments.

Setting the segmentation scale ¢ to 12 and using Equation (1), the OAs of the three datasets at
different fundamental images and segmentation scales are obtained. The results are shown in Figure 6.
Notably, the segmentation scale for the Salinas dataset is 8, and when the fundamental image is the
first PC obtained by PCA, the segmentation scale ¢ for the Indian Pines dataset is also 8. It should also
be noted that when the number of superpixels obtained by Equation (1) is less than 1, the number of
superpixels is set to 1; that is, no superpixel segmentation is performed on the image.

From these results, the following conclusions can be drawn: (1) by fusing the classification results
of multiscale segmentation, usually higher classification accuracy can be obtained; (2) when there
are fewer training samples, such as training samples of 5 or 10, the use of multiscale fusion strategy
can further increase the classification accuracy. Taking Figure 6a,d,g, for example, after setting the
optimal segmentation scale, when the number of training samples is 5, the OA of the Indian Pines,
Pavia University, and Salinas datasets increased by 4.62%, 7.99%, and 2.09%, respectively; when the
number of training samples is 30, the overall accuracies are increased by 0.68%, 2.32%, and 0.10%,
respectively. Another noteworthy phenomenon is that after setting the optimal segmentation scale,
the improvement in OA is more obvious in the Pavia University dataset, and a larger c is usually
required to obtain the optimal OA. As mentioned by Jiang et al. in [33], the texture features in the
Pavia University dataset are more complex, making it more difficult for a single segmentation scale to
accurately utilize its rich spatial information. At the same time, compared to the other two datasets,
the Pavia University dataset requires more segmentation scales to accurately obtain spatial information
for different sizes of objects.
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Figure 6. Effects of segmentation scale ¢ on overall accuracy (OA): (a—c) Indian Pines; (d—f) Pavia
University; and (g-i) Salinas.

3.3. Fusion of Multiscale Classification Results Based on Different Fundamental Images

To demonstrate the effectiveness of fusing multiscale classification results based on different
fundamental images, both the classification accuracies of the fused results obtained based on the three
different fundamental images and the classification accuracy after fusing all the multiscale classification
results are shown in Table 2 (the number of training samples is 5). This study does not recombine the
results of the three fused results. In contrast, based on the three different fundamental images, the
study first separately performs multiscale segmentation, then performs dimensionality reduction and
classification separately, and finally fuses all classification results. Here, the classification accuracies of
the three fused results based on different fundamental images are shown to illustrate the difference in
classification accuracy of multiscale fusion results based on different fundamental images. The PCA,
KPCA, and MNF in Table 2 represent the classification accuracy of the fused results based on the first
PC obtained by PCA, KPCA, and MNF, respectively, and 3M represents the classification accuracy
after fusing all multiscale classification results. Since 10 different sets of training samples were selected
for this study, Table 2 shows the classification results based on different fundamental images under a
certain set of training samples.

As shown in Table 2, for each dataset, three different multiscale fusion results based on three
different fundamental images have different classification accuracies in each category, and no fusion
result can obtain the best classification accuracy in every category. However, when all multiscale
classification results are fused, although the classification accuracy in each category is not all optimal,
the OA, AA, and Kappa are higher than that in multiscale classification results based on a specific
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fundamental image. This result shows that different fundamental images represent the different
main information of hyperspectral images, and for hyperspectral classification, it is an effective and
trustworthy choice to fuse all multiscale classification results based on different fundamental images.

Table 2. Classification accuracy after multiscale fusion when the number of training samples is 5.

Indian Pines Pavia University Salinas
Class PCA KPCA MNF 3M! PCA KPCA MNF 3M PCA KPCA MNF 3M
1 9756 9756 9756 9756 7542 7637 8438 83.76 100.00 100.00 100.00 100.00

2 7730 6859 84.68 7224 94.07 89.83 91.61 9564 100.00 100.00 100.00 100.00
3 86.06 83.88 7927 8691 7994 8873 7474 83.62 100.00 100.00 100.00 100.00
4 97.84 9138 9397 9483 89.74 8339 9408 9415 99.64 9978 99.86 99.86
5 83.89 8159 8326 8347 9925 9933 9940 9940 9731 9749 98.88 97.83
6 99.59 7628 7490 8400 8752 6477 8348 86.62 99.87 9997 99.87 99.92
7 95.65 100.00 100.00 100.00 94.04 9321 97.06 96.00 99.92 99.72 99.50 99.75
8 100.00 100.00 100.00 100.00 90.21 9230 78.68 9244 97.89 100.00 100.00 100.00
9 100.00 100.00 100.00 100.00 79.94 8439 86.73 8896 99.65 99.97 99.97 99.98
10 84.07 8511 85.01 85.63 98.81 9896 97.04 99.08
11 8216 90.78 7245 9135 96.14 9539 100.00 98.12
12 9354 7279 3520 88.61 86.73 9995 100.00 98.23
13 99.50 9950 99.50 99.50 9824 97.04 97.15 97.69
14 8095 99.76  99.92 100.00 98.12 93.05 9399 9577
15 76.64 7953 7559 7717 9575 9953 99.90 99.93
16 9545 9773 86.36 94.32 99.06 100.00 100.00 99.89

OA(%) 8537 8550 8059 8798 8892 8477 88.08 9175 98.07 99.44 9954 99.57

AA(%) 90.64 89.03 8548 9097 8779 8581 8780 9118 9795 9880 99.13 99.13

Kappa 0.8340 0.8344 0.7802 0.8629 0.8539 0.7987 0.8433 0.8908 0.9785 0.9944 0.9948 0.9953
! The classification accuracy after fusing all multiscale classification results based on the three different fundamental

images: the first principal components obtained by principal component analysis (PCA), kernel PCA (KPCA) and
minimum noise fraction (MNF).

4. Discussion

4.1. Comparison with the State-of-the-art Approaches

The classification maps of the three public datasets obtained by the proposed SuperKPCA and
MSuperKPCA methods, as well as the methods used for comparison, are shown in Figures 7-9.
Here, only the classification maps obtained when the number of training samples is 30 are shown.
Similar to the previous section, since this study selected 10 different training samples, Figures 7-9
show the classification maps obtained under one set of training samples. SPCA(g) and MSPCA (k)
represent the classification maps obtained by SuperPCA and MSuperPCA proposed in the previous
study [33], respectively. Notably, the fundamental images used by these two methods are the first
PCs obtained by PCA. When obtaining the classification maps of (g) and (k), the optimal number of
superpixels is selected experimentally from the 20 candidate superpixels given above, and the optimal
segmentation scale c is also selected from 0 to 12 by experiments (for the Indian Pines and Pavia
University datasets, the optimal segmentation scale c is selected from 0 to 8 by experiments to ensure
experimental consistency.). All of the superpixel-based classification maps shown in Figures 7-9 are
based on the optimal number of superpixels and segmentation scales obtained.

First, it can be seen from these classification maps that the superpixel-based dimensionality
reduction method can greatly improve the classification accuracy compared to global PCA (e) and
global KPCA (f). Second, the method based on multiscale segmentation (k-n) can further improve the
classification accuracy compared to the method based on single-scale segmentation (g—j). For these
three datasets, when no superpixel segmentation is performed, the classification accuracy obtained by
KPCA (f) is lower than that obtained by PCA (e); however, when superpixel segmentation is performed,
and the first PC after PCA is used as the fundamental image, the classification accuracy obtained by
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KPCA (h)]) is better than that obtained by PCA (g k). This finding shows that in this experiment, when
superpixel segmentation is performed, compared with PCA, KPCA can obtain better dimensionality
reduction results due to its powerful ability in the field of nonlinear feature extraction.

Moreover, by observing the parts indicated by the white arrows in each (h) classification map
in Figures 7-9, it can be seen that when the first PC after PCA is used as the fundamental image for
segmentation, regardless of whether the method used for dimensionality reduction is PCA or KPCA,
and whether multiscale segmentation is performed, there are classification errors in the parts indicated
by the white arrows (g,h k,1). However, when the first PC obtained by KPCA or MNF is used as the
fundamental image, the parts indicated by the white arrows can be correctly classified (i,j,m,n). This
result indicates that at least in this experiment, although using the first PC obtained by KPCA or MNF
as the fundamental image for segmentation does not always achieve the best OA, it can perform better
in a particular category.

]

(k OA=95.73 (1 0OA=96.71 () OA=95.89 (n OA =96.40 (o OA=97.19

B -ifalfa B ¢rass/pasture oats B vheat
- corn-no till grass/trees - soybean-no till - woods
P corn-min [l grass/pasture-mowed [l soybean-min | | bldg-grass-tree-drives

corn - hay-windrowed I:' soybean-clean stone-steel towers

Figure 7. Classification maps of the Indian Pines dataset: (a) first principal component (PC) obtained
by principal component analysis (PCA); (b) first PC obtained by kernel PCA (KPCA); (c) first PC
obtained by minimum noise fraction (MNF); (d) ground truth; (e) PCA; (f) KPCA; (g) superpixelwise
PCA (SuperPCA, also SPCA); (h) superpixelwise KPCA (SuperKPCA, also SKPCA) based on the first
PC obtained by PCA (P-SKPCA); (i) SKPCA based on the first PC obtained by KPCA (K-SKPCA);
(j) SKPCA based on the first PC obtained by MNF (M-SKPCA); (k) multiscale segmentation-based
SPCA (MSuperPCA, also MSPCA); (1) multiscale segmentation-based SKPCA (MSuperKPCA, also
MSKPCA) based on the first PC obtained by PCA (P-MSKPCA); (m) MSKPCA based on the first PC
obtained by KPCA (K-MSKPCA); (n) MSKPCA based on the first PC obtained by MNF (M-MSKPCA);
and (o) the fusion of all multiscale classification results obtained by MSKPCA based on the three
different fundamental images: the first PCs obtained by PCA, KPCA and MNF (3-MSKPCA).
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Figure 8. Classification maps of the Pavia University dataset: (a) first principal component (PC)
obtained by principal component analysis (PCA); (b) first PC obtained by kernel PCA (KPCA); (c) first
PC obtained by minimum noise fraction (MNF); (d) ground truth; (e) PCA; (f) KPCA; (g) superpixelwise
PCA (SuperPCA, also SPCA); (h) superpixelwise KPCA (SuperKPCA, also SKPCA) based on the first
PC obtained by PCA (P-SKPCA); (i) SKPCA based on the first PC obtained by KPCA (K-SKPCA);
(j) SKPCA based on the first PC obtained by MNF (M-SKPCA); (k) multiscale segmentation-based
SPCA (MSuperPCA, also MSPCA); (1) multiscale segmentation-based SKPCA (MSuperKPCA, also
MSKPCA) based on the first PC obtained by PCA (P-MSKPCA); (m) MSKPCA based on the first PC
obtained by KPCA (K-MSKPCA); (n) MSKPCA based on the first PC obtained by MNF (M-MSKPCA);
and (o) the fusion of all multiscale classification results obtained by MSKPCA based on the fundamental
images: the first PCs obtained by PCA and MNF.

However, this finding is not always the case. For example, in the (h) classification map in Figure 9,
when the first PC after PCA is used as the fundamental image, the part indicated by the blue arrow
has no classification error. However, when the dimensionality reduction is performed based on the
first PC of KPCA or MNEF, there is a classification error in the portion indicated by the blue arrow.
This error further leads to classification errors in the same region in the final fused classification map.
Nevertheless, after fusing the multiscale classification results based on different first PCs, the three
datasets all show the best OAs (0). This finding indicates that in this experiment, the dimensionality
reduction results obtained based on different first PCs are complementary, and the overall classification
performance can be further improved by fusing the multiscale classification results obtained based on
different first PCs.
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Figure 9. Classification maps of the Salinas dataset: (a) first principal component (PC) obtained
by principal component analysis (PCA); (b) first PC obtained by kernel PCA (KPCA); (c) first PC
obtained by minimum noise fraction (MNF); (d) ground truth; (e) PCA; (f) KPCA; (g) superpixelwise
PCA (SuperPCA, also SPCA); (h) superpixelwise KPCA (SuperKPCA, also SKPCA) based on the first
PC obtained by PCA (P-SKPCA); (i) SKPCA based on the first PC obtained by KPCA (K-SKPCA);
(j) SKPCA based on the first PC obtained by MNF (M-SKPCA); (k) multiscale segmentation-based
SPCA (MSuperPCA, also MSPCA); (1) multiscale segmentation-based SKPCA (MSuperKPCA, also
MSKPCA) based on the first PC obtained by PCA (P-MSKPCA); (m) MSKPCA based on the first PC
obtained by KPCA (K-MSKPCA); (n) MSKPCA based on the first PCs obtained by MNF (M-MSKPCA);
and (o) the fusion of all multiscale classification results obtained by MSKPCA based on the three
different fundamental images: the first PC obtained by PCA, KPCA and MNF (3-MSKPCA).

To further illustrate the effectiveness of the proposed method, the OA obtained by the proposed
method on the three datasets when the training samples T are 5, 10, 20, and 30 are shown in Table 3.



Remote Sens. 2019, 11, 1219 18 of 22

It should be noted that all OAs are the average OA obtained using the 10 sets of random training
samples disclosed in the previous study [33], and the process of selecting the optimal number of
superpixels and the segmentation scale c is the same as above when obtaining the OA of SuperPCA
and MSuperPCA. The specific meaning of each method in the table is also consistent with the previous
section. The global column in the table indicates the OA obtained without superpixel segmentation,
and the single-scale and multiscale columns in the table represent the OA obtained by single-scale
superpixel segmentation and multiscale superpixel segmentation, respectively.

Table 3. The OA obtained based on different dimensionality reduction methods when the training
samples T are 5, 10, 20, and 30, respectively.

Global Single-scale Multiscale

T PCA K S P- K- M- MS P- K- M- 3-
PCA PCA SKPCA SKPCA SKPCA PCA MSKPCA MSKPCA MSKPCA MSKPCA

5 4639 4461 7721 7778 73.78 7519 7898 81.38 79.82 80.68 83.56

Indian 10 5565 5685 8649 8654 84.86 8382  87.18 88.03 86.90 87.69 89.15
Pines 20 6270 63.82 9294 9324 91.78 9093 9349 94.20 92.82 93.60 94.85
30 6627 6554 9506 9516 93.69 9427 9518 95.81 95.29 95.71 96.33

5 6526 6004 7543  78.62 77.02 75.67 8429 84.90 83.17 86.99 87.95

Pavia 10 7000 6527 8581 8827 86.54 8921 9161 92.05 91.81 92.84 93.76
Univ. 20 7579 69.38 89.99  92.64 92.00 9392 94.90 94.74 94.20 96.10 95.96
30 7613 69.63 9150 9392 93.26 9505 9575 96.10 95.27 97.01 97.13

5 8187 79.00 9469 9487 99.28 9838  96.87 96.86 99.33 98.87 99.38

Sali 8525 8339 9716  97.33 99.35 9903 97.85 98.16 99.40 99.35 99.41
ANAS o0 8777 85.66  98.66  99.06 99.54 9954  99.03 99.20 99.61 99.60 99.63
30 8924 8714 9922 9932 99.61 9959  99.34 99.41 99.63 99.64 99.71

To facilitate comparison and observation, the optimal OA of the three datasets under different
numbers of training samples is bolded. For PCA and KPCA, Table 3 shows the optimal OA obtained
when the reduced dimensions are set to 5, 10, 20, and 30, respectively. For the other methods, Table 3
shows the OA obtained when the reduced dimension is set to 30. When the number of training samples
is 20 and 30, for the Pavia University dataset, the OA corresponding to 3-MSKPCA is the OA obtained
by fusing the multiscale classification results obtained based on the first PCs of PCA and MNF.

The following conclusions can be drawn from Table 3:

(1) When no superpixel segmentation is performed, KPCA does not perform as well as PCA
in all three datasets in most cases; however, when the first PC of PCA is used as the fundamental
image, the performance of KPCA (P-SKPCA) is generally better than that of PCA (SPCA) when based
on a single segmentation scale. For the Indian Pines, Pavia University, and Salinas datasets, the
classification accuracy obtained by P-SKPCA can be increased by 0.06%—-0.74%, 2.64%—4.23%, and
0.10%—0.41%, respectively, when compared with SPCA. This increase again proves that after using
superpixel segmentation, KPCA can make better use of the nonlinear features that are widely present
in hyperspectral images, thus showing better performance than PCA, and this advantage is most
evident in the Pavia University dataset. This is mainly due to the fact that the texture features of
the Pavia University dataset are more complex than the other two datasets. Therefore, the results
obtained by nonlinear dimensionality reduction are more discriminating than those obtained by linear
dimensionality reduction. When based on multiscale segmentation and using the first PC of PCA as
the fundamental image, KPCA (P-MSKPCA) also outperforms PCA (MSPCA) in more cases.

(2) When using the first PC of KPCA or MNF as the fundamental image, whether based on a
single segmentation scale or multiple segmentation scales, KPCA (K-SKPCA, M-SKPCA, K-MSKPCA,
M-MSKPCA) does not perform as well as PCA (SPCA, MSPCA) in the Indian Pines dataset. However,
KPCA performs generally better than PCA in the Pavia University and Salinas datasets, especially when
based on a single segmentation scale. Moreover, in the Salinas dataset, KPCA’s performance based on
a single segmentation scale (K-SKPCA, M-SKPCA) is even better than that of PCA after multiscale
segmentation (MSPCA). By observing the performance of the proposed method based on single-scale
segmentation and multiscale segmentation, in general, the fundamental image most suitable for the



Remote Sens. 2019, 11, 1219 19 of 22

Indian Pines dataset is the first PC of PCA, the fundamental image most suitable for the Pavia University
dataset is the first PC of MNEF, and the fundamental image most suitable for the Salinas dataset is the
first PC of KPCA. These results suggest that when performing superpixel segmentation, using the
first PC of PCA as the fundamental image does not always achieve optimal dimensionality reduction
results, and the most appropriate fundamental image needs to be determined on a case-by-case basis.
For the Indian Pines, Pavia University, and Salinas datasets, when the most suitable fundamental
image is selected, the classification accuracy obtained by SKPCA can be increased by 0.06%—0.74%,
3.88%—4.37%, and 0.39%—4.85%, respectively, when compared with SPCA; the classification accuracy
obtained by MSKPCA can be increased by 0.66%-3.04%, 1.26%-3.20%, and 0.29%—2.54%, respectively,
when compared with MSPCA.

(3) By observing the last column in Table 3, it can be found that except for the OA of the Pavia
University dataset when the number of training samples is 20, all the OAs obtained by fusing multiscale
classification results based on different fundamental images are higher than those obtained based only
on one fundamental image. For the Indian Pines, Pavia University, and Salinas datasets, except for the
OA of the Pavia University dataset when the number of training samples is 20, the classification accuracy
obtained by 3-MSKPCA can be increased by 0.54%—-2.68%, 0.12%-1.10%, and 0.01%-0.08%, respectively,
when compared with MSKPCA (based on the most suitable fundamental image). This again shows
that the dimensionality reduction results obtained based on different first PCs are complementary, and
the overall classification performance can be further improved by fusing the multiscale classification
results obtained based on different first PCs. Since the classification accuracy obtained by MSPCA is
already high enough in the Salina dataset, the improvement of classification accuracy by 3-MSKPCA is
not obvious in this dataset.

The above conclusions demonstrate the effectiveness of the proposed method once again.

4.2. Running Times

Table 4 reports the time required for the proposed method when performing dimensionality
reduction. Since both PCA and KPCA are unsupervised dimensionality reduction methods, the time
required for the proposed method is independent of the number of training samples. For those
methods based on superpixel segmentation, Table 4 reports the total time required for segmentation
and dimensionality reduction. To facilitate comparison of the different methods, for the three datasets,
the time required for each method when the number of superpixels is set to 30 is reported.

Table 4. Running times of the dimensionality reduction process (in seconds) of the proposed methods
and some comparison methods on the three used datasets.

Dataset PCA KPCA SPCA P-SKPCA K-SKPCA M-SKPCA
Indian Pines 0.1528 0.3637 0.7874 1.6754 1.7500 1.7904
Pavia University 0.6907 1.7024 3.5299 4.6813 5.0714 4.9277
Salinas 0.7874 1.914 3.4234 5.3664 5.8822 5.9086

All approaches were tested on Matlab using an Intel(R) Core (TM) i5-2430M CPU with 2.40 GHz
and a 4-GB memory personal computer with a Windows 10 platform, and the testing time was
measured using a single-threaded Matlab process. Since the kernel parameter o needs to be estimated,
KPCA does not have an advantage in terms of runtime, whether superpixel segmentation is performed,
but the time required for the proposed method is still within an acceptable range.

5. Conclusions

This study proposes a simple but effective unsupervised dimensionality reduction method based
on SuperKPCA. Extensive experiments show that since superpixels can contain both spatial and
spectral information of HSIs, the ability of KPCA to process nonlinear features can be greatly increased
by performing KPCA on each superpixel. Moreover, whether based on single-scale segmentation or
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multiscale segmentation, the proposed method performs better than SuperPCA (by performing PCA
on each superpixel) in most cases. For the Indian Pines, Pavia University, and Salinas datasets, when
the most suitable fundamental image is selected, the classification accuracy obtained by SuperKPCA
can be increased by 0.06%—-0.74%, 3.88%—4.37%, and 0.39%—4.85%, respectively, when compared with
SuperPCA; the classification accuracy obtained by MSuperKPCA (SuperKPCA based on multiscale)
can be increased by 0.66%-3.04%, 1.26%-3.20%, and 0.29%-2.54%, respectively, when compared
with MSuperPCA (SuperPCA based on multiscale). To explore whether the first PC obtained by
PCA is the best fundamental image when performing superpixel segmentation, the differences in
the classification results of the proposed method when the fundamental images are the first PCs of
PCA, KPCA, and MNF, respectively, are compared. Extensive experiments show that the optimal
fundamental images corresponding to different hyperspectral images are different, and by fusing the
dimensionality reduction results obtained based on different fundamental images (3-MSKPCA), the
rich spatial information in HSIs can usually be further utilized, and the dimensionality reduction
performance can usually be further improved. For the Indian Pines, Pavia University, and Salinas
datasets, except for the classification accuracy of the Pavia University dataset when the number
of training samples is 20, the classification accuracy obtained by 3-MSKPCA can be increased by
0.54%-2.68%, 0.12%-1.10%, and 0.01%-0.08%, respectively, when compared with MSuperKPCA (based
on the most suitable fundamental image).

Since the proposed method is based on superpixels, how to determine the number of superpixels
is a very important issue. If the number of superpixels is too large or too small, the rich spatial
information in HSIs cannot be fully utilized. In this study, the optimal number of superpixels was
selected experimentally from a set of candidate numbers. In the future work, how to narrow the range
of candidate numbers, or how to automatically obtain the optimal number of superpixels, will be a
major problem that needs to be solved.
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