Developing Land-Use Regression Models to Estimate PM2.5-Bound Compound Concentrations
Abstract
1. Introduction
2. Methods
2.1. Study Area and Material
2.2. Experimental Methods
2.3. Geospatial Database
2.4. LUR model Development and Validation
3. Experimental Results
3.1. Descriptive Statistics of PM2.5-Bound Compound Concentrations
3.2. LUR Model Assessment
3.3. Spatiotemporal Variations of PM2.5-Bound Compounds
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dockery, D.W.; Pope, C.; Xu, X.; Spengler, J.; Ware, J.; Fay, M.; Ferris, B.; Speizer, F. An association between air pollution and mortality in six U.S. cities. N. Engl. J. Med. 1993, 329, 1753–1759. [Google Scholar] [CrossRef] [PubMed]
- Cascio, W.E.; Katwa, L.C.; Linn, W.S.; Stram, D.O.; Zhu, Y.; Cascio, J.L.; Hinds, W.C. Effects of vehicle exhaust in aged adults riding on Los Angeles Freeways. Am. J. Respir. Crit. Care Med. 2009, 179, A1175. [Google Scholar]
- Spurny, K.R. On the physics, chemistry and toxicology of ultrafine anthropogenic atmospheric aerosols (UAAA): New advances. Toxicol. Lett. 1998, 96, 253–261. [Google Scholar] [CrossRef]
- Bell, M.L.; Belanger, K.; Ebisu, K.; Gent, J.F.; Lee, H.J.; Koutrakis, P.; Leaderer, B.P. Prenatal exposure to fine particulate matter and birth weight:variations by particulate constituents and sources. Epidemiology 2010, 21, 884–891. [Google Scholar] [CrossRef] [PubMed]
- Gehring, U.; Beelen, R.; Eeftens, M.; Hoek, G.; de Hoogh, K.; de Jongste, J.C.; Keuken, M.; Koppelman, G.H.; Meliefste, K.; Oldenwening, M.; et al. Particulate Matter Composition and Respiratory Health: The PIAMA Birth Cohort Study. Epidemiology 2015, 26, 300–309. [Google Scholar] [CrossRef]
- Fairley, D. Daily mortality and air pollution in Santa Clara County, California: 1989–1996. Environ. Health Perspect. 1999, 107, 637–641. [Google Scholar] [CrossRef]
- Burnett, R.T.; Brook, J.; Dann, T.; Delocla, C.; Philips, O.; Cakmak, S.; Vincent, R.; Goldberg, M.S.; Krewski, D. Association between particulate- and gasphase components of urban air pollution and daily mortality in eight Canadian cities. Inhal. Toxicol. 2000, 12, S15–39. [Google Scholar] [CrossRef]
- Ostro, B.; Feng, W.Y.; Broadwin, R.; Green, S.; Lipsett, M. The effects of components of fine particulate air pollution on mortality in California: Results from CALFINE. Environ. Health Perspect. 2007, 115, 13–19. [Google Scholar] [CrossRef]
- USEPA. Air Explorer. Available online: http://www.epa.gov/airexplorer (accessed on 13 December 2006).
- Guerschman, J.P.; Paruelo, J.M.; Bela, C.D.; Giallorenzi, M.C.; Pacin, F. Land cover classification in the Argentine Pampas using multi-temporal Landsat TM data. Int. J. Remote Sens. 2003, 24, 3381–3402. [Google Scholar] [CrossRef]
- Pan, W.C.; Wu, C.D.; Chen, M.J.; Huang, Y.T.; Chen, C.J.; Su, H.J.; Yang, H.I. Fine particle pollution, alanine transaminase, and liver cancer: A Taiwanese prospective cohort study (REVEAL–HBV). J. Natl. Cancer Inst. 2016, 108. [Google Scholar] [CrossRef]
- Wu, C.D.; Chen, Y.C.; Pan, W.C.; Zeng, Y.T.; Chen, M.J.; Guo, Y.L.; Lung, S.C. Land-use regression with long-term satellite-based greenness index and culture-specific sources to model PM2.5 spatial—Temporal variability. Environ. Pollut. 2017, 224, 148–157. [Google Scholar] [CrossRef]
- Wang, R.; Henderson, S.B.; Sbihi, H.; Allen, R.W.; Brauer, M. Temporal stability of land use regression models for traffic-related air pollution. Atmos. Environ. 2013, 64, 312–319. [Google Scholar] [CrossRef]
- Aguilera, I.; Eeftens, M.; Meier, R.; Ducret-Stich, R.E.; Schindler, C.; Ineichen, A.; Phuleria, H.C.; Probst-Hensch, N.; Tsai, M.-Y.; Künzli, N. Land use regression models for crustal and traffic-related PM2.5 constituents in four areas of the SAPALDIA study. Environ. Res. 2015, 140, 377–384. [Google Scholar] [CrossRef] [PubMed]
- Demers, M.N. Fundamentals of Geographic Information Systems; John Wiley Sons, Inc.: New York, NY, USA, 2005. [Google Scholar]
- Wu, Q.; Li, H.Q.; Wang, R.S.; Paulussen, J.; He, H.; Wang, M.; Wang, B.H.; Wang, Z. Monitoring and predicting land use change in Beijing using remote sensing and GIS. Landsc. Urban Plan. 2006, 78, 322–333. [Google Scholar] [CrossRef]
- Nowak, D.J.; Crane, D.E.; Stevens, J.C. Air pollution removal by urban trees and shrubs in the United States. Urban For. Urban Green. 2006, 4, 115–123. [Google Scholar] [CrossRef]
- McDonald, J.D.; Reed, M.D.; Campen, M.J.; Barrett, E.G.; Seagrave, J.; Mauderly, J.L. Health effects of inhaled gasoline Engine emissions. Inhal. Toxicol. 2007, 19, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Burkhardt, J. Hygroscopic particles on leaves: Nutrients or desiccants? Ecol. Monogr. 2010, 80, 369–399. [Google Scholar] [CrossRef]
- Sæbø, A.; Popek, R.; Nawrot, B.; Hanslin, H.M.; Gawronska, H.; Gawronski, S.W. Plant species differences in particulate matter accumulation on leaf surfaces. Sci. Total. Environ. 2012, 427, 347–354. [Google Scholar] [CrossRef]
- Kerckhoffs, J.; Wang, M.; Meliefste, K.; Malmqvist, E.; Fischer, P.A.H.; Janssen, N.; Beelen, R.; Hoek, G. A national fine spatial scale land-use regression model for ozone. Environ. Res. 2015, 140, 440–448. [Google Scholar] [CrossRef]
- Wu, C.D.; McNeely, E.; Cedeño-Laurent, J.G.; Pan, W.C.; Adamkiewicz, G.; Dominici, F.; Candice Lung, S.C.; Su, H.-J.; Spengler, J.D. Linking Student Performance in Massachusetts Elementary Schools with the “Greenness” of School Surroundings Using Remote Sensing. PLoS ONE 2014, 9, e108548. [Google Scholar] [CrossRef]
- Urman, R.; Gauderman, J.; Fruin, S.; Lurmann, F.; Liu, F.; Hosseini, R.; Franklin, M.; Avol, E.; Penfold, B.; Gilliland, F.; et al. Determinants of the spatial distributions of elemental carbon and particulate matter in eight Southern Californian communities. Atmospheric environment. Atmos. Environ. 2014, 86, 84–92. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.J.Y.; Sun, L.; Barrett, O.; Bertazzon, S.; Underwood, F.E.; Johnson, M. Development of land-use regression models for metals associated with airborne particulate matter in a North American city. Atmos. Environ. 2015, 106, 165–177. [Google Scholar] [CrossRef]
- DGB. Close DGB (Directorate General of Budget) National Statistics-Current Index. Available online: http://www.stat.gov.tw/point.asp?index=4 (accessed on 9 August 2018).
- MOTC (Ministry of Transportation and Communications). Vehicle Statistics. Available online: http://www.motc.gov.tw/ch/home.jsp?id=6&parentpath=0 2017 (accessed on 9 August 2018).
- Lung, S.C.C.; Hsiao, P.K.; Wen, T.Y.; Liu, C.H.; Fu, C.B.; Cheng, Y.T. Variability of intra-urban exposure to particulate matter and CO from Asian-type community pollution sources. Atmos. Environ. 2014, 83, 6–13. [Google Scholar] [CrossRef]
- EPA (Environmental Protection Agency). PM2.5 Automatic Monitoring. Available online: http://taqm.epa.gov.tw/pm25/en/PM25A.aspx (accessed on 9 October 2018).
- Kuo, S.C.; Tsai, Y.I.; Sopajaree, K. Emission identification and health risk potential of allergy-causing fragrant substances in PM2.5 from incense burning. Build. Environ. 2015, 87, 23–33. [Google Scholar] [CrossRef]
- Yu, K.P.; Yang, K.R.; Chen, Y.C.; Gong, J.Y.; Chen, Y.P.; Shih, H.C.; Lung, S.-C.C. Indoor air pollution from gas cooking in five Taiwanese families. Build. Environ. 2015, 93, 258–266. [Google Scholar] [CrossRef]
- Liou, R.M.; Huang, S.N.; Lin, C.W. Methane emission from fields with differences in nitrogen fertilizers and rice varieties in Taiwan paddy soils. Chemosphere 2003, 50, 237–246. [Google Scholar] [CrossRef]
- Chou, C.C.-K.; Lee, C.-T.; Yuan, C.S.; Hsu, W.C.; Hsu, S.C.; Liu, S.C. Implications of the chemical transformation of Asian outflow aerosols for the long-range transport of inorganic nitrogen species. Atmos. Environ. 2008, 42, 7508–7519. [Google Scholar] [CrossRef]
- Chou, C.C.K.; Lee, C.T.; Cheng, M.T.; Yuan, C.S.; Chen, S.J.; Wu, Y.L.; Hsu, W.C.; Lung, S.C.; Hsu, S.C.; Lin, C.Y.; et al. Seasonal variation and spatial distribution of carbonaceous aerosols in Taiwan. Atmos. Chem. Phys. 2010, 10, 9563–9578. [Google Scholar] [CrossRef]
- Chow, J.; Watson, J.; Lowenthal, D.H.; Merrifield, T. Comparison of IMPROVE and NIOSH carbon measurements. Aerosol Sci. Technol. 2001, 34, 23–34. [Google Scholar] [CrossRef]
- Zhang, Z.; Friedlander, S.K. A comparative study of chemical databases for fine particle Chinese aerosols. Environ. Sci. Technol. 2000, 34, 4687–4697. [Google Scholar] [CrossRef]
- Ho, C.C.; Chan, C.C.; Cho, C.W.; Lin, H.I.; Lee, J.H.; Wu, C.F. Land use regression modeling with vertical distribution measurements for fine particulate matter and elements in an urban area. Atmos. Chem. 2015, 104, 256–263. [Google Scholar] [CrossRef]
- Hsu, C.Y.; Chiang, H.C.; Chen, M.J.; Chuang, C.Y.; Tsen, C.M.; Fang, G.C.; Tsai, Y.I.; Chen, N.T.; Lin, T.Y.; Lin, S.L.; et al. Ambient PM2.5 in the residential area near industrial complexes: Spatiotemporal variation, source apportionment, and health impact. Sci. Total Environ. 2017, 590, 204–214. [Google Scholar] [CrossRef] [PubMed]
- Bencs, L.; Ravindra, K.; de Hoog, J.; Rasoazanany, E.O.; Deutsch, F.; Bleux, N.; Berghmans, P.; Roekens, E.; Krata, A.; Van Grieken, R. Mass and ionic composition of atmospheric fine paticles over Belgium and their relation with gaseous air pollutant. Environ. Monit. 2008, 10, 1148–1157. [Google Scholar] [CrossRef]
- Heo, J.B.; Hopke, P.K.; Yi, S.M. Source apportionment of PM2.5 in Seoul, Korea. Atmos. Chem. Phys. 2009, 9, 4957–4971. [Google Scholar] [CrossRef]
- Chen, Y.C.; Hsu, C.Y.; Lin, S.L.; Chang-Chien, G.P.; Chen, M.J.; Fang, G.C.; Chiang, H.C. Characteristics of Concentrations and Metal Compositions for PM2.5 and PM2.5-10 in Yunlin County, Taiwan during Air Quality Deterioration. Aerosol Air Qual. Res. 2015, 15, 2571–2583. [Google Scholar] [CrossRef]
- Jedynska, A.; Hoek, G.; Wang, M.; Eeftens, M.; Cyrys, J.; Keuken, M.; Ampe, C.; Beelen, R.; Cesaroni, G.; Forastiere, F.; et al. Development of Land Use Regression Models for Elemental, Organic Carbon, PAH, and Hopanes/Steranes in 10 ESCAPE/TRANSPHORM European Study Areas. Environ. Sci. Technol. 2014, 48, 14435–14444. [Google Scholar] [CrossRef] [PubMed]
- Ban-Weiss, G.A.; McLaughlin, J.P.; Harley, R.A.; Lunden, M.M.; Kirchstetter, T.W.; Kean, A.J.; Strawa, A.W.; Stevenson, E.D.; Kendall, G.R. Long-term changes in emissions of nitrogen oxides and particulate matter from on-road gasoline and diesel vehicles. Atmos. Environ. 2008, 42, 220–232. [Google Scholar] [CrossRef]
- USEPA. User’s Guide/Technical Backgrounddocument for US EPA Region 9’s RSL (Regional Screening Levels) Tables. Available online: http://www. epa.gov/region9/superfund/prg/ (accessed on 17 September 2018).
- Dirgawati, M.; Heyworth, J.S.; Wheeler, A.J.; McCaul, K.A.; Blake, D.; Boeyen, J.; Cope, M.; Yeap, B.B.; Nieuwenhuijsen, M.; Brunekreef, B.; et al. Development of Land Use Regression models for particulate matter and associated components in a low air pollutant concentration airshed. Atmos. Environ. 2016, 144, 69–78. [Google Scholar] [CrossRef]
- De Hoogh, K.; Wang, M.; Adam, M.; Badaloni, C.; Beelen, R.; Birk, M.; Cesaroni, G.; Cirach, M.; Declercq, C.; Dedele, A.; et al. Development of land use regression models for particle composition in twenty study areas in Europe. Environ. Sci. Technol. 2013, 47, 5778–5786. [Google Scholar] [CrossRef]
- Varrica, D.; Bardelli, F.; Dongarra, G.; Tamburo, E. Speciation of Sb in airborne particulate matter, vehicle brake linings, and brake pad wear residues. Atmos. Environ. 2013, 64, 18–24. [Google Scholar] [CrossRef]
- Querol, X.; Viana, M.; Alastuey, A.; Amato, F.; Moreno, T.; Castillo, S.; Pey, J.; de la Rosa, J.; Sánchez de la Campa, A.; Artíñano, B.; et al. Source origin of trace elements in PM from regional background, urban and industrial sites of Spain. Atmos. Environ. 2007, 41, 7219–7231. [Google Scholar] [CrossRef]
- Cheng, K.; Wang, Y.; Tian, H.; Gao, X.; Zhang, Y.; Wu, X.; Zhu, C.; Gao, J. Atmospheric emission characteristics and control policies of five precedent-controlled toxic heavy metals from anthropogenic sources in China. Environ. Sci. Technol. 2015, 49, 1206–1214. [Google Scholar] [CrossRef] [PubMed]
- Mokhtara, M.M.; Taiba, R.M.; Hassima, M.H. Understanding selected trace elements behavior in a coal-fired power plant in Malaysia for assessment of abatement technologies. J. Air Waste Mang. 2014, 64, 867–878. [Google Scholar] [CrossRef]
- Das, R.; Khezri, B.; Srivastava, B.; Datta, S.; Sikdar, P.K.; Webster, R.D.; Wang, X.F. Trace element composition of PM2.5 and PM10 from Kolkata—A heavily polluted Indian metropolis. Atmos. Pollut. Res. 2015, 6, 742–750. [Google Scholar] [CrossRef]
- See, S.W.; Balasubramanian, R. Chemical characteristics of fine particles emitted from different gas cooking methods. Atmos. Environ. 2008, 42, 8852–8862. [Google Scholar] [CrossRef]
- Lafortezza, R.; Carrus, G.; Sanesi, G.; Davies, C. Benefits and well-being perceived by people visiting green spaces in periods of heat stress. Urban. For. Urban. Green. 2009, 8, 97–108. [Google Scholar] [CrossRef]
- Yin, S.; Shen, Z.; Zhou, P.; Zou, X.; Che, S.; Wang, W. Quantifying air pollution attenuation within urban parks: An experimental approach in Shanghai, China. Environ. Pollut. 2011, 159, 2155–2163. [Google Scholar] [CrossRef]
- Kim, J.Y.; Song, C.H.; Ghim, Y.S.; Won, J.G.; Yoon, S.C.; Carmichael, G.R.; Woo, J.H. An investigation on NH3 emissions and particulate NH+ 4 -NO− 3 formation in East Asia. Atmos. Environ. 2006, 40, 2139–2150. [Google Scholar] [CrossRef]
- Genberg, J.; Hyder, M.; Stenstrom, K.; Bergstrom, R.; Simpson, D.; Fors, E.O.; Jonsson, J.A.; Swietlicki, E. Source apportionment of carbonaceous aerosol in southern Sweden. Atmos. Chem. Phys. 2011, 11, 11387–11400. [Google Scholar] [CrossRef]
- Yttri, K.E.; Simpson, D.; Nojgaard, J.K.; Kristensen, K.; Genberg, J.; Stenstrom, K.; Swietlicki, E.; Hillamo, R.; Aurela, M.; Bauer, H.; et al. Source apportionment of the summer time carbonaceous aerosol at Nordic rural background sites. Atmos. Chem. Phys. 2011, 11, 13339–13357. [Google Scholar] [CrossRef]
- Laothawornkitkul, J.; Taylor, J.E.; Paul, N.D.; Hewitt, C.N. Biogenic volatile organic compounds in the Earth system. New Phytol. 2009, 183, 27–51. [Google Scholar] [CrossRef] [PubMed]
- Monson, R.K.; Jones, R.T.; Rosenstiel, T.N.; Schnitzler, J.P. Why only some plants emit isoprene. Plant Cell Environ. 2013, 36, 503–516. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, J.; Makes, O.; Ondracek, J.; Cusack, M.; Talbot, N.; Vodicka, P.; Kubelova, L.; Zdimal, V. Single Usage of a kitchen degreaser can alter indoor aerosol composition for days. Environ. Sci. Technol. 2017, 51, 5907–5912. [Google Scholar] [CrossRef] [PubMed]
- Amato, F.; Viana, M.; Richard, A.; Furger, M.; Prevot, A.S.H.; Nava, S.; Lucarelli, F.; Bukowiecki, N.; Alastuey, A.; Reche, C.; et al. Size and time-resolved roadside enrichment of atmospheric particulate pollutants. Atmos. Chem. Phys. 2011, 11, 2917–2931. [Google Scholar] [CrossRef]
- Lui, K.H.; Bandowe, B.A.; Ho, S.S.; Chuang, H.C.; Cao, J.J.; Chuang, K.J.; Lee, S.C.; Hu, D.; Ho, K.F. Characterization of chemical components and bioreactivity of fine particulate matter (PM2.5) during incense burning. Environ. Pollut. 2016, 213, 524–532. [Google Scholar] [CrossRef] [PubMed]
- Lung, S.C.C.; Kao, M.C. Worshipper’s exposure to particulate matter in two temples in Taiwan. J. Air Waste Manag. Assoc. 2003, 53, 130–135. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Lau, K.; Ng, E. Incorporating wind availability into land use regression modelling of air quality in mountainous high-density urban environment. Environ. Res. 2017, 157, 17–29. [Google Scholar] [CrossRef]
- Wolf, K.; Cyrys, J.; Harciníkovà, T.; Gua, J.; Kusch, T.; Hampel, R.; Schneider, A.; Peters, A. Land use regression modeling of ultrafine particles, ozone, nitrogen oxides and markers of particulate matter pollution in Augsburg, Germany. Sci. Total Environ. 2017, 579, 1531–1540. [Google Scholar] [CrossRef]
Variable Category | Variable | Data Description | Expected Direction | Data Type | Unit | Buffer |
---|---|---|---|---|---|---|
Taiwan EPA database | PM10 (season) | cold and warm seasonally average | (+) | raster data | μg/m3 | - |
PM10 (year) | annual average | (+) | raster data | μg/m3 | - | |
PM10 episode a (season) | number of days for PM10 > 125 μg/m3 | (+) | numerical data | day/season | - | |
PM10 episode a (year) | number of days for PM10 > 125 μg/m3 | (+) | numerical data | day/year | - | |
Central Weather Bureau database | Temperature (season) | cold and warm seasonally average | (+/−) | raster data | °C/season | - |
Temperature (year) | annual average | (+/−) | raster data | °C/year | - | |
Rain fall (season) | cold and warm seasonally average | (−) | raster data | mm/season | - | |
Rain fall (year) | annual average | (−) | raster data | mm/year | - | |
UV (season) | cold and warm seasonally average | (+) | raster data | nm/year | - | |
UV (year) | annual average | (+) | raster data | nm/year | - | |
Humidity | annual average | (−) | raster data | %/year | - | |
Institute of Transportation digital map data (2006) | Local road | rural road, city road, industrial road and unnamed road | (+) | area source | m b | 25–5000 m |
Main road | National highway, provincial highway, county road, city highway | (+) | area source | m b | 25–5000 m | |
All types of road | Local road + Mayor road | (+) | area source | m b | 25–5000 m | |
Industrial Development Bureau industrial database (2010) | Industrial park | distance to the nearest landmark | (−) | area source | m b | 25–5000 m |
The second national land-use survey (2007) | Purely residential area | - | (+) | Area source | m2 b | 25–5000 m |
Commercial area | - | (+) | Area source | m2 b | 25–5000 m | |
Industrial area | - | (+) | Area source | m2 b | 25–5000 m | |
Residential mixed with commercial area | Residential area + Industrial area | (+) | Area source | m2 b | 25–5000 m | |
All types of residential area | Purely residential area + Residential mixed with commercial area | (+) | Area source | m2 b | 25–5000 m | |
Rice farm | - | (+/−) | Area source | m2 b | 25–5000 m | |
Fruit orchard | - | (+/−) | Area source | m2 b | 25–5000 m | |
Mixed farm | Rice farm + Fruit orchard | (+/−) | Area source | m2 b | 25–5000 m | |
Water body | - | (−) | Area source | m2 b | 25–5000 m | |
Park and greenbelt | - | (+) | Area source | m2 b | 25–5000 m | |
Railway | distance to the measurement sites | (+) | Area source | m | - | |
National airport | distance to the measurement sites | (−) | Area source | m | - | |
Sandstone field | distance to the measurement sites | (+) | Area source | m | - | |
Point of interest (POI) landmark database (2008) | Temple | - | (+) | Point source | count | 25–5000 m |
Chinese restaurant | Chinese restaurant + Night market | (+) | Point source | count | 25–5000 m | |
Taiwan EPA environmental database | Crematorium | distance to the measurement sites | (−) | Point source | m | - |
Crematorium | distance to the measurement sites | (−) | Area source | m | - | |
Industrial sewage treatment plant | distance to the measurement sites | (−) | Area source | m | - | |
Domestic sewage treatment plant | distance to the measurement sites | (−) | Area source | m | - | |
Digital terrain model with 20 m resolution | Altitude | elevation above sea level of the measurement site | (+) | raster data | m | - |
Vegetation indices from remote sensing | NDVI | - | (−) | raster data | unitless | - |
Location of coal-fired power plants | Coal-fired power plants | distance to the measurement sites | (−) | Point source | m | - |
Variable | Log_EC | Log_OC | Log_SO42− | Log_NH4+ | Log_NO3− |
---|---|---|---|---|---|
Intercept | 0.93 | 0.22 | 0.85 | 0.37 | 0.74 |
Local road_175 | 3.92 × 10−4 (0.81) | ||||
All type of road_25 | 0.011 (0.09) | ||||
Residential mixed with Commercial area_500 | 9.55 × 10−7 (0.09) | ||||
Temple_5000 | 0.002 (0.03) | ||||
Domestic sewage treatment plant a | −3.86 × 10−6 (0.12) | ||||
Rice farm mixed with fruit orchard_125 | 1.04 × 10−4 (0.02) | ||||
Rice farm mixed with fruit orchard_175 | −2.25 × 10−4 (0.73) | −2.43 × 10−7 (0.50) | |||
Rice farm mixed with fruit orchard_5000 | 3.64 × 10−7 (0.17) | ||||
Forest_1000 | −7.19 × 10−8 (0.59) | ||||
NDVI_100 | −0.129 (0.05) | ||||
PM10 (year) | 0.004 (0.05) | 0.003 (0.06) | 0.02 (0.71) | ||
Rainfall (year) | −0.02 (0.02) | −0.017 (0.01) | |||
Temperature (year) | −0.02 (0.04) | −0.002 (0.05) | |||
UV | 0.08 (0.01) | ||||
R2 for model | 0.86 | 0.92 | 0.63 | 0.87 | 0.90 |
Adj R2 for model | 0.85 | 0.90 | 0.60 | 0.86 | 0.89 |
LOOCV R2 | 0.78 | 0.84 | 0.53 | 0.82 | 0.83 |
RMSE | 0.36 | 0.06 | 0.06 | 0.15 | 0.16 |
Variable | Log_Ba | Log_Cu | Log_Mn | Log_Sb | Log_Zn |
---|---|---|---|---|---|
Intercept | −3.43 | −0.04 | −3.75 | −2.99 | 1.82 |
Main road_4000 | 9.55 × 10−6 (0.13) | ||||
All type of residential area_1750 | 2.53 × 10−9 (0.43) | ||||
Industrial area mixed with commercial area_500 | −1.27 × 10−5 (0.05) | ||||
Industrial area mixed with commercial area_1250 | 2.18 × 10−6 (0.75) | ||||
Industrial sewage treatment plant a | 4.40 × 10−6 (0.15) | ||||
Fossil fuel power plant a | 0.19 (0.63) | ||||
NDVI_1750 | −0.61 (0.36) | ||||
NDVI_125 | −0.438 (0.03) | ||||
PM10 episode b | 0.008 (0.03) | 0.01 (0.12) | |||
PM10 (annual average) | 0.019 (0.51) | ||||
Temperature | 0.001 (0.06) | ||||
UV | 0.009 (0.11) | 0.89 (0.20) | 0.04 (0.04) | ||
R2 for model | 0.64 | 0.60 | 0.76 | 0.82 | 0.78 |
Adj R2 for model | 0.61 | 0.55 | 0.71 | 0.79 | 0.75 |
LOOCV R2 | 0.55 | 0.50 | 0.64 | 0.73 | 0.66 |
RMSE | 0.24 | 0.0041 | 0.21 | 0.22 | 0.03 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsu, C.-Y.; Wu, C.-D.; Hsiao, Y.-P.; Chen, Y.-C.; Chen, M.-J.; Lung, S.-C.C. Developing Land-Use Regression Models to Estimate PM2.5-Bound Compound Concentrations. Remote Sens. 2018, 10, 1971. https://doi.org/10.3390/rs10121971
Hsu C-Y, Wu C-D, Hsiao Y-P, Chen Y-C, Chen M-J, Lung S-CC. Developing Land-Use Regression Models to Estimate PM2.5-Bound Compound Concentrations. Remote Sensing. 2018; 10(12):1971. https://doi.org/10.3390/rs10121971
Chicago/Turabian StyleHsu, Chin-Yu, Chih-Da Wu, Ya-Ping Hsiao, Yu-Cheng Chen, Mu-Jean Chen, and Shih-Chun Candice Lung. 2018. "Developing Land-Use Regression Models to Estimate PM2.5-Bound Compound Concentrations" Remote Sensing 10, no. 12: 1971. https://doi.org/10.3390/rs10121971
APA StyleHsu, C.-Y., Wu, C.-D., Hsiao, Y.-P., Chen, Y.-C., Chen, M.-J., & Lung, S.-C. C. (2018). Developing Land-Use Regression Models to Estimate PM2.5-Bound Compound Concentrations. Remote Sensing, 10(12), 1971. https://doi.org/10.3390/rs10121971