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Abstract: The nurse rostering problem is an important search problem that features many 
constraints. In a nurse rostering problem, these constraints are defined by processes such as 
maintaining work regulations, assigning nurse shifts, and considering nurse preferences. A 
number of approaches to address these constraints, such as penalty function methods, have been 
investigated in the literature. We propose two types of hybrid metaheuristic approaches for solving 
the nurse rostering problem, which are based on combining harmony search techniques and 
artificial immune systems to balance local and global searches and prevent slow convergence 
speeds and prematurity. The proposed algorithms are evaluated against a benchmarking dataset of 
nurse rostering problems; the results show that they identify better or best known solutions 
compared to those identified in other studies for most instances. The results also show that the 
combination of harmony search and artificial immune systems is better suited than using single 
metaheuristic or other hybridization methods for finding upper-bound solutions for nurse 
rostering problems and discrete optimization problems. 

Keywords: nurse rostering problem; harmony search; artificial immune systems; hybridization; 
metaheuristics 

 

1. Introduction 

The problem of staff scheduling has been studied extensively over the past several decades [1]. 
It has been recognized as an important problem in academic and industrial fields. In today’s 
fast-paced business environment, corporations have attempted to achieve two goals to gain a 
competitive advantage: improving customer satisfaction and reducing costs. Staff scheduling 
problem requires achieving both these goals. Personnel scheduling is especially complex when we 
consider both shift scheduling and day-off scheduling for organizations that operate seven days a 
week (e.g., airlines, hotels, call centers, and hospitals). Furthermore, when demand fluctuates over 
small intervals compared to the shift length, a generic allocation model becomes less useful for 
personnel scheduling, and an advanced model for allocation that includes overlapping shifts is 
needed. Thus, most personnel scheduling problems are non-deterministic polynomial-time-hard 
(NP-hard) problems for which various solution methods including mathematical models and 
heuristic approaches have been proposed.  

Nurse rostering problems (NRPs) have been proven to be NP-hard; they are composed of many 
soft constraints that result in additional penalties when violated, along with a few hard constraints [2–4]. 
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Ernst et al. [5] conducted a comprehensive review of the main research direction and solving method 
for such problems for facilitating companies that attempt to distribute their operations in ways that 
are cost effective, observant of industrial regulations, and attentive to individuals’ work preferences. 
Cheang et al. [6] conducted a review of the literature on modeling and solution methodologies for 
NRPs that highlighted the specificity of the solution approaches and availability of benchmark 
problems for the various basic models of NRPs. Van den Bergh et al. [1] reviewed the literature on 
staff scheduling problems and identified various perspectives from which the existing literature 
could be classified and published work in the relevant fields of interest could be traced. They also 
identified trends and areas for future research. Ernst et al. [7] reviewed the rostering problem in 
specific application areas, as well as models and algorithms that have been reported in the literature 
for the solution to this problem; they also surveyed commonly used methods for solving the 
rostering problem. Burke et al. [8] described and critically evaluated solution approaches that span 
the interdisciplinary spectrum, from operation research techniques to artificial intelligence methods, 
and surveyed the strengths and weaknesses of the literature in outlining the key issues that must be 
addressed in future nurse rostering research. 

Over the years, researchers have used various techniques to implement solutions for NRPs, 
including exact methods, metaheuristic approaches, and others. Exact methods have been used 
successfully to find complete solutions [9,10]. Unfortunately, such deterministic solutions require a 
great deal of computational time and resources to handle the many constraints involved. Thus, this 
approach is somewhat limited. Metaheuristic approaches that produce relatively good solutions 
within reasonable computational time frames are well known to be effective methods.  

Examples of the use of metaheuristics to solve NRPs include application of genetic algorithms 
[11–13], simulated annealing [14], tabu search [15], and ant colony optimization [16].  

In contrast to applications of a single metaheuristic, methods that combine two and more 
metaheuristics have also been introduced. Bai et al. [17] proposed an approach that combined a 
genetic algorithm and simulated annealing. In their study, simulated annealing was used as the local 
search method within a genetic algorithm procedure. Burke et al. [18] hybridized a steepest-descent 
improvement with a genetic algorithm and demonstrated that this hybridization was an adequate 
approach for solving NRPs. Awadallah et al. [19] proposed a hybridized approach for the 
application of the hill climbing optimization method to an artificial bee colony. In this approach, the 
process of the employed bee operator is replaced by that of the hill-climbing optimizer. The 
performance of the proposed method was evaluated by comparing with other hybridization 
approaches published in the literature.  

Most previous studies on this subject have focused on solving NRPs by combining 
population-based metaheuristics (P-metas) for global search and either single-solution-based 
metaheuristics (S-metas) or local optimizers for local search [20–22]. Based on the advantage of the 
hybrid methods proposed in the literature [23,24], we propose a hybrid approach that involves the 
use of harmony search (HS) and artificial immune systems (AIS), both of which are well-known 
P-metas.  

The advantages of a hybrid approach involving HS and AIS in solving optimization problems 
include the fact that HS is an emerging algorithm for swarm intelligence optimization and heuristic 
global search algorithms. This approach generates a new individual via cooperation among 
individuals, and its local searching ability is enhanced by fine-tuning the mechanism employed in 
HS. Although the use of HS may be suitable because it is simple, robust, and converges rapidly, it 
only updates when the solution generated is not better than the worst solution in the existing 
harmony memory (HM) pool during the current iteration.  

AISs are universal optimal algorithms that impose few constraint conditions in an optimization 
problem. The use of AIS has yielded significant progress in many fields, such as function 
optimization, machine learning, pattern recognition, image disposal, and combinatorial 
optimization. However, AIS also has some shortcomings such as low convergence speed and 
prematurity. Recent studies have shown that the combination of AIS and other searching 
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algorithms, especially random searching algorithms, can greatly improve the performance of AIS 
[25,26]. 

To the best of our knowledge, little research has been conducted on the application of AIS to the 
solution of NRPs, and few studies have mentioned the application of HS [27–29]. Awadallah et al. 
[27] evaluated only specific instances defined in the 2010 International Nurse Rostering 
Competition. Their study did not investigate how HS would perform for large or complex NRP 
instances. To overcome this limitation, Hadwan et al. [28] used a real dataset from a large hospital in 
Malaysia to assess the performance of HS and evaluated nurse rostering benchmark problems using 
their advanced nurse rostering model (ANROM) [30]. 

We compared the results of previous research on ANROM with our proposed method to 
demonstrate the efficiency and effectiveness of the proposed method in producing high-quality 
solutions in shorter amounts of time.  

The remainder of this paper is organized as follows. The basic explanation and definition of 
NRPs is presented in Section 2, and HS and AIS for NRPs are presented in Section 3. The procedure 
for hybridization and combination of HS and AIS in solving NRPs is presented in detail in Section 4. 
The computational experiments conducted and their results are discussed in Section 5. Conclusions 
and future research directions are presented in Section 6. 

2. Problem Definition 

NRPs involve producing a periodic (weekly, fortnightly, or monthly) duty roster for nursing 
staff that is subject to a variety of hard and soft constraints such as legal regulations, personnel 
policies, nurse preferences, and other requirements specific to a given hospital. In addition, a 
schedule avoiding difficult-to-follow shift patterns should be constructed and the work contract of 
each employee should be respected as much as possible. The term “work contract” refers to the 
agreement signed between the nurse and the hospital, which addresses requests for days or shifts on 
and off, working on weekends, maximum acceptable consecutive workdays, etc. Some work 
contract elements can be considered as legal requirements. It is worth considering the fairness of the 
problem from the work contracts perspective. For example, contract violations should be distributed 
evenly among all available nursing staff.  

We studied various instances of NRPs based on the ANROM, one of the representative 
benchmark datasets of NRPs, and we demonstrated the superiority of the proposed algorithm using 
these benchmark data. ANROM, which was first implemented in a hospital in 1995, was the initial 
version, but the system evolved to deal with new and more complex real-world problems that 
appear continually. More than 40 hospitals in Belgium, some of which contain approximately 100 
wards, replaced their time-consuming manual scheduling with this system. Although the problem is 
user-defined to a large extent, the software must be efficient in different settings. Each specific 
hospital ward should be able to formulate its problem within the restrictions of the model described 
in the following sections.  

The constraints of NRPs can be divided into two classes: hard constraints and soft constraints; 
hard constraints are those that must always be satisfied. To address real-world hospital situations, 
ANROM considers the following set of hard constraints: a maximum of one assignment per shift 
type per day, which precludes the assignment of the same shift to a member of the ward more than 
once per day; and personnel requirements, which are usually expressed in terms of the minimum 
number of personnel required and the preferred number of personnel to meet the patients’ needs. 
ANROM considers a high number of soft constraints, as shown in Table 1. They should preferably 
be satisfied, but violations can be tolerated when penalties are included in the evaluation function. 
The main goal of this study was to minimize the sum of the penalties that occur when soft 
constraints are violated and hard constraints are satisfied through experiments conducted using 
ANROM data. Table 1 presents the types of constraints indicated by each problem.  
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Table 1. Hard and soft constraints considered by ANROM instances. 

Hard Constraints
A Nurse Can Only Work One Shift Per Day, Nurse Skill Levels and Categories, Nurses’ Requirements 

Soft Constraints 
Instance 

1.8.1 2.46.1 3.46.1 3.46.2 4.13.1 5.4.1 6.13.1 7.10.1 8.13.1 A.12.1 A.12.2 
Minimum time between 

two assignments 
√ √ √ √ √ √ √ √ √ √ √ 

Nurses workload 
(minimum/maximum) 

√ √ √ √ √ √ √ √ √ √ √ 

Maximum number of 
consecutive working days 

√ √ √ √ √ √ √ √ √ √ √ 

Maximum number of 
assignments on  
bank holidays 

√ √ √ √ √ √ √  √ √ √ 

Maximum number of 
consecutive free days 

  √ √ √ √    √ √ 

Minimum number of 
consecutive free days 

√ √ √ √ √ √ √  √ √ √ 

Maximum number  
of consecutive  

working weekends 
√ √ √ √ √ √ √ √ √ √ √ 

Maximum number of 
working weekends  

in four weeks 
√ √ √ √ √ √ √  √ √ √ 

Assign  
complete weekends 

√ √ √ √ √ √ √ √ √ √ √ 

Assign identical shift types 
during the weekend 

√    √ √    √ √ 

No night shift before  
a free weekend 

√ √ √ √ √ √    √ √ 

Assign two free days after 
night shifts 

 √ √ √ √ √  √  √ √ 

Maximum number of 
assignments per day  

of the week 
√ √ √ √ √ √ √  √ √ √ 

Number of consecutive 
shift types 

√ √ √ √ √ √ √ √ √ √ √ 

Maximum number of 
assignments for each  

shift type 
√ √ √ √ √ √ √ √ √ √ √ 

Maximum number of a 
shift type per week 

√ √ √ √ √ √ √ √ √ √ √ 

Maximum number of 
hours worked 

√ √ √ √ √ √ √ √ √ √ √ 

Minimum number of 
hours worked 

 √ √ √ √ √    √ √ 

Maximum number of 
hours per week 

        √ √ √ 

Restriction on the 
succession of shift types 

√ √ √ √ √ √ √ √ √ √ √ 

Alternative skill category √ √ √ √ √ √ √ √ √ √ √ 
Tutorship √ √ √ √ √ √    √ √ 

People not allowed to 
work together 

√ √ √ √ √ √    √ √ 

Day off √ √ √ √   √ √ √ √ √ 
Day on  

(Requested assignments) 
 √ √ √        

Shift off  √ √ √   √  √ √ √ 
Shift on  

(Requested assignments) 
      √  √ √ √ 

  



Sustainability 2017, 9, 1090  5 of 19 

3. Harmony Search and Artificial Immune Systems for NRPs 

3.1. Harmony Search for NRPs 

Harmony search, which was originally proposed by Lee and Geem [31] and Geem et al. [32], is a 
phenomenon-mimicking algorithm (also known as a metaheuristic algorithm) that was inspired by 
the improvisation process of musicians described in 2001. It has exhibited relatively good 
performance in various research areas such as city design, routing problem, RNA structure problem, 
and planetary migration. From an optimization perspective, each musician is represented by a 
decision variable and the best harmony achievable when playing together is the global optimum. A 
harmony search consists of the harmony memory (HM), which is similar to the population of a 
genetic algorithm; the harmony memory size (HMS), which reflects the size of the HM; and three 
operators, i.e., memory considering (MC), pitch adjusting (PA), and random selecting (RS), which 
are used to generate the new harmony. 

The HS procedure consists of the following five main steps.  

Step 1: Initialize the problem and parameters 
Step 2: Initialize the harmony memory 
Step 3: Improvise a new harmony 
Step 4: Update the harmony memory 
Step 5: Repeat Steps 3 to 4 until a predefined stopping condition is reached 

For application of HS to NRPs, we designed HS vectors with a two-dimensional array structure. 
The array’s columns represent individual days, and the array’s rows represent individual nurses. A 
solution in the HM is two-dimensionally expressed as a specific day and nurse, as shown in Figure 1. 
The HS consists of three operators: MC, PA, and RS. Operators in the HS need to be carefully 
designed to avoid violating hard constraints. In the example illustrated in Figure 1, the information 
from two day shifts on Day 1 and Day 3 in HM 1 are first allocated to Day 1 and Day 3 of the new 
solution from the current HM, respectively. Here, the shift of Day 1 is made by harmony memory 
and considering the rate (HMCR) and pitch adjusting rate (PAR) leads to the shift of Day 3. 

 
Figure 1. Application of Harmony Search (HS) operators for Nurse rostering problems (NRPs). 

For the HS operator, Day 1 in HM 2 is copied to Day 1 of the new solution. For the PA operator, 
Day 3 shift information for the new solution is produced from Day 3 information for HM, which is 
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randomly chosen in the HM. The shifts of randomly selected nurses are then swapped with other 
shifts on the same day. The frequency of swapping depends on the size of the instance. The RS 
operation is performed by swapping between two nurses on the same day (Day 5 in Figure 1) that 
are randomly selected in the new solution. 

3.2. Artificial Immune Systems for NRPs 

Artificial immune systems have been studied by Hunt and Cooke [33], Dasgupta [34], McCoy 
and Devarajan [35], Dasgupta [36], Hofmeyr and Forrest [37], and Hofmeyr [38], among others, and 
have been widely applied to engineering problems. These systems, well known to be efficient 
searching algorithms applicable for various types of combinatorial and sequence optimization 
problems, are inspired by theoretical immunology and observations of the principles and models of 
immune functions.  

We utilized a clonal selection algorithm that extracts only the cloning and mutation steps of an 
entire AIS procedure for efficient hybridization with HS. The clonal selection algorithm is based on 
the principles of extraction from clonal expansion and affinity maturation [39]. The basic mechanism 
of clonal selection is that, when an antigen (Ag) is detected, antibodies (Abs) that become aware of 
this Ag will proliferate by a clonal process. The immune response is specific for each Ag. 

The immune cells reproduce along with a recreating Ag until the desired results are achieved in 
fighting this Ag. Some of the newly cloned cells will be distinguished by plasma cells and memory. 
Because of the mutation procedure, the plasma cells promote genetic variation from their origins to 
reproduce new Abs. The memory cells are in charge of the immunologic response against future Ag 
attack. The best cells with the highest affinity to the Ag in the next population remain.  

The following steps describe the basic procedure of the clonal selection algorithm [40,41]:  

Step 1: Generate a random initial population of antibodies 
Step 2: Compute the affinity of each of the antibodies 
Step 3: Create new clones by cloning all cells in the population of antibodies  
Step 4: Maturate cloned antibodies by mutation  
Step 5: Evaluate affinity values of the clone population  
Step 6: Select the best antibodies to compose the new antibody population  
Step 7: Repeat Steps 3 to 6 until a predefined stopping condition is reached  

Figure 2 illustrates the clonal selection mechanism used to improve global search for solving 
NRPs. After evaluating the affinity of each clone population, some of the antibodies with the best 
affinity values will clone to a degree that is inversely proportional to their affinities. Figure 3 
illustrates the procedure for cloning and mutation of a single antibody. The cloned antibodies 
mutate to reproduce a mature clone population. To prevent generation of infeasible solutions, three 
swapping-based mutation operators with the same probability are applied. Case (a) in Figure 3 
illustrates a “swap-shifts” situation in which the shifts of two nurses are exchanged for each of the 
selected days. Case (b) illustrates a “swap-nurses” situation in which two nurses are selected and 
then their schedules are partially or completely exchanged.  
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Figure 2. Application of artificial immune systems (AIS) operators for NRPs. 

 
Figure 3. Application of three mutations of AIS for NRPs. 

Case (c) illustrates the mutation, “swap-days”, in which shifts between two differentiated days 
for each of the selected nurses are exchanged. Unlike the “swap-shifts” and “swap-nurses” 
scenarios, this scenario includes a repair process because of the possibility of violation of hard 
constraints. Figure 3 illustrates an example in which, if the first and fourth days of nurse 1 are 
interchanged, a repair would be performed by changing the shifts of nurses 3 and 4 to maintain 
feasibility. 

4. Hybrid and Cooperative Strategies Using Harmony Search and Artificial Immune Systems 

4.1. Why We Hybridize and Cooperate HS and AIS 

In achieving combinatorial optimization using metaheuristic algorithms, a major concern is 
how to maintain the balance between two major components: diversification and intensification. 
These two components seem to contradict each other, but their balanced combination is crucially 
important to the success of obtaining a qualified solution. Proper diversification guarantees that the 
search in the solution space can effectively explore as many locations and regions as possible. It also 
ensures that the evolving system will not be trapped at biased local optima. If the diversification is 
too strong, it may explore too many locations in a stochastic manner and subsequently slow the 
convergence of the algorithm. Conversely, appropriate intensification exploits the history and 
experience of the search process. It also permits the convergence to be accelerated when necessary by 
reducing randomness and limiting diversification.  
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To reconcile these two conflicting components, hybrid methods using P-meta and S-meta 
heuristics have been used in many studies. P-metaheuristics are utilized to search among the diverse 
solutions in the solution space in the first and subsequent iterations. S-metaheuristics are used in the 
final iteration to generate solutions in the neighborhood of current ones discovered using the 
P-metaheuristics.  

In traditional HS, a new harmony vector is generated using three rules, namely HMC, RS, and 
PA. A decision variable of harmony vectors is selected based on either an HMC rule with a 
probability of HMCR or an RS rule with a probability of 1-HMCR. A PA rule with a probability of 
(HMCR PAR) is then utilized to change the values of the decision variables from the HMC. Except 
for the PA rule, application of an HMC rule for the generation of a new harmony from the existing 
HMS and RS rules that generate a new harmony randomly is difficult for balancing intensification 
and diversification.  

Many studies have attempted to develop advanced harmony searchers to maintain a balance 
between intensification and diversification. A typical and popular method is the improved harmony 
search (IHS) algorithm introduced by Mahdavi et al. [42], which employs enhanced fine-tuning 
characteristics and an enhanced HS convergence rate. As shown in Equations (1) and (2), the 
algorithm’s performance is improved by dynamically increasing the pitch adjusting rate and the 
bandwidth (BW) as the iteration progresses.  

max min
min

max

PAR PARPAR(t) PAR t
t


    (1) 

max

min max

BW t(ln( ) )
BW t

maxBW(t) BW e


   (2) 

Although effective control of BW can be useful in balancing intensification and diversification, 
the characteristics of sequential optimization with main constraints such as NRPs result in the 
limited application of BW because of the possibility of generating worse solutions. The application of 
fine-tuning by PAR also has some drawbacks in early iterations in which the value of PAR is low. In 
spite of the critical importance of the PA rule in balancing exploitation and exploration, low values 
of PAR in early iterations forces premature convergence.  

Highly reliable harmony search (HRHS) has been proposed by Taherinejad [43] to overcome a 
critical issue in IHS that may result in premature convergence in early iterations. As shown in 
Equation (3), HRHS guarantees diversification of good solutions that are generated in early 
iterations by increasing the probability of generation of neighbor solutions and vice versa. HRHS 
still has major drawbacks in the final iteration, where the value of PAR is close to zero and may 
result in stagnation in convergence of the algorithm.  

max min
max

max

PAR PARPAR(t) PAR t
t


    (3) 

Subsequently, effectively maintaining the balance between exploration and exploitation is 
difficult for dynamically changing PAR. 

Another problem of HS is that the solution generated using the three rules is updated only 
when its value is better than the worst of the existing solutions. Thus, if the solution generated is not 
better, the existing HM does nothing. Even if a new harmony is better than the worst solution, only a 
new harmony is added to the existing HM. This is the weakness of HS in achieving the desired 
results from diversification. Hence, a new harmony is highly dependent on the solution 
characteristics of each harmony that consists of the existing HM. When premature convergence 
occurs, the HS method is limited in that it continually searches only local solutions. To overcome 
some of the limitations mentioned earlier, we propose two methods for combining HS and AIS. 
Determining how and when to update the existing HM is essential to the success of this approach.  
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4.2. How We Hybridize and Cooperate HS and AIS 

The first method, “Hybrid harmony search with artificial immune systems” (HHSAIS), and its 
procedure are shown in Figure 4. The existing HM is updated whenever a new harmony generated 
by three rules is not better than the worst harmony. A new harmony not being better than the worst 
harmony means that the current HM may be composed of similar solutions, and this makes it 
extremely difficult to search the solution space thoroughly. In such a case, the insertion and support 
of AIS with cloning and mutation can help renew the existing HM.  

 
Figure 4. Application procedure for hybrid harmony search with artificial immune systems. 

The second approach involves good solutions that are reproduced from both HS and AIS being 
handed over to the opposite population during iterations while each population of the two 
algorithms is maintained separately. We refer to this as the cooperative harmony search and 
artificial immune systems (CHSAIS) approach. CHSAIS is a way to update each existing population 
of HS and AIS through the injection of the opposite metaheuristics. Its core differences, compared 
with HHSAIS, are the sequential execution of HS and AIS and the exchange of good solution(s) 
generated from each other. The good solution that is generated in HS procedure is transferred to the 
AIS procedure to generate better solutions through the clonal and mutation operation. Conversely, 
the good solutions from the AIS procedure are delivered to the HM procedure to update the existing 
HM pool and help improve the new harmony.  

By combining these two algorithms, we expect that the population of each metaheuristic during 
its iterations will be updated through the injection of solution(s) generated by the other party and 
that in the generation of a solution in the next iteration of each algorithm, the combination of the 
existing population and the injected good solution will have a higher probability of achieving a 
better solution. Figure 5 illustrates the procedure for applying CHSAIS.  
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Figure 5. Application procedure for cooperative harmony search and artificial immune systems. 

5. Computational Experiments 

NRP benchmarking problems were defined and addressed for the purposes of validating and 
demonstrating the applicability of the two proposed hybrid strategies using HS and AIS. For this 
purpose, four algorithms were applied: HS, IHS, HHSAIS, and CHSAIS. The experiments were 
programmed in the C# language and carried out using a personal computer with an Intel G500 
2.60-GHz processor with 4 GB of RAM and a Windows 7 operating system. As shown in Table 2, a 
total 18 cases—3–5 cases for each algorithm—were considered.  

Cases 1 to 5 of HS were performed by changing HMCR and PAR. Cases 6 to 8 were performed 
by changing HMCR while performing IHS within the range of 0.1–0.9 of PAR. Cases 9 to 13 and 14 to 
18 were performed by change the AIS parameters while applying HHSAIS and CHSAIS, 
respectively, as for Case 6. Each experimental case was replicated 30 times for each benchmarking 
set within the maximum number of iterations, which was set to 50,000 for all runs. The HMS, HS, 
and AIS population sizes were set to 10, 30, and 50, respectively, based on the number of nurses. 

The experimental results are summarized in Tables 3–6 in terms of the best, mean, and worst 
values, standard deviations, and running times for the various cases considered. The best and mean 
values for each case are highlighted in bold. Table 7 shows that among the best cases for each of the 
four algorithms, the two proposed algorithms, HHSAIS and CHSAIS, yield results that are superior 
to those achieved by the HS and IHS algorithms, respectively. Figure 6a–c presents the typical 
solution history graphs by iteration for the four algorithms and for the BCV-5.4.1, BCV-7.10.1, and 
BCV-3.46.1 benchmarking sets. It can be observed that the evolution curves of the CHSAIS algorithm 
descend much faster and reach better solution than those of the other algorithms. 
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Table 2. Experimental design of proposed algorithms for different cases. 

Algorithm Applications Cases 
Harmony Search Artificial Immune Systems 
HMCR PAR Threshold Proportion New Clone Proportion

HS 

Case 1 0.99 0.1 - - 
Case 2 0.95 0.1 - - 
Case 3 0.90 0.1 - - 
Case 4 0.99 0.4 - - 
Case 5 0.99 0.7 - - 

IHS 
Case 6 0.99 0.1–0.9 - - 
Case 7 0.95 0.1–0.9 - - 
Case 8 0.90 0.1–0.9 - - 

HHSAIS 

Case 9 0.99 0.1–0.9 0.3 0.3 
Case 10 0.99 0.1–0.9 0.2 0.3 
Case 11 0.99 0.1–0.9 0.1 0.3 
Case 12 0.99 0.1–0.9 0.3 0.2 
Case 13 0.99 0.1–0.9 0.3 0.1 

CHSAIS 

Case 14 0.99 0.1–0.9 0.3 0.3 
Case 15 0.99 0.1–0.9 0.2 0.3 
Case 16 0.99 0.1–0.9 0.1 0.3 
Case 17 0.99 0.1–0.9 0.3 0.2 
Case 18 0.99 0.1–0.9 0.3 0.1 

 
A comparison of the results with those reported in the literature shows that the CHSAIS algorithm 

proposed in this paper usually yields better results than either HS and IHS alone. The results summarized 
in Table 8 show that CHSAIS yields competitive results in some instances. For the BCV-1.8.1, BCV-A12.1, 
and BCV-A12.2 cases, we obtained better results than the algorithms reported in the literature. For the 
BCV-4.13.1, BCV-5.4.1, BCV-7.10.1, and BCV-8.13.1 cases, CHSAIS yields the same best known results as 
the other methods. In the cases of BCV-2.46.1, BCV-3.46.2, and BCV-6.13.1, the results are slightly worse 
than the best known results. The average results for CHSAIS were compared to those reported in the 
literature. As the results show, CHSAIS matched the best average results obtained by other approaches in 
four instances and achieved better average results for six of eleven instances. 
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Table 3. Results of harmony search (HS) (Bold, optimal solutions). 

Instances 
Case 1 Case 2 Case 3 Case 4 Case 5

Best Mean Worst Std. Time Best Mean Worst Std. Time Best Mean Worst Std. Time Best Mean Worst Std. Time Best Mean Worst Std. Time 
BCV-1.8.1 252 264.9 388 31.4 114 252 346.3 478 103.4 115 252 961.6 1348 357.5 102 252 263.3 422 43.1 140 252 252 252 0 131  

BCV-2.46.1 2089 2259.1 2468 85.3 528 3191 3819.3 4110 226.6 444 6989 8710.9 10,310 872.6 357 1966 2189.8 2444 104.0 626 1875 2091.0 2448 116.1 697  
BCV-3.46.1 3567 3732.0 3838 74.8 845 5623 6248.1 6542 224.8 515 13,222 14,941 16,543 869.3 401 3536 3752.4 3895 92.5 760 3557 3762.5 3870 95.0  733  
BCV-3.46.2 1137 1616.3 1928 159.7 549 3734 4628.4 5903 431.6 510 10,056 11,380 12,845 782.1 506 1171 1566.4 2038 226.6 541 1121 1587.7 1980 196.9 539  
BCV-4.13.1 10 23.8 64 20.5 165 10 32.6 64 21.4 150 10 52.4 148 40.8  122 10 45.9 105 38.4 161 10 38.6 108 34.1  161  
BCV-5.4.1 48 48 48 0 60  48 48 48 0 55  48 48 48 0 54  48 48 48 0 56  48 48 48 0 55  

BCV-6.13.1 858 880.0 949 35.1 154 840 987.0 1117 72.2 141 916 2305.5 2772 552.4 115 816 871.7 911 41.9 151 810 861.9 908 43.4  151  
BCV-7.10.1 381 381 381 0 162 381 475.3 607 103.4 164 877 1200.4 1477 177.8 146 381 398 551 51.9 200 381 381 381 0 187  
BCV-8.13.1 148 170.0 239 35.1 171 160 296.9 425 68.5 155 1058 1790.0 2128 253.8 127 148 203.3 243 42.4 167 148 200.1 246 43.1  167  
BCV-A.12.1 2120 2366.8 2630 165.2 342 2803 3640.4 3984 346.2 319 6260 7602.9 9979 985.9 260 2078 2255.5 2663 148.9 450 1887 2101.2 2468 135.4 502  
BCV-A.12.2 2632 2892.9 3254 186.1 414 3326 4204.6 4822 342.5 326 6757 8107.4 10479 1015.8 274 2582 2800.7 3297 176.0 490 2381 2646.1 2968 147.3 542  

Table 4. Results of improved harmony search (IHS) (Bold, optimal solutions). 

Instances 
Case 6 Case 7 Case 8

Best Mean Worst Std. Time Best Mean Worst Std. Time Best Mean Worst Std. Time 
BCV-1.8.1 252 252 252 0 124 252 309.2 462 89.3 110 252 830.7 1336 445.4 88 
BCV-2.46.1 1701 1947.1 2050 89.9 753 2992 3768.9 4043 227.1 636 5801 7184.7 8184 506.8 509 
BCV-3.46.1 3478 3723.0 3827 89.3 873 5865 6643.8 6916 227.5 447 13,530 14,885.0 15,417 471.4 381 
BCV-3.46.2 1247 1561.5 2177 206.4 508 3872 4555.6 5749 387.8 473 9877 11,410.1 13,129 625.8 511 
BCV-4.13.1 10 21.9 64 19.1 199 10 28.1 84 24.1 186 10 27.5 52 16.4 153 
BCV-5.4.1 48 48 48 0 65 48 48 48 0 63 48 48 48 0 62 
BCV-6.13.1 806 840.1 897 37.3 186 806 927.8 997 51.9 174 889 1963.0 2320 368.7 143 
BCV-7.10.1 381 381 381 0 178 381 438.2 591 89.3 157 856 1205.0 1465 158.5 126 
BCV-8.13.1 148 182.1 239 37.3 206 158 272.9 339 46.3 193 1017 1410.2 1676 175.9 158 
BCV-A.12.1 1772 1900.5 2362 105.4 501 2550 3614.6 4012 316.9 447 5702 7025.8 8075 462.9 360 
BCV-A.12.2 2272 2402.9 2862 104.7 537 3067 4117.6 4512 314.4 463 6348 7533.5 8575 448.3 363 
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Table 5. Results of hybrid harmony search with artificial immune systems (Bold, optimal solutions). 

Instances 
Case 9 Case 10 Case 11 Case 12 Case 13

Best Mean Worst Std. Time Best Mean Worst Std. Time Best Mean Worst Std. Time Best Mean Worst Std. Time Best Mean Worst Std. Time 
BCV-1.8.1 252 252 252 0 268 252 252 252 0 282 252 252 252 0 255 252 252 252 0 258 252 252 252 0 261 

BCV-2.46.1 1723 1868.7 2440 122.0 762 1688 1839.4 2374 116.5 761 1734 1903.6 2378 108.8 718 1693 1825.3 2469 135.5 729 1720 1852.1 2687 168.1 738 
BCV-3.46.1 3580 3830.3 3948 94.8 854 3627 3802.1 3921 93.5 865 3646 3870.3 3993 104.1 884 3660 3786.7 3924 79.6 876 3540 3807.2 3949 99.1 837 
BCV-3.46.2 954 971.1 1025 12.4 1771 947 975.8 1058 18.9 993 950 979.7 1029 15.8 1050 947 976.3 1014 15.4 1233 964 1001.9 1132 29.4 1360 
BCV-4.13.1 10 13 38 7.5 284 10 13.2 36 7.6 281 10 13.2 36 7.3 274 10 12.9 38 7.3 283 10 13.2 34 6.8 276 
BCV-5.4.1 48 48 48 0 160 48 48 48 0 152 48 48 48 0 149 48 48 48 0 158 48 48 48 0 152 

BCV-6.13.1 824 852.8 883 26.5 266 814 841.2 887 32.5 264 794 828.2 882 39.8 257 798 840.9 883 40.7 264 805 839.6 916 23.7 260 
BCV-7.10.1 381 381 381 0 383 381 381 381 0 403 381 381 381 0 364 381 381 381 0 368 381 381 381 0 372 
BCV-8.13.1 148 196.5 239 40.6 294 148 187.3 243 41.2 292 148 183.9 238 40.1 284 148 194.9 239 43.0 293 148 170.1 233 32.1 286 
BCV-A.12.1 1659 1912.9 2316 115.7 584 1695 1843.7 2174 88.5 576 1710 1948.9 2267 120.3 544 1752 1883.8 2181 93.9 551 1632 1902.7 2199 109.6 561 
BCV-A.12.2 2200 2417.1 2816 112.0 552 2056 2341.9 2674 99.5 561 2008 2445.0 2767 137.9 591 2165 2383.8 2681 98.1 578 2188 2408.6 2699 101.6 537 

Table 6. Results of cooperative harmony search and artificial immune systems (Bold, optimal solutions). 

Instances 
Case 14 Case 15 Case 16 Case 17 Case 18

Best Mean Worst Std. Time Best Mean Worst Std. Time Best Mean Worst Std. Time Best Mean Worst Std. Time Best Mean Worst Std. Time 
BCV-1.8.1 252 252 252 0 278 252 252 252 0 254 252 252 252 0 255 252 252 252 0 254 252 252 252 0 263 

BCV-2.46.1 1618 1704.9 1877 50.7 733 1621 1713.5 1782 49.4 731 1601 1690.5 1800 57.2 719 1593 1686.6 1791 45.2 752 1607 1726.3 1977 73.2 763 
BCV-3.46.1 3429 3603.4 3705 71.5 902 3490 3617.7 3725 70.8 857 3345 3584.6 3693 74.7 834 3312 3492.4 3654 91.1 902 3430 3612.2 3753 81.9 885 
BCV-3.46.2 933 943.2 962 6.1 1826 925 935.9 945 5.7 1117 920 944.9 965 10.0 957 902 913.3 928 9.3 1356 931 955.1 977 12.9 1896 
BCV-4.13.1 10 10.8 18 2.4 271 10 10.4 18 1.6 277 10 10.5 14 1.2 274 10 10 11 0.2 276 10 10.1 11 0.3 275 
BCV-5.4.1 48 48 48 0 148 48 48 48 0 145 48 48 48 0 147 48 48 48 0 159 48 48 48 0 173 

BCV-6.13.1 800 820.5 879 33.9 256 803 831.2 885 37.2 262 798 828.3 885 38.6 259 792 808.8 877 27.4 261 797 835.4 884 39.7 260 
BCV-7.10.1 381 381 381 0 397 381 381 381 0 363 381 381 381 0 364 381 381 381 0 363 381 381 381 0 375 
BCV-8.13.1 148 174.0 235 35.5 281 148 182.6 241 40.9 287 148 183.2 241 39.5 284 148 165.7 234 29.9 286 148 190.4 240 40.7 285 
BCV-A.12.1 1609 1778.5 1882 70.8 534 1574 1764.7 1873 83.0 514 1558 1732.0 1854 73.1 518 1491 1659.9 1787 81.9 533 1606 1782.1 1910 76.3 588 
BCV-A.12.2 2109 2245.1 2382 79.1 531 2074 2274.7 2374 89.2 542 1998 2209.4 2316 72.8 523 1998 2162.9 2287 82.5 576 2098 2285.9 2410 80.1 607 
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Table 7. Comparison of results by representative cases (Bold, optimal solutions). 

Instances 
Case 5 (HS) Case 6 (IHS) Case 12 (HHSAIS) Case 17 (CHSAIS)

Best Mean Time Best Mean Time Best Mean Time Best Mean Time 
BCV-1.8.1 252 252 131 252 252 124  252 252 258  252 252 254  

BCV-2.46.1 1875 2091 697 1701 1947 753  1693 1825.3 729  1593 1686.6 752  
BCV-3.46.1 3557 3763 733 3478 3723 873  3660 3786.7 876  3312 3492.4 902  
BCV-3.46.2 1121 1588 539 1247 1562 508  947 976.33 1233  902 913.3 1356  
BCV-4.13.1 10 38.6 161 10 21.9 199  10 12.867 283  10 10 276  
BCV-5.4.1 48 48 55 48 48 65  48 48 158  48 48 159  

BCV-6.13.1 810 861.9 151 806 840.1 186  798 840.93 264  792 808.8 261  
BCV-7.10.1 381 381 187 381 381 178  381 381 368  381 381 363  
BCV-8.13.1 148 200.1 167 148 182.1 206  148 194.87 293  148 165.7 286  
BCV-A.12.1 1887 2101 502 1772 1900 501  1752 1883.8 551  1491 1659.9 533  
BCV-A.12.2 2381 2646 542 2272 2403 537  2165 2383.8 578  1998 2162.9 576  

 

 
Figure 6. Evolution of average penalty value by algorithm.
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Table 8. Comparison of CHSAIS results and other metaheuristic methods (Bold, optimal solutions). 

Instances 
CHSAIS (Proposed) A1 A2 A3 A4 

Best Mean Best Mean Best Mean Best Mean Best Mean
BCV-1.8.1 252 252 270 272.6 272 288 252 253 256 261 
BCV-2.46.1 1593 1686.6 1612 1630.2 1572 1587 1572 1572 1572 1572 
BCV-3.46.1 3312 3492.4 3380 3391.6 3565 3631 3351 3357 3364 3387 
BCV-3.46.2 902 913.3 905 909.8 908 911 894 894 900 902 
BCV-4.13.1 10 10 11 12 12 45 10 10 10 10 
BCV-5.4.1 48 48 48 48 48 136 48 48 48 48 
BCV-6.13.1 792 808.8 796 869 964 1060 784 784 875 930 
BCV-7.10.1 381 381 386 411.4 381 387 381 382 381 381 
BCV-8.13.1 148 165.7 158 164.4 148 149 148 148 148 148 
BCV-A.12.1 1491 1659.9 2210 2491.8 1880 2239 1600 1733 1640 1843 
BCV-A.12.2 1998 2162.9 1998 2223.6 2528 2812 2180 2321 2465 2562 

A1, Harmony search by Hadwan et al. [28]; A2, Scatter search using hill climber by Burke et al. [44]; 
A3, Scatter search using variable-depth search by Burke et al. [44]; A4, Memetic algorithm by Burke 
et al. [18]. 

In addition, we did experiments with INRC 2010 instances [45] for comparing among our 
proposed and previous works. Table 9 show the gaps among the results of our proposed and 
previous works published previously. The results lead that our proposed is superior over the other 
ones in solving the NRP. 

Table 9. Comparison of CHSAIS results and other meta-heuristic methods on benchmark NRPs 
(Bold, best known solutions). 

Instances Best Known 
CHSAIS

B1 Best B2 Best 
Best Mean

Sprint_Early01 56 56 58.5 56 58 
Sprint_Early02 58 58 60.5 58 60 
Sprint_Early03 51 51 53.7 51 53 
Sprint_Early04 59 59 61.8 59 62 
Sprint_Early05 58 58 61.0 58 59 

Medium_Early01 240 244 247.3 245 270 
Medium_Early02 240 241 247.4 245 275 
Medium_Early03 236 238 243.6 242 265 
Medium_Early04 237 242 244.4 240 263 
Medium_Early05 303 308 311.1 308 334 

Long_Early01 197 197 205.1 197 256 
Long_Early02 219 219 226.4 229 299 
Long_Early03 240 242 249.3 240 286 
Long_Early04 303 303 311.0 303 356 
Long_Early05 284 284 291.9 284 337 

B1, Hybrid Artificial Bee Colony Algorithms by Awadallah et al. [19]; B2, Global best harmony 
search by Awadallah et al. [29]. 

Table 10 shows the comparative results between CHSAIS and general GA. As you can see, 
despite the various changes of parameters of GA, the results lead to our algorithm being superior to 
all cases of GA. Because of having randomness during iterations, the corresponding t-test was 
conducted to assess the statistical significance is determined by the p-value.  
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Table 10. Comparative results between CHSAIS and Genetic Algorithms (Bold, optimal solutions). 

Instances 

CHSAIS 
(Proposed) 

GA-1  GA-2  GA-3  GA-4  GA-5  
CRate: 0.99/MRate: 0.1 CRate: 0.95/MRate: 0.1 CRate: 0.90/MRate: 0.1 CRate: 0.99/MRate: 0.4 CRate: 0.99/MRate: 0.7 

Best Mean Best Mean 
Significance 
Probability 

Best Mean 
Significance 
Probability 

Best Mean 
Significance 
Probability 

Best Mean 
Significance 
Probability 

Best Mean 
Significance 
Probability 

BCV-1.8.1 252 252 252 282.6 0.000275 252 381.1 0.000004 285 1090.9 0.000000 252 281.8 0.001488 252 273.1 0.000068 
BCV-2.46.1 1593 1686.6 2258 2786.5 0.000000 3567 4581.9 0.000000 7794 10745.1 0.000000 2194 2698.5 0.000000 1999 2548.6 0.000000 
BCV-3.46.1 3312 3492.4 3674 4523 0.000002 6166 7348.9 0.000000 14,635 17,718.3 0.000000 3605 4479.9 0.000001 3478 4547.2 0.000000 
BCV-3.46.2 902 913.3 1424 1984.3 0.000000 3872 5560.9 0.000000 11,464 14,124.4 0.000000 1446 1884.9 0.000000 1350 1894.4 0.000000 
BCV-4.13.1 10 10 10 24 0.000790 10 32.7 0.000003 10 52.5 0.000004 10 46.4 0.000012 10 36.5 0.000032 
BCV-5.4.1 48 48 48 48 - 48 48 - 48 48 - 48 48 - 48 48 - 
BCV-6.13.1 792 808.8 865 955.8 0.000000 933 1068.1 0.000000 976 2515.3 0.000000 837 961.3 0.000000 821 943.5 0.000000 
BCV-7.10.1 381 381 381 395.1 0.000001 381 492.3 0.000003 1130 1254.4 0.000000 381 406.2 0.021185 381 385 0.019940 
BCV-8.13.1 148 165.7 228 483 0.000000 267 357.9 0.003998 1058 1790 0.000000 155 209.5 0.000000 149 201.9 0.000004 
BCV-A.12.1 1491 1659.9 2310 2830.4 0.000000 2925 4456.8 0.000000 6723 9098.9 0.000000 2146 2822.1 0.000000 2042 2564.4 0.000000 
BCV-A.12.2 1998 2162.9 2705 3404.6 0.000000  3661.0 5124.5 0.000000 7124.0 9757.4 0.000000 2779.0 3496 0.000000 2534 3251.4 0.000000  

Crate, Crossover Rate; MRate, Mutation Rate.
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6. Conclusions 

In this paper, two strategies in applying two population based metaheuristics, named HHSAIS 
and CHSAIS, is designed. We approach HHSAIS to solve NRP because, even though the new 
solution generated from HS procedure is not better than the worst existing HM, we expect that AIS 
can make it a better solution by searching neighbor solutions through cloning and mutation 
operator. Unlike local search, which provides pure exploitation without exploration, the 
hybridization of HS and AIS can be better harmony in dealing with the NPR’s nature of the search 
space for the highly constrained optimization problem. 

The proposed methods were applied in combination with general HS procedures to newly 
updated HM and sequential executions of HS and AIS, with solution exchanges. We evaluated the 
various methods in terms of instances of NRP benchmarking collected from ANROM. 

The experimental results using HHSAIS demonstrate justification of our beliefs. Second is 
CHSAIS, which is cooperative of HS and AIS. In this approach, both algorithms operate individually 
and solutions generated from each algorithm are exchanged in the opposite population every 
iteration. Through this approach, we expect that, even if the computation time is longer than HS 
alone and CHSAIS, it has significant advantages as the solutions are swapped between each other 
from opposite algorithm, thus can actively explore different search space regions. Clearly, the 
CHSAIS matched the best average results obtained by other approaches in four instances and 
achieved better average results for six of eleven instances by other comparative methods. The fact 
that the proposed CHSAIS has the ability to explore the solution search space of the NPR in different 
ways to generate desired solutions could be an exploratory for researchers in the future.  

In future research, we will test the superiority of our algorithm by applying it to real hospital 
data and we will attempt to generalize our algorithm to solve various combinatorial and sequential 
optimization problems. 
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