Spatial and Temporal Differentiation of Carbon Emission Efficiency and the Impact of Green Technology Innovation in Hubei Province
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Research Methods
2.3.1. Super-Efficient SBM Model
2.3.2. Panel Data Regression Model
2.3.3. Dynamic Panel Generalized Method of Moments (GMM)
3. Results and Analysis
3.1. A Study of the Temporal and Spatial Differentiation of Carbon Emission Efficiency in Hubei Province
3.1.1. Time Series Analysis of Carbon Emission Efficiency in Hubei Province
3.1.2. Spatial Differentiation of Carbon Emission Efficiency in Hubei Province
3.2. Empirical Study into the Influence of Green Technological Innovation on Carbon Emission Efficiency in Hubei Province
3.2.1. Variable Selection
3.2.2. Model Calculation and Results
- Stability test
- 2.
- Full sample regression
- 3.
- Empirical analysis of time lags
- 4.
- Endogeneity test and robustness test
4. Discussion
4.1. Time Series of Carbon Emission Efficiency in Hubei Province
4.2. Spatial Differences in Carbon Emission Efficiency in Hubei Province
4.3. Mechanism of the Impact of Green Technological Innovation on Carbon Emission Efficiency in Hubei Province
4.4. The Influence of Green Technological Innovation on Carbon Emission Efficiency in Hubei Province Exhibits a Temporal Lag
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xi, J.P. Speech at the general debate of the 75th session of the United Nations General Assembly. In Proceedings of the Seventy-Fifth Session of the United Nations General Assembly, Beijing, China, 16 September 2020–15 September 2021. [Google Scholar]
- Dong, F.; Li, X.H.; Long, R.Y.; Liu, X.Y. Regional carbon emission performance in China according to a stochastic frontier model. Renew. Sustain. Energy Rev. 2013, 28, 525–530. [Google Scholar] [CrossRef]
- Du, K.R.; Zou, C.Y. Regional Disparity, Affecting Factors and Convergence Analysis of Carbon Dioxide Emission Efficiency in China: On Stochastic Frontier Model and Panel Unit Root. Zhejiang Soc. Sci. 2011, 11, 32–43+156. [Google Scholar]
- Ramanathan, R. Combining indicators of energy consumption and CO2 emissions: A cross-country comparison. Int. J. Global Energy 2002, 17, 214–227. [Google Scholar] [CrossRef]
- Kang, P. Comparative analysis of parametric and non-parametric methods for economic efficiency research. Econ. Forum 2005, 139–140. [Google Scholar] [CrossRef]
- Sun, X.; Liu, X. Spatiotemporal evolution and influencing factors of urban carbon emission efficiency in China: Based on heterogeneous spatial stochastic frontier model. Geogr. Res. 2023, 42, 3182–3201. [Google Scholar]
- Zhang, C.; Chen, P. Industrialization, urbanization, and carbon emission efficiency of Yangtze River Economic Belt-empirical analysis based on stochastic frontier model. Environ. Sci. Pollut. Res. Int. 2021, 28, 66914–66929. [Google Scholar] [CrossRef]
- Hu, W.N.; Xi, N.; Wang, W.T.; Zhu, R.R.; Xiao, J.C. Spatial differences and dynamie evolution of distribution of human resources for health inChina: An empirical study based on Dagum Gini Coefficient Decomposition and KernelDensity Estimation. Chin. J. Health Policy 2022, 15, 17–23. [Google Scholar]
- Węglarczyk, S. Kernel density estimation and its application. In Proceedings of the XLVIII Seminar of Applied Mathematics, Kraków, Poland, 9–11 September 2018. [Google Scholar]
- Zhang, N.; Sun, F.C.; Hu, Y.L. Spatio-temporal Evolution, Regional Differences, and Influencing Factors of Carbon Emission Efficiency in the Yangtze River Economic Belt. Res. Environ. Yangtze Basin 2024, 33, 1325–1339. [Google Scholar]
- Yang, Q.K.; Wang, L.; Lü, L.G.; Li, P.X.; Fan, Y.T.; Zhu, G.L.; Wang, Y.Z. Regional Differences and Spatial Spillover Effects of Urban Carbon Emission Efficiency in Yangtze River Delta, China. Environ. Sci. 2025, 46, 19–29. [Google Scholar]
- Huang, L.L.; Wang, Y.; Zhang, C.; Huang, Y.M. A spatial-temporal decomposition analysis of C02 emissions in Fujian Southeast Triangle Region. China Environ. Sci. 2020, 40, 2312–2320. [Google Scholar]
- Lian, Y.; Su, D.; Shi, S. Carbon Peak Prediction in Fujian Province Based on Combined STIRPAT and CNN-LSTM Models. Environ. Sci. 2025, 46, 10–18. [Google Scholar]
- Tian, Z.Y.; Dong, Z.; Dong, Z.Y.; Dong, X.; Zhang, J.Q.; Tang, J.X.; Xing, P. Predicting and decoupling analysis of transportation peak carbon emissions in Guanzhong Plain urban agglomeration based on panel data modelling. China Environ. Sci. 2024, 44, 5901–5911. [Google Scholar]
- Du, K.R.; Li, J.L. Towards a green world: How do green technology innovations affect total-factor carbon productivity. Energy Policy 2019, 131, 240–250. [Google Scholar] [CrossRef]
- Li, J.K.; Ma, J.J.; Wei, W. Study on Regional Differences of Energy Carbon Emission Efficiency in Eight Economic Areas of China. J. Quant. Tech. Econ. 2020, 37, 109–129. [Google Scholar]
- Yang, H.C.; Zhong, S.; Li, L. Green Technology Innovation and Carbon Emission Efficiency: An Impact Mechanism Analysis and the Rebound Effect. Sci. Technol. Prog. Policy 2023, 40, 99–107. [Google Scholar]
- Zhou, C.; Liu, W.; Ling, S.; Yan, J.; Wang, Y. Spatial Effect of Urban Green Technology Innovation on Carbon Emissions in Yangtze River Economic Belt. Res. Environ. Yangtze Basin 2024, 33, 1833–1843. [Google Scholar]
- Fang, Z.N. Assessing the impact of renewable energy investment, green technology innovation, and industrialization on sustainable development: A case study of China. Renew. Energy 2023, 205, 772–782. [Google Scholar] [CrossRef]
- Wang, H.Q.; Hao, W.W. Impact of high-tech industrial agglomeration on the efficiency of green innovation in China. China Soft Sci. 2022, 8, 172–183. [Google Scholar]
- Li, Z.G.; Yang, Y.H. Green Technology Innovation-drive Green Development in Yellow River Basin: Based on the Perspective of Green Total Factor Productivity. J. Gansu Sci. 2022, 34, 129–135. [Google Scholar]
- Yan, J.J.; Jie, Q.G. Mechanisms of policy intervention for China’s transformation of the low-carbon economy. J. Clean. Prod. 2025, 487, 144550. [Google Scholar] [CrossRef]
- Baz, K.; Zhu, Z. Life cycle analysis of green technologies: Assessing the impact of environmental policies on carbon emissions and energy efficiency. Geosci. Front. 2025, 16, 102004. [Google Scholar] [CrossRef]
- Zhao, X.C.; Nong, L.C.; Zhou, Y. Green finance, government intervention and regional carbon emission efficiency. Stat. Decis. 2023, 39, 149–154. [Google Scholar]
- Dong, H.; Yan, Z.; Zhang, J. Does green technology innovation improve carbon emission efficiency? Evidence from energy-intensive enterprises in China. Environ. Dev. Sustain. 2024. [Google Scholar] [CrossRef]
- Zheng, R.J.; Cheng, Y. lmpacts of innovation factor agglomeration on carbon emission efficiency in the Yellow River Basin. Geogr. Res. 2024, 43, 577–595. [Google Scholar]
- Xu, Y.Q.; Cheng, Y.; Wang, J.J. The impact of green technological innovation on the spatiotemporal evolution of carbon emission efficiency of resource-based cities in China. Geogr. Res. 2023, 42, 878–894. [Google Scholar]
- Wang, Z.F.; Huang, D.C. Comparison of transportation carbon emission efficiency and its influencing factors between Yangtze River Economic Belt and Yellow River Basin. Econ. Geogr. 2023, 1–15. Available online: https://oversea.cnki.net/KCMS/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=JJDL20230830001&uniplatform=OVERSEA&v=iFkzsnJGIzX7odVHYtq1OCV2SM6mNE2m6RgX3LbIcYht_LAuMc3kbyqW9w1DoZGH (accessed on 7 April 2025).
- Zhang, G.T.; Jia, N. Measurement and Spatial Correlation Characteristics of Carbon Emission Efficiency in China’s Construction Industry. Sci. Technol. Manag. Res. 2019, 39, 236–242. [Google Scholar]
- Tian, C.S.; Chen, Y. China’s provincial agricultural carbon emissions measurement and low carbonization level evaluation:Based on the application of derivative indicators and TOPSIS. Nat. Resour. J. 2021, 36, 395–410. [Google Scholar]
- Huang, D.C.; Shen, X.M.; Zhu, Y. Spatio-temporal Evolution and Influencing Factors of Carbon Emission Efficiency of Manufacturing Industry in Yangtze River Economic Belt. Res. Environ. Yangtze Basin 2023, 32, 1113–1126. [Google Scholar]
- Qian, Z.Q.; Yang, L.K. Economic Growth, Openness and Carbon Emission Efficiency in East Asia: A Panel Data Study from the Trade Sector. J. World Econ. Polit. 2015, 134–149. [Google Scholar] [CrossRef]
- Yuan, C.W.; Zhang, S.; Jiao, P.; Wu, D.Y. Temporal and spatial variation and influencing factors research on total factor efficiency for transportation carbon emissions in China. Res. Sci. 2017, 39, 687–697. [Google Scholar]
- Shan, Y.L.; Guan, D.B.; Liu, J.H.; Mi, Z.F.; Liu, Z.; Liu, J.R.; Schroeder, H.K.; Cai, B.F.; Chen, Y.; Shao, S.; et al. Methodology and applications of city level CO2 emission accounts in China. J. Clean. Prod. 2017, 161, 1215–1225. [Google Scholar]
- Shan, Y.L.; Guan, Y.R.; Hang, Y.; Zheng, H.R.; Li, Y.X.; Guan, D.B.; Li, J.H.; Zhou, Y.; Li, L.; Klaus, H. City-level emission peak and drivers in China. Sci. Bull. 2022, 67, 1910–1920. [Google Scholar]
- Shan, Y.L.; Liu, J.H.; Liu, Z.; Shao, S.; Guan, D.B. An emissions-socioeconomic inventory of Chinese cities. Sci. Data 2019, 6, 190027. [Google Scholar]
- Shan, Y.L.; Guan, D.B.; Klaus, H.; Zheng, B.; Davis, S.; Jia, L.C.; Liu, J.H.; Liu, Z.; Neil, F.; Mi, Z.F. City-level climate change mitigation in China. Sci. Adv. 2018, 4, eaaq0390. [Google Scholar]
- Zhou, Z.J.; Hu, J.H. Evaluation of Low Carbon Economy Development Efficiency Based on a Super-SBM Model. Resour. Sci. 2013, 35, 2457–2466. [Google Scholar]
- Tone, K.R. A slacks-based measure of efficiency in data envelopment analysis. Eur. J. Oper. Res. 2001, 130, 498–509. [Google Scholar]
- Ning, L.C.; Zheng, W.; Zeng, L.E. Research on China’s Carbon Dioxide Emissions Efficiency from 2007 to 2016: Based on Two Stage Super Efficiency SBM Model and Tobit Model. Acta Sci. Nat. Univ. Pekin. 2021, 57, 181–188. [Google Scholar]
- Huang, C.S.; Cheng, S.S. Efficiency Evaluation on Qingdao Ecological Civilization Construction-Based on SBM Undesirable Model. Res. Dev. Market 2017, 33, 905–911. [Google Scholar]
- Xu, Y.Q.; Cheng, Y.; Wang, J.J.; Liu, N. Spatio-temporal evolution and influencing factors of carbon emission efficiency in low carbon city of China. Nat. Resour. J. 2022, 37, 1261–1276. [Google Scholar]
- Zhou, L.; Che, L.; Zhou, C.H. Spatio-temporal evolution and influencing factors of urban green development efficiency in China. Acta Geogr. Sin. 2019, 74, 2027–2044. [Google Scholar] [CrossRef]
- Peng, Y. Impact of Green Technology Innovation on Regional Carbon Emission Efficiency. Master’s Thesis, Lanzhou University, Lanzhou, China, 2023. [Google Scholar]
- Zhang, J.F.; Yang, Z.R.; Zhang, X.Y.; Sun, J.; He, B. Institutional Configuration Study of Urban Green Economic Efficiency–Analysis Based on fsQCA and NCA. Pol. J. Environ. Stud. 2025, 34, 1457–1467. [Google Scholar] [CrossRef]
- Zhu, C.P.; Su, Y.X.; Fan, R.G. Study on the Coordination of Haze Governance, Green Technology Innovation and Low-Carbon High-Quality Development in the Yangtze River Economic Belt. Res. Environ. Yangtze Basin 2024, 33, 1298–1312. [Google Scholar]
- Wu, X.N.; Guan, W.H.; Zhang, H.; Wu, L.X. Spatio-temporal Coupling Characteristics and Driving Factors of Carbon Emission Efficiency and High-quality Development in Yangtze River Delta Urban Agglomeration. Res. Environ. Yangtze Basin 2023, 32, 2273–2284. [Google Scholar]
- Dagum, C. A new approach to the decomposition of the Gini income inequality ratio. In Income Inequality, Poverty, and Economic Welfare; Studies in Empirical Economics; Springer: Berlin/Heidelberg, Germany, 1997; Volume 22, pp. 515–531. [Google Scholar]
- Zhang, J. Spatial Difference and Convergence of Innovative Development in Yangtze River Delta: Based on Dagum Gini Coefficient and Decomposition. Res. Environ. Yangtze Basin 2023, 32, 235–249. [Google Scholar]
- Cheng, Y.; Zhang, Y.; Wang, J.J. Spatial-temporal evolution of provincial carbon emission performance and driving force of technological innovation in China. Geogr. Sci. 2023, 43, 313–323. [Google Scholar]
- Liu, Z.Z.; Wang, F.Y. The lmpact of Green Technology Innovation and Financial Investment on Industrial Structure Upgrading-Based on the Data of Spatial Model in Yangtze River Economic Belt during 2003–2019. Sci. Technol. Prog. 2021, 38, 53–61. [Google Scholar]
- Chen, C.M. Patents, citations & innovations: A window on the knowledge economy. J. Assoc. Inf. Sci. Technol. 2003, 54, 802–803. [Google Scholar]
- Li, H.; Yu, D.S. Spatio-temporal Evolution and Spatial Spillover Effect of Urban Green Total Factor Productivity in China. Res. Econ. Manag. 2022, 43, 65–77. [Google Scholar]
- Sun, Y.; Shen, S. The spatio-temporal evolutionary pattern and driving forces mechanism of green technology innovation efficiency in the Yangtze River Delta region. Geogr. Res. 2021, 40, 2743–2759. [Google Scholar]
- Hao, Y.; Liao, H.; Wei, Y.M. Is China’s carbon reduction target allocation reasonable? An analysis based on carbon intensity convergence. Appl. Energy 2015, 142, 229–239. [Google Scholar]
- Peng, X.Z.; Zhu, Q. Impacts of Population Dynamics and Consumption Pattern on Carbon Emission in China. J. Popul. Res. 2010, 34, 48–58. [Google Scholar]
- Zhu, W.; Chen, H.H.; Zhang, J.; Duan, J.; Xie, X.L. A Comparative Research of Innovation Efficiency Based on the Angle of Patent: With Beijing, Shanghai, Shenzhen, Qingdao, Hangzhou and Other 9 Cities as Samples. Sci. Technol. Manag. Res. 2018, 38, 77–86. [Google Scholar]
- Chen, D.Y.; Zeng, G. Impact on Spatial Effect of Green Technology Innovation on Industrial Carbon Dioxide Emissions in Yangtze River Delta. Res. Environ. Yangtze Basin 2023, 32, 1152–1164. [Google Scholar]
- Fan, D.C.; Jia, M.Z. Research on the impact of R&D resource mismatch on the efficiency green technology innovation: Based on the threshold effect of digital economy. Sci. Res. Manag. 2024, 45, 95–104. [Google Scholar]
- Wu, K.; Geng, Y.R.; Guo, T. The impact of green technology innovation on carbon emissions from the perspective of urban agglomeration: The moderating effect of human capitals. J. Nat. Resour. 2024, 39, 2121–2139. [Google Scholar] [CrossRef]
- Xu, Y.Q. Research on the Impact of Green Technology Innovation on Carbon Emission Efficiency in Chinese Cities. Master’s Thesis, Shandong Normal University, Jinan, China, 2023. [Google Scholar]
- Xu, Z.; Chang, M.; Gou, X. An analysis of inter-provincial carbon emission efficiency and its influencing factors in China: A multi-period cross efficiency approach. Chin. J. Manag. Sci. 2024, 1–16. Available online: https://chn.oversea.cnki.net/kcms/detail/detail.aspx?filename=ZGGK2024111200I&dbcode=CAPJ&dbname=CAPJLAST&uniplatform=NZKPT (accessed on 7 April 2025).
- Xiao, H.; Tang, Y. Green Technology Innovation, Industrial Structure Upgrading and Carbon Emission Efficiency. J. Suzhou Univ. Sci. Technol. (Soc. Sci. Ed.) 2024, 41, 36–45. [Google Scholar]
- Yang, M. Research on the Mechanisms of the Impact of Green Technology Innovation on Carbon Emission Efficiency. Master’s Thesis, Jilin University, Changchun, China, 2022. [Google Scholar]
- Xu, J.; Shan, Z. Research on the lmpact of Green Technology Innovation on Urban Carbon Emission Reduction-Empirical Analysis Based on Spatial Econometric Model. Inq. Econ. Issues 2024, 155–172. Available online: https://oversea.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&dbname=CJFDLAST2024&filename=JJWS202409011&uniplatform=OVERSEA&v=WGuZf-fqRk91P1gs4yTHequ3mgec8ye8TzCYfv4xnCQr0m_JAcskB_vAAie4_eXe (accessed on 7 April 2025).
- Hu, J.B.; Xiang, G.; Chen, H. Environmental Regulation, Green Technology Innovation, and Carbon Emission Efficiency. J. Soochow Univ. (Philos. Soc. Sci. Ed.) 2024, 45, 42–54. [Google Scholar]
Variable Name | Specific Indicator | Description of the Indicator |
---|---|---|
Input indicators | Capital factor | Gross fixed asset investment [45] |
Labor factor | Number of employees [10] | |
Energy factor | Total annual electricity consumption [42] | |
Output indicators | Desired output | Regional gross domestic product [46] |
Undesired output | Carbon dioxide emission [47] |
Indicator Attributes | Indicator Name | Indicator Explanation |
---|---|---|
Variable being explained | Carbon emission efficiency (CV) | Carbon emission efficiency value |
Explanatory variable (green technology innovation GI) | Financial input (FI) | R&D expenditure as a proportion of GDP [57] |
Human capital (HC) | Number of R&D personnel [50] | |
Technological achievements (TA) | Number of green invention patents + green utility model patents authorized [58] | |
Control variable | Level of economic development (ED) | Per capita GDP |
Industrial structure (IS) | Secondary industry output value/GDP | |
Population density (PD) | Total population/area | |
Government environmental regulation (GR) | Industrial wastewater, SO2, and smoke and dust per unit of output |
Variable Value | HT Statistic | p Value | IPS Statistic | p Value | Conclusion |
---|---|---|---|---|---|
lnCV | −0.0439 | 0.0000 | −4.2588 | 0.0000 | stationary |
lnFI | 0.0520 | 0.0001 | −5.5382 | 0.0000 | stationary |
lnHC | −0.0139 | 0.0000 | −4.6698 | 0.0000 | stationary |
lnTA | −0.0348 | 0.0000 | −4.7410 | 0.0000 | stationary |
lnED | −0.7530 | 0.0000 | −4.2264 | 0.0000 | stationary |
lnIS | −0.0063 | 0.0000 | −4.6453 | 0.0000 | stationary |
lnPD | 0.0686 | 0.0000 | −3.3927 | 0.0003 | stationary |
lnGR | 0.0711 | 0.0002 | −4.9292 | 0.0000 | stationary |
Individual Fixed-Effect Model | Time Fixed-Effect Model | Random-Effects Model | Two-Way Fixed-Effect Model | |
---|---|---|---|---|
lnFI | 0.0569 *** | −0.0957 *** | −0.0849 *** | 0.0392 ** |
(0.0195) | (0.0336) | (0.0327) | (0.0190) | |
lnHC | 0.0576 ** | −0.0920 ** | −0.0978 ** | 0.0491 * |
(0.0279) | (0.0419) | (0.0408) | (0.0272) | |
lnTA | 0.0496 ** | 0.1846 *** | 0.1773 *** | 0.0605 *** |
(0.0198) | (0.0388) | (0.0358) | (0.0198) | |
lnED | 0.2671 *** | −0.0073 | −0.0154 | 0.2763 |
(0.0697) | (0.0778) | (0.0675) | (0.2399) | |
lnIS | −0.1355 | 0.4017 ** | 0.3696 ** | −0.0515 |
(0.1126) | (0.1597) | (0.1522) | (0.1206) | |
lnPD | 0.0313 | 0.1784 *** | 0.1821 *** | 0.1485 |
(0.1673) | (0.0383) | (0.0375) | (0.1824) | |
lnGR | −0.0945 *** | −0.1155 *** | −0.1079 *** | −0.0722 *** |
(0.0235) | (0.0361) | (0.0281) | (0.0241) | |
cons | −2.3598 | −1.0236 | −0.9114 | −2.9845 |
(1.4287) | (1.0189) | (0.9381) | (3.6569) | |
R2 | 0.4415 | 0.3879 | 0.9244 | |
adj. R2 | 0.3627 | 0.3263 | 0.9082 | |
F | 18.4079 | 15.2969 | 81.3960 |
Variable | Financial Investment (FI) | Human Capital (HC) | Technological Achievement (TA) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Current | Lag One Period | Lag Two Period | Lag Third Period | Current | Lag One Period | Lag Two Period | Lag Third Period | Current | Lag One Period | Lag Two Period | Lag Third Period | |
lnFI | 0.149 | 0.296 | 0.237 | 0.247 *** | 0.149 | −0.024 | 0.158 | 0.279 | 0.149 | −0.059 | 0.224 | 0.254 |
(0.83) | (1.14) | (0.68) | (6.05) | (0.83) | (−0.09) | (0.5) | (0.93) | (0.83) | (−0.36) | (1.08) | (1.16) | |
lnHC | −0.057 | −0.035 | −0.051 | −0.129 | −0.057 | −0.09 | −0.084 | 0.094 | −0.057 | 0.066 | 0.073 | 0.093 |
(−0.99) | (−0.45) | (−0.48) | (−1.52) | (−0.99) | (−0.87) | (−0.53) | (0.43) | (−0.99) | (0.57) | (0.72) | (0.49) | |
lnTA | 0.111 * | 0.06 | 0.041 | 0.219 | 0.111 * | 0.095 | 0.036 | −0.041 | 0.111 * | 0.004 | −0.133 | −0.037 |
(1.76) | (0.33) | (0.18) | (1.46) | (1.76) | (0.49) | (0.19) | (−0.21) | (1.76) | (0.03) | (−1.11) | (−0.50) | |
lnED | 0.139 | −0.089 | 0.113 | 1.134 *** | 0.139 | 0.2 | 0.133 | −0.155 | 0.139 | 0.132 | −0.358 | −0.335 |
(0.75) | (−0.25) | (0.25) | (2.9) | (0.75) | (0.56) | (0.37) | (−0.28) | (0.75) | (0.32) | (−0.59) | (−0.59) | |
lnIS | 0.893 | 0.397 | 0.318 | 2.376 * | 0.893 | −0.216 | 0.37 | 0.264 | 0.893 | 0.093 | 0.725 | 0.637 |
(0.95) | (0.38) | (0.25) | (1.72) | (0.95) | (−0.24) | (0.22) | (0.32) | (0.95) | (0.15) | (0.66) | (0.57) | |
lnPD | 0.06 | 0.466 | 0.393 | −0.708 | 0.06 | 0.392 | 0.32 | 0.749 | 0.06 | 0.369 | 0.508 | 0.581 |
(0.2) | (1.52) | (0.61) | (−1.15) | (0.2) | (1.15) | (0.58) | (1.31) | (0.2) | (1.42) | (1.58) | (1.49) | |
lnGR | −0.052 | −0.121 ** | −0.084 | 0.174 | −0.052 | −0.128 | −0.068 | −0.123 | −0.052 | −0.056 | −0.158 | −0.165 |
(−0.48) | (−2.16) | (−0.84) | (0.88) | (−0.48) | (−1.30) | (−0.61) | (−0.84) | (−0.48) | (−0.38) | (−0.94) | (−1.03) | |
L. | −0.176 | −0.142 | 0.505 | −0.063 | −0.095 * | −0.032 | 0.074 | 0.109 | 0.072 | |||
(−0.70) | (−0.57) | (1.22) | (−0.59) | (−1.72) | (−0.13) | (0.57) | (0.67) | (0.63) | ||||
L2. | −0.047 | −0.274 | 0.071 | 0.195 | 0.185 | 0.068 | ||||||
(−0.14) | (−1.36) | (0.34) | (0.6) | (1.05) | (0.57) | |||||||
L3. | −0.872 * | 0.035 | 0.021 | |||||||||
(−1.92) | (0.13) | (0.27) | ||||||||||
Constant | −0.315 | −1.985 | −2.563 *** | −1.622 | −0.315 | −3.779 ** | −1.967 | −1.11 | −0.315 | −3.003 ** | −0.625 | −0.79 |
(−0.16) | (−1.54) | (−3.28) | (−0.49) | (−0.16) | (−2.05) | (−0.48) | (−0.51) | (−0.16) | (−2.04) | (−0.23) | (−0.34) | |
Observations | 170 | 170 | 153 | 136 | 170 | 170 | 153 | 136 | 170 | 170 | 153 | 136 |
Number of cities | 17 | 17 | 17 | 17 | 17 | 17 | 17 | 17 | 17 | 17 | 17 | 17 |
Variable | Benchmark Regression | Explanatory Variable One Period Lag | Replacement of Core Explanatory Variable—Number of Green Patent Grants |
---|---|---|---|
lnFI | −0.1131 *** | −0.1093 *** | |
(0.0343) | (0.0329) | ||
lnHC | −0.0197 | −0.0276 | |
(0.0240) | (0.0250) | ||
lnTA | 0.1314 *** | 0.1561 *** | 0.0944 *** |
(0.0438) | (0.0512) | (0.0341) | |
lnED | 0.0181 | 0.0312 | 0.0213 |
(0.0778) | (0.0910) | (0.0807) | |
lnIS | −0.4257 *** | −0.4069 ** | −0.2640 * |
(0.1481) | (0.1634) | (0.1430) | |
lnPD | 0.2015 *** | 0.2087 *** | 0.2386 *** |
(0.0444) | (0.0449) | (0.0388) | |
lnGR | −0.1111 *** | −0.1364 *** | −0.1500 *** |
(0.0294) | (0.0312) | (0.0286) | |
cons | −1.9811 *** | −1.8911 *** | −1.2294 *** |
(0.3288) | (0.3508) | (0.3180) | |
N | 170 | 170 | 187 |
R2 | 0.3914 | 0.419 | 0.3452 |
adj. R2 | 0.3651 | 0.3939 | 0.3271 |
F | 12.5217 | 14.3693 | 12.2808 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duan, S.; Shang, B.; Nie, Y.; Wang, J.; Li, M.; Yu, J. Spatial and Temporal Differentiation of Carbon Emission Efficiency and the Impact of Green Technology Innovation in Hubei Province. Sustainability 2025, 17, 3613. https://doi.org/10.3390/su17083613
Duan S, Shang B, Nie Y, Wang J, Li M, Yu J. Spatial and Temporal Differentiation of Carbon Emission Efficiency and the Impact of Green Technology Innovation in Hubei Province. Sustainability. 2025; 17(8):3613. https://doi.org/10.3390/su17083613
Chicago/Turabian StyleDuan, Shan, Bingying Shang, Yan Nie, Junkai Wang, Ming Li, and Jing Yu. 2025. "Spatial and Temporal Differentiation of Carbon Emission Efficiency and the Impact of Green Technology Innovation in Hubei Province" Sustainability 17, no. 8: 3613. https://doi.org/10.3390/su17083613
APA StyleDuan, S., Shang, B., Nie, Y., Wang, J., Li, M., & Yu, J. (2025). Spatial and Temporal Differentiation of Carbon Emission Efficiency and the Impact of Green Technology Innovation in Hubei Province. Sustainability, 17(8), 3613. https://doi.org/10.3390/su17083613