How Do Bird Population Trends Relate to Human Pressures Compared to Economic Growth?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Multi-Scale Approach
2.2. Bird Species Data
2.3. Anthropogenic Data
2.4. Estimation of Species Population Trends
2.5. Time Series Correlation Analysis
3. Results
3.1. Bird Population Trends
3.2. Long-Run Relationship Between the Population Trends, HFI, and GDP
4. Discussion
4.1. Bird Population Trends at National and Sub-National Levels
4.2. Long-Term Response of Biodiversity to Economic Growth and Human Activity
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ARDL | Autoregressive Distributed Lag |
CAC | Common Birds Census |
GDP | Gross Domestic Product |
HFI | Human Footprint Index |
MSI-Tool | Multi-Species Indicator Tool |
SPEA | Portuguese Society for the Study of Birds |
TRIM | TRends & Indices for Monitoring data |
UTM | Universal Transverse Mercator coordinate system |
Appendix A. Bird Data Cell Information
Bird Data Cell | UTM | NUTSII | Nº of Visits | HFI Category | GDP Category |
---|---|---|---|---|---|
1 | MC68 | Lisboa | 12 | High | High |
2 | MC69 | Lisboa | 15 | High | High |
3 | MC78 | Lisboa | 10 | High | High |
4 | MC85 | Lisboa | 4 | Medium | High |
5 | MC86 | Lisboa | 4 | Medium | High |
6 | MC87 | Lisboa | 5 | High | High |
7 | MC95 | Lisboa | 15 | Medium | High |
8 | MC97 | Lisboa | 9 | High | High |
9 | MD60 | Lisboa | 7 | Medium | High |
10 | MD61 | Lisboa | 3 | High | High |
11 | MD70 | Lisboa | 4 | Medium | High |
12 | MD71 | Lisboa | 5 | Medium | High |
13 | MD72 | Centro | 5 | High | Medium |
14 | MD73 | Centro | 6 | Medium | Medium |
15 | MD74 | Centro | 7 | High | Medium |
16 | MD75 | Centro | 5 | Medium | Medium |
17 | MD80 | Lisboa | 6 | Medium | High |
18 | MD81 | Centro | 11 | Medium | Medium |
19 | MD82 | Centro | 5 | Medium | Medium |
20 | MD84 | Centro | 1 | Medium | Medium |
21 | MD90 | Lisboa | 9 | High | High |
22 | MD91 | Centro | 5 | Medium | Medium |
23 | MD98 | Centro | 7 | Medium | Medium |
24 | NB10 | Algarve | 7 | Low | Medium |
25 | NB19 | Alentejo | 6 | Medium | Low |
26 | NB31 | Algarve | 20 | Medium | Medium |
27 | NB35 | Alentejo | 6 | Low | Low |
28 | NB41 | Algarve | 3 | Medium | Medium |
29 | NB56 | Alentejo | 15 | Low | Low |
30 | NB61 | Algarve | 2 | Medium | Medium |
31 | NB68 | Alentejo | 10 | Low | Low |
32 | NB69 | Alentejo | 4 | Low | Low |
33 | NB70 | Algarve | 7 | High | Medium |
34 | NB72 | Algarve | 3 | Low | Medium |
35 | NB80 | Algarve | 1 | High | Medium |
36 | NB82 | Algarve | 5 | Low | Medium |
37 | NB83 | Alentejo | 2 | Low | Low |
38 | NB90 | Algarve | 11 | High | Medium |
39 | NB94 | Alentejo | 2 | Low | Low |
40 | NC06 | Lisboa | 14 | Medium | High |
41 | NC08 | Lisboa | 2 | High | High |
42 | NC16 | Lisboa | 5 | High | High |
43 | NC18 | Lisboa | 3 | Low | High |
44 | NC21 | Alentejo | 3 | Low | Low |
45 | NC23 | Alentejo | 9 | Low | Low |
46 | NC25 | Alentejo | 1 | Low | Low |
47 | NC30 | Alentejo | 19 | Low | Low |
48 | NC35 | Alentejo | 19 | Low | Low |
49 | NC41 | Alentejo | 11 | Low | Low |
50 | NC43 | Alentejo | 1 | Low | Low |
51 | NC56 | Alentejo | 9 | Low | Low |
52 | NC59 | Alentejo | 14 | Low | Low |
53 | NC69 | Alentejo | 3 | Low | Low |
54 | NC73 | Alentejo | 1 | Low | Low |
55 | NC75 | Alentejo | 3 | Low | Low |
56 | NC76 | Alentejo | 7 | Low | Low |
57 | NC82 | Alentejo | 8 | Low | Low |
58 | NC83 | Alentejo | 1 | Low | Low |
59 | ND00 | Lisboa | 5 | Medium | High |
60 | ND01 | Lisboa | 6 | High | High |
61 | ND07 | Centro | 20 | Medium | Medium |
62 | ND11 | Alentejo | 14 | Medium | Low |
63 | ND12 | Alentejo | 11 | Medium | Low |
64 | ND13 | Alentejo | 14 | Medium | Low |
65 | ND14 | Alentejo | 8 | Medium | Low |
66 | ND15 | Alentejo | 1 | Low | Low |
67 | ND17 | Centro | 9 | Low | Medium |
68 | ND18 | Centro | 7 | Medium | Medium |
69 | ND21 | Alentejo | 9 | Low | Low |
70 | ND22 | Alentejo | 4 | Medium | Low |
71 | ND23 | Alentejo | 1 | Medium | Low |
72 | ND24 | Alentejo | 20 | High | Low |
73 | ND25 | Alentejo | 12 | Medium | Low |
74 | ND26 | Centro | 5 | Medium | Low |
75 | ND32 | Alentejo | 1 | Low | Low |
76 | ND35 | Alentejo | 8 | Medium | Low |
77 | ND40 | Alentejo | 20 | Low | Low |
78 | ND41 | Alentejo | 1 | Low | Low |
79 | ND44 | Alentejo | 15 | Low | Low |
80 | ND45 | Alentejo | 8 | Low | Low |
81 | ND47 | Centro | 8 | Medium | Low |
82 | ND48 | Centro | 11 | Medium | Low |
83 | ND50 | Alentejo | 5 | Low | Low |
84 | ND57 | Centro | 1 | Medium | Low |
85 | ND58 | Centro | 3 | Medium | Low |
86 | ND66 | Centro | 2 | Low | Low |
87 | ND69 | Centro | 4 | Low | Low |
88 | ND76 | Centro | 12 | Low | Low |
89 | ND86 | Centro | 11 | Low | Low |
90 | ND92 | Alentejo | 4 | Low | Low |
91 | ND98 | Centro | 13 | Low | Low |
92 | NE01 | Centro | 5 | Low | Medium |
93 | NE28 | Centro | 3 | Medium | Medium |
94 | NE33 | Centro | 6 | Medium | Medium |
95 | NE36 | Centro | 1 | Medium | Medium |
96 | NE39 | Centro | 9 | High | Medium |
97 | NE43 | Centro | 1 | Low | Medium |
98 | NE54 | Centro | 1 | Medium | Medium |
99 | NE71 | Centro | 5 | Low | Low |
100 | NE75 | Centro | 7 | Low | Medium |
101 | NE80 | Centro | 8 | Low | Low |
102 | NE94 | Centro | 3 | Low | Medium |
103 | NF21 | Centro | 5 | Medium | Medium |
104 | NF25 | Norte | 3 | High | High |
105 | NF26 | Norte | 4 | High | High |
106 | NF31 | Centro | 9 | High | Medium |
107 | NF35 | Norte | 2 | High | High |
108 | NF37 | Norte | 2 | High | High |
109 | NF47 | Norte | 2 | High | High |
110 | NF70 | Centro | 2 | Low | Low |
111 | NF89 | Norte | 2 | Medium | Medium |
112 | NF97 | Norte | 2 | Low | Low |
113 | NG12 | Norte | 3 | Medium | Low |
114 | NG20 | Norte | 2 | Medium | Medium |
115 | NG21 | Norte | 1 | Medium | Low |
116 | NG30 | Norte | 1 | Medium | Medium |
117 | NG34 | Norte | 1 | Low | Low |
118 | NG54 | Norte | 4 | Low | Low |
119 | PB02 | Algarve | 2 | Low | Medium |
120 | PB03 | Algarve | 9 | Low | Medium |
121 | PB07 | Alentejo | 1 | Low | Low |
122 | PB10 | Algarve | 4 | High | Medium |
123 | PB16 | Alentejo | 3 | Low | Low |
124 | PB21 | Algarve | 6 | Medium | Medium |
125 | PB22 | Algarve | 9 | Low | Medium |
126 | PB29 | Alentejo | 1 | Low | Low |
127 | PC06 | Alentejo | 14 | Low | Low |
128 | PC14 | Alentejo | 7 | Low | Low |
129 | PC16 | Alentejo | 11 | Low | Low |
130 | PC48 | Alentejo | 5 | Low | Low |
131 | PD02 | Alentejo | 2 | Low | Low |
132 | PD15 | Alentejo | 3 | Low | Low |
133 | PD36 | Alentejo | 3 | Low | Low |
134 | PD45 | Alentejo | 5 | Low | Low |
135 | PD52 | Alentejo | 18 | Low | Low |
136 | PE15 | Centro | 2 | Low | Low |
137 | PE21 | Centro | 9 | Low | Low |
138 | PE22 | Centro | 4 | Low | Low |
139 | PE35 | Centro | 7 | Low | Low |
140 | PE49 | Centro | 1 | Low | Low |
141 | PE53 | Centro | 3 | Low | Low |
142 | PE64 | Centro | 4 | Low | Low |
143 | PE71 | Centro | 5 | Low | Low |
144 | PF07 | Norte | 2 | Medium | Low |
145 | PF13 | Norte | 1 | Low | Low |
146 | PF19 | Norte | 9 | Low | Low |
147 | PF26 | Norte | 1 | Low | Low |
148 | PF63 | Centro | 2 | Low | Low |
149 | PF71 | Centro | 1 | Low | Low |
150 | PF72 | Centro | 14 | Low | Low |
151 | PF73 | Centro | 1 | Low | Low |
152 | PG03 | Norte | 3 | Low | Low |
153 | PG82 | Norte | 1 | Low | Low |
154 | QF07 | Norte | 20 | Low | Low |
155 | QG00 | Norte | 9 | Low | Low |
156 | NB00 | Algarve | 1 | Low | Medium |
157 | PB32 | Algarve | 4 | Low | Medium |
158 | QG10 | Norte | 3 | Low | Low |
159 | MC88 | Lisboa | 1 | High | High |
160 | MD92 | Centro | 1 | Medium | Medium |
161 | NF19 | Norte | 3 | High | Medium |
162 | NF99 | Norte | 2 | Low | Low |
163 | NB40 | Algarve | 1 | High | Medium |
164 | NB50 | Algarve | 3 | High | Medium |
165 | NB51 | Algarve | 1 | Medium | Medium |
166 | ND46 | Alentejo | 2 | Medium | Low |
167 | ND49 | Centro | 1 | Low | Low |
168 | NF24 | Norte | 1 | High | High |
169 | NF34 | Norte | 1 | High | High |
170 | PC38 | Alentejo | 1 | Low | Low |
Appendix B. Bird Species and Habitat
Euring | Scientific Name | Habitat | MSI Population Trend | ||||||
---|---|---|---|---|---|---|---|---|---|
National | HFI Clusters | GDP Clusters | |||||||
HighHFI | MediumHFI | LowHFI | HighGDP | MediumGDP | LowGDP | ||||
14,370 | Aegithalos caudatus | forest | ↔ | ⇓ | ↑ | ↔ | ⇑ | ↑ | ↓ |
1860 | Anas platyrhynchos | other | ↑ | ↑ | ↑ | ↓ | ↑ | ↑ | ↔ |
7950 | Apus apus | other | ↔ | ↓ | ↑ | ↔ | ↓ | ↑ | ↑ |
1220 | Ardea cinerea | other | ↔ | ↑ | ↑ | ↔ | ↑ | ↔ | ↑ |
7570 | Athene noctua | agricultural | ↓ | ↓ | ↓ | ↓ | ↓ | ↔ | ↓ |
1110 | Bubulcus ibis | agricultural | ↓ | ↔ | ↑ | ⇓ | ↓ | ↓ | ↓ |
2870 | Buteo buteo | other | ↔ | ↑ | ↑ | ↓ | ↑ | ↔ | ↓ |
16,530 | Carduelis carduelis | agricultural | ↓ | ↓ | ↓ | ↓ | ↓ | ↓ | ↓ |
9950 | Cecropis daurica | other | ↑ | ↔ | ⇑ | ↑ | ↑ | ↑ | ↑ |
14,870 | Certhia brachydactyla | forest | ↑ | ↑ | ⇑ | ↑ | ↑ | ↑ | ↑ |
12,200 | Cettia cetti | other | ↔ | ↔ | ↔ | ↑ | ↑ | ↓ | ↔ |
16,490 | Chloris chloris | agricultural | ↔ | ↓ | ↔ | ↔ | ↑ | ↓ | ↔ |
1340 | Ciconia ciconia | agricultural | ↑ | ⇑ | ↑ | ↑ | ↑ | ⇑ | ↑ |
12,260 | Cisticola juncidis | agricultural | ↑ | ↔ | ↑ | ↑ | ↑ | ↑ | ↑ |
6650 | Columba livia | other | ↔ | ↑ | ↓ | ↔ | ↔ | ↑ | ↓ |
6700 | Columba palumbus | forest | ⇑ | ⇑ | ⇑ | ⇑ | ⇑ | ↑ | ⇑ |
15,670 | Corvus corone | other | ↑ | ↑ | ↑ | ↔ | ⇑ | ↔ | ↑ |
3700 | Coturnix coturnix | agricultural | ↔ | ↓ | ↓ | ↑ | ↓ | ↓ | ↔ |
7240 | Cuculus canorus | forest | ↓ | ⇓ | ↓ | ↓ | ↓ | ⇓ | ↓ |
14,620 | Cyanistes caeruleus | forest | ↑ | ↔ | ↑ | ↔ | ↑ | ↑ | ↑ |
15,470 | Cyanopica cyanus | other | ↑ | ↑ | ⇑ | ↑ | ↑ | ↑ | ↑ |
10,010 | Delichon urbicum | agricultural | ↔ | ↑ | ↔ | ↔ | ↓ | ↑ | ↑ |
8760 | Dendrocopos major | forest | ↔ | ↔ | ↑ | ↓ | ↑ | ↔ | ↔ |
1190 | Egretta garzetta | other | ↓ | ↑ | ↓ | ↓ | ↔ | ↓ | ↓ |
2350 | Elanus caeruleus | other | ↔ | - | ↔ | ↓ | - | ⇑ | ↓ |
18,820 | Emberiza calandra | agricultural | ↑ | ↔ | ↔ | ↑ | ↑ | ↓ | ↑ |
18,580 | Emberiza cirlus | agricultural | ↔ | ↓ | ↓ | ↑ | ↔ | ↔ | ↑ |
10,990 | Erithacus rubecula | forest | ↑ | ↑ | ↑ | ⇑ | ⇑ | ↔ | ↑ |
3040 | Falco tinnunculus | agricultural | ↓ | ↔ | ↓ | ↓ | ↓ | ↓ | ↓ |
16,360 | Fringilla coelebs | forest | ↑ | ↓ | ↔ | ↑ | ↓ | ↓ | ↑ |
9720 | Galerida cristata | agricultural | ↔ | ↑ | ↔ | ↓ | ↓ | ↑ | ↔ |
4240 | Gallinula chloropus | other | ↓ | ↓ | ↔ | ↓ | ↓ | ↔ | ↓ |
15,390 | Garrulus glandarius | forest | ↔ | ↔ | ↔ | ↔ | ↑ | ↔ | ↓ |
2980 | Hieraaetus pennatus | other | ↔ | - | ↑ | ↓ | - | - | ↓ |
12,600 | Hippolais polyglotta | other | ↓ | ⇓ | ↓ | ↔ | ⇓ | ⇓ | ↔ |
9920 | Hirundo rustica | agricultural | ↓ | ⇓ | ↓ | ↓ | ↓ | ↓ | ↓ |
32,910 | Lanius meridionalis | agricultural | ↓ | ↓ | ↓ | ↓ | ↓ | ↔ | ↓ |
15,230 | Lanius senator | forest | ↓ | - | ⇓ | ⇓ | ↓ | ⇓ | ↓ |
16,600 | Linaria cannabina | agricultural | ↑ | ↓ | ↑ | ↑ | ↔ | ↔ | ↑ |
14,540 | Lophophanes cristatus | forest | ↔ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ |
9740 | Lullula arborea | forest | ↓ | - | ↑ | ↓ | ↑ | ↔ | ↓ |
11,040 | Luscinia megarhynchos | other | ↔ | ↓ | ↓ | ↑ | ↔ | ↓ | ↑ |
8400 | Merops apiaster | agricultural | ↓ | ↓ | ⇓ | ↓ | ↑ | ⇓ | ↓ |
2380 | Milvus migrans | agricultural | ↑ | ⇑ | ⇑ | ↔ | ⇑ | ↔ | ↑ |
10,200 | Motacilla alba | other | ↑ | ↑ | ↔ | ↑ | ↑ | ↑ | ↔ |
10,190 | Motacilla cinerea | other | ↔ | - | ↔ | ↔ | ↔ | ↔ | ↔ |
15,080 | Oriolus oriolus | forest | ↔ | - | ↔ | ↑ | - | ↔ | ↑ |
14,640 | Parus major | forest | ↓ | ↓ | ↔ | ↓ | ↑ | ↓ | ↓ |
15,910 | Passer domesticus | agricultural | ↓ | ↓ | ↓ | ↓ | ↓ | ↔ | ↓ |
15,980 | Passer montanus | other | ↔ | ↔ | ↔ | ↓ | ⇓ | ↔ | ↔ |
14,610 | Periparus ater | forest | ↔ | ↑ | ↓ | ↔ | ↔ | ↑ | ↓ |
11,210 | Phoenicurus ochruros | other | ↑ | ↑ | ↔ | ↑ | ⇑ | ↔ | ↔ |
15,490 | Pica pica | agricultural | ↑ | ⇑ | ⇑ | ↔ | ↑ | ↑ | ↑ |
8560 | Picus sharpei | forest | ↑ | ↑ | ↑ | ↔ | ↑ | ⇑ | ↔ |
11,390 | Saxicola torquatus | agricultural | ↔ | ↓ | ↓ | ↔ | ↓ | ↔ | ↓ |
16,400 | Serinus serinus | agricultural | ↓ | ↓ | ↓ | ↓ | ↓ | ↓ | ↓ |
14,790 | Sitta europaea | forest | ↑ | ↑ | ↑ | ↑ | ↑ | ↔ | ↑ |
6840 | Streptopelia decaocto | other | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ |
6870 | Streptopelia turtur | forest | ↓ | ⇓ | ↓ | ↓ | ↓ | ↓ | ↓ |
15,830 | Sturnus unicolor | agricultural | ↑ | ⇑ | ⇑ | ↓ | ⇑ | ⇑ | ↔ |
12,770 | Sylvia atricapilla | forest | ↑ | ↔ | ↑ | ↑ | ↑ | ↑ | ↑ |
12,670 | Sylvia melanocephala | other | ↑ | ↓ | ↑ | ↑ | ↑ | ↓ | ↑ |
10,660 | Troglodytes troglodytes | forest | ↑ | ↑ | ↑ | ↔ | ↑ | ↑ | ↔ |
11,870 | Turdus merula | other | ↔ | ↓ | ↑ | ↓ | ↓ | ↔ | ↓ |
8460 | Upupa epops | agricultural | ↔ | ↓ | ↔ | ↔ | ↓ | ↔ | ↔ |
Appendix C. HFI and GDP Time Series at the National Scale
References
- Steffen, W.; Broadgate, W.; Deutsch, L.; Gaffney, O.; Ludwig, C. The trajectory of the Anthropocene: The great acceleration. Anthr. Rev. 2015, 2, 81–98. [Google Scholar] [CrossRef]
- Ellis, E.C.; Ramankutty, N. Putting people in the map: Anthropogenic biomes of the world. Front. Ecol. Environ. 2008, 6, 439–447. [Google Scholar] [CrossRef]
- Almond, R.; Grooten, M.; Juffe Bignoli, D.; Petersen, T. Living Planet Report 2022—Building a Nature Positive Society; Technical Report; WWF: Gland, Switzerland, 2022. [Google Scholar]
- Díaz, S.; Fargione, J.; Chapin, F.S., III; Tilman, D. Biodiversity loss threatens human well-being. PLoS Biol. 2006, 4, e277. [Google Scholar] [CrossRef] [PubMed]
- Díaz, S.; Demissew, S.; Carabias, J.; Joly, C.; Lonsdale, M.; Ash, N.; Larigauderie, A.; Adhikari, J.R.; Arico, S.; Báldi, A.; et al. The IPBES Conceptual Framework—Connecting nature and people. Curr. Opin. Environ. Sustain. 2015, 14, 1–16. [Google Scholar] [CrossRef]
- Haines-Young, R.; Potschin, M. The links between biodiversity, ecosystem services and human well-being. In Ecosystem Ecology: A New Synthesis; Raffaelli, D.G., Frid, C.L.J., Eds.; Ecological Reviews; Cambridge University Press: Cambridge, UK, 2010; pp. 110–139. [Google Scholar]
- Haines-Young, R.; Potschin, M. Common International Classification of Ecosystem Services; Centre for Environmental Management, University of Nottingham: Nottingham, UK, 2012. [Google Scholar]
- Rodríguez, J.P.; Beard, T.D., Jr.; Bennett, E.M.; Cumming, G.S.; Cork, S.J.; Agard, J.; Dobson, A.P.; Peterson, G.D. Trade-offs across space, time, and ecosystem services. Ecol. Soc. 2006, 11, 14. [Google Scholar] [CrossRef]
- Elmqvist, T.; Tuvendal, M.; Krishnaswamy, J.; Hylander, K. Managing trade-offs in ecosystem services. In Values, Payments and Institutions for Ecosystem Management; Edward Elgar Publishing: Cheltenham, UK, 2013; pp. 70–89. [Google Scholar]
- Trauger, D.L.; Czech, B.; Erickson, J.D.; Garrettson, P.R.; Kernohan, B.J.; Miller, C.A. The Relationship of Economic Growth to Wildlife Conservation; Vol. 03-1, The Wildlife Society: Bethesda, MD, USA, 2003. [Google Scholar]
- Sanderson, E.W.; Jaiteh, M.; Levy, M.A.; Redford, K.H.; Wannebo, A.V.; Woolmer, G. The human footprint and the last of the wild. BioScience 2002, 52, 891–904. [Google Scholar] [CrossRef]
- Sanderson, E.W.; Fisher, K.; Robinson, N.; Sampson, D.; Duncan, A.; Royte, L. The March of the Human Footprint. 2022. Available online: https://ecoevorxiv.org/repository/view/3641/ (accessed on 4 August 2024).
- Venter, O.; Sanderson, E.W.; Magrach, A.; Allan, J.R.; Beher, J.; Jones, K.R.; Possingham, H.P.; Laurance, W.F.; Wood, P.; Fekete, B.M.; et al. Global terrestrial Human Footprint maps for 1993 and 2009. Sci. Data 2016, 3, 1–10. [Google Scholar] [CrossRef]
- Dynan, K.; Sheiner, L.; GDP as a Measure of Economic Well-Being. Technical Report, Hutchins Center Working Paper. 2018. Available online: https://www.degruyterbrill.com/document/doi/10.7208/chicago/9780226836348-002/pdf (accessed on 11 October 2024).
- Meadows, D.H.; Meadows, D.L.; Randers, J.; Behrens, W.W. The Limits to Growth: A Report for the Club of Rome’s Project on the Predicament of Mankind; Universe Books: New York, NY, USA, 1972. [Google Scholar]
- Asafu-Adjaye, J. Biodiversity loss and economic growth: A cross-country analysis. Contemp. Econ. Policy 2003, 21, 173–185. [Google Scholar] [CrossRef]
- Gren, I.M.; Campos, M.; Gustafsson, L. Economic development, institutions, and biodiversity loss at the global scale. Reg. Environ. Change 2016, 16, 445–457. [Google Scholar] [CrossRef]
- Martínez-Alier, J.; Pascual, U.; Vivien, F.D.; Zaccai, E. Sustainable de-growth: Mapping the context, criticisms and future prospects of an emergent paradigm. Ecol. Econ. 2010, 69, 1741–1747. [Google Scholar] [CrossRef]
- Schneider, F.; Kallis, G.; Martinez-Alier, J. Crisis or opportunity? Economic degrowth for social equity and ecological sustainability. Introduction to this special issue. J. Clean. Prod. 2010, 18, 511–518. [Google Scholar] [CrossRef]
- UNEP. Decoupling Natural Resource Use and Environmental Impacts from Economic Growth. A Report of the Working Group on Decoupling to the International Resource Panel; UNEP: Nairobi, Kenya, 2011. [Google Scholar]
- Wiedenhofer, D.; Virág, D.; Kalt, G.; Plank, B.; Streeck, J.; Pichler, M.; Mayer, A.; Krausmann, F.; Brockway, P.; Schaffartzik, A.; et al. A systematic review of the evidence on decoupling of GDP, resource use and GHG emissions, part I: Bibliometric and conceptual mapping. Environ. Res. Lett. 2020, 15, 063002. [Google Scholar] [CrossRef]
- Dietz, S.; Adger, W. Economic growth, biodiversity loss and conservation effort. J. Environ. Manag. 2003, 68, 23–35. [Google Scholar] [CrossRef] [PubMed]
- Mitic, P.; Kojic, M.; Minović, J. A Literature Survey of the Environmental Kuznets Curve. Econ. Anal. 2019, 52, 109–127. [Google Scholar] [CrossRef]
- Gregory, R.D.; Van Strien, A.; Vorisek, P.; Gmelig Meyling, A.W.; Noble, D.G.; Foppen, R.P.; Gibbons, D.W. Developing indicators for European birds. Philos. Trans. R. Soc. B Biol. Sci. 2005, 360, 269–288. [Google Scholar] [CrossRef]
- Pereira, H.M.; Cooper, H.D. Towards the global monitoring of biodiversity change. Trends Ecol. Evol. 2006, 21, 123–129. [Google Scholar] [CrossRef]
- Burns, F.; Eaton, M.A.; Burfield, I.J.; Klvaňová, A.; Šilarová, E.; Staneva, A.; Gregory, R.D. Abundance decline in the avifauna of the European Union reveals cross-continental similarities in biodiversity change. Ecol. Evol. 2021, 11, 16647–16660. [Google Scholar] [CrossRef]
- Jenks, G.F. The data model concept in statistical mapping. Int. Yearb. Cartogr. 1967, 7, 186–190. [Google Scholar]
- Alonso, H.; Coelho, R.; Gouveia, C.; Rethoré, G.; Teodósio, J. Relatório do Censo de Aves Comuns 2004–2023; Technical Report; Sociedade Portuguesa para o Estudo das Aves: Lisboa, Portugal, 2024. [Google Scholar]
- Mu, H.; Li, X.; Wen, Y.; Huang, J.; Du, P.; Su, W.; Miao, S.; Geng, M. A global record of annual terrestrial Human Footprint dataset from 2000 to 2018. Sci. Data 2022, 9, 176. [Google Scholar] [CrossRef]
- AMECO Database. Available online: https://economy-finance.ec.europa.eu/economic-research-and-databases/economic-databases/ameco-database_en (accessed on 27 June 2024).
- Statistics Portugal. Available online: https://www.ine.pt/xportal/xmain?xpid=INE&xpgid=ine_cnacionais2010b2016&menuBOUI=13707095&contexto=cr&selTab=tab3&perfil=392023561&INST=391966542 (accessed on 28 August 2024).
- Pannekoek, J.; Van Strien, A. TRIM 3 Manual (TRends & Indices for Monitoring Data); Statistics Netherlands: Voorburg, The Netherlands, 2005. [Google Scholar]
- Soldaat, L.L.; Pannekoek, J.; Verweij, R.J.; van Turnhout, C.A.; van Strien, A.J. A Monte Carlo method to account for sampling error in multi-species indicators. Ecol. Indic. 2017, 81, 340–347. [Google Scholar] [CrossRef]
- Pannekoek, J.; Bogaart, P.; van der Loo, M. Models and Statistical Methods in Rtrim; Statistics Netherlands: The Hague, The Netherlands, 2018. [Google Scholar]
- Pesaran, H.; Shin, Y. An Autoregressive Distributed Lag Modeling Approach to Co-integration Analysis. In Econometncs and Economic Theory in the 20st Century: The Ragnar Frisch Centennial Symposium; Department of Applied Economics, University of Cambridge: Cambridge, UK, 1995; Volume 31. [Google Scholar]
- Pesaran, M.H.; Shin, Y.; Smith, R.J. Bounds testing approaches to the analysis of level relationships. J. Appl. Econom. 2001, 16, 289–326. [Google Scholar] [CrossRef]
- Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control. 1974, 19, 716–723. [Google Scholar] [CrossRef]
- Scholes, R.J.; Reyers, B.; Biggs, R.; Spierenburg, M.; Duriappah, A. Multi-scale and cross-scale assessments of social–ecological systems and their ecosystem services. Curr. Opin. Environ. Sustain. 2013, 5, 16–25. [Google Scholar] [CrossRef]
- Mori, A.S.; Isbell, F.; Cadotte, M.W. Assessing the importance of species and their assemblages for the biodiversity-ecosystem multifunctionality relationship. Ecology 2023, 104, e4104. [Google Scholar] [CrossRef]
- Rigal, S.; Dakos, V.; Alonso, H.; Auniņš, A.; Benko, Z.; Brotons, L.; Chodkiewicz, T.; Chylarecki, P.; De Carli, E.; Del Moral, J.C.; et al. Farmland practices are driving bird population decline across Europe. Proc. Natl. Acad. Sci. USA 2023, 120, e2216573120. [Google Scholar] [CrossRef]
- Gregory, R.D.; Skorpilova, J.; Vorisek, P.; Butler, S. An analysis of trends, uncertainty and species selection shows contrasting trends of widespread forest and farmland birds in Europe. Ecol. Indic. 2019, 103, 676–687. [Google Scholar] [CrossRef]
- Gregory, R.D.; Eaton, M.A.; Burfield, I.J.; Grice, P.V.; Howard, C.; Klvaňová, A.; Noble, D.; Šilarová, E.; Staneva, A.; Stephens, P.A.; et al. Drivers of the changing abundance of European birds at two spatial scales. Philos. Trans. R. Soc. B 2023, 378, 20220198. [Google Scholar] [CrossRef]
- Reif, J. Long-term trends in bird populations: A review of patterns and potential drivers in North America and Europe. Acta Ornithol. 2013, 48, 1–16. [Google Scholar] [CrossRef]
- Reif, J.; Gamero, A.; Hološková, A.; Aunins, A.; Chodkiewicz, T.; Hristov, I.; Kurlavičius, P.; Leivits, M.; Szép, T.; Voříšek, P. Accelerated farmland bird population declines in European countries after their recent EU accession. Sci. Total Environ. 2024, 946, 174281. [Google Scholar] [CrossRef]
- Kerr, J.T.; Currie, D.J. Effects of human activity on global extinction risk. Conserv. Biol. 1995, 9, 1528–1538. [Google Scholar] [CrossRef]
- Mozumder, P.; Berrens, R.P.; Bohara, A.K. Is there an environmental Kuznets curve for the risk of biodiversity loss? J. Dev. Areas 2006, 39, 175–190. [Google Scholar]
- Mikkelson, G.M.; Gonzalez, A.; Peterson, G.D. Economic inequality predicts biodiversity loss. PLoS ONE 2007, 2, e444. [Google Scholar] [CrossRef]
Category | Criteria |
---|---|
Strong increase | Lower CL > 1.05 (significant increase of more than 5% per year) |
Moderate increase | 1.00 < lower CL < 1.05 (significant increase, but not significantly more than 5% per year) |
Stable | CI includes 1.00 and 0.95 ≤ lower CL and upper CL ≤ 1.05 (no significant increase or decline, likely that changes are smaller than 5% per year) |
Moderate decline | 0.95 < upper CL < 1.00 (significant decline, but not significantly more than 5% per year) |
Steep decline | upper CL < 0.95 (significant decline of more than 5% per year) |
Uncertain | lower CL < 0.95 and 1.05 < upper CL (no significant increase or decline, unlikely that changes are smaller than 5% per year) |
Approach | Sub-National Level | Group | MSI Classification | Independent Variable: HFI | Independent Variable: GDP | ||
---|---|---|---|---|---|---|---|
Coefficient | R-Squared | Coefficient | R-Squared | ||||
National | Common | ↔ | ns | ||||
Agricultural | ↓ | ns | |||||
Forest | ↑ | ns | ns | ||||
Clusters HFI | High HFI | Common | ↔ | ||||
Agricultural | ↔ | ||||||
Forest | ↓ | ns | |||||
Medium HFI | Common | ↑ | |||||
Agricultural | ↑ | ns | ns | ||||
Forest | ↑ | ||||||
Low HFI | Common | ↓ | ns | ns | |||
Agricultural | ↓ | ||||||
Forest | ↑ | ns | |||||
Clusters GDP | High GDP | Common | ↑ | ns | ns | ||
Agricultural | ↔ | ||||||
Forest | ↑ | ns | |||||
Medium GDP | Common | ↑ | ns | ||||
Agricultural | ↔ | ||||||
Forest | ↔ | ns | ns | ns | |||
Low GDP | Common | ↓ | ns | ||||
Agricultural | ↓ | ns | |||||
Forest | ↑ | ns | ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baptista, L.; Domingos, T.; Santos, J.; Proença, V. How Do Bird Population Trends Relate to Human Pressures Compared to Economic Growth? Sustainability 2025, 17, 3506. https://doi.org/10.3390/su17083506
Baptista L, Domingos T, Santos J, Proença V. How Do Bird Population Trends Relate to Human Pressures Compared to Economic Growth? Sustainability. 2025; 17(8):3506. https://doi.org/10.3390/su17083506
Chicago/Turabian StyleBaptista, Leonor, Tiago Domingos, João Santos, and Vânia Proença. 2025. "How Do Bird Population Trends Relate to Human Pressures Compared to Economic Growth?" Sustainability 17, no. 8: 3506. https://doi.org/10.3390/su17083506
APA StyleBaptista, L., Domingos, T., Santos, J., & Proença, V. (2025). How Do Bird Population Trends Relate to Human Pressures Compared to Economic Growth? Sustainability, 17(8), 3506. https://doi.org/10.3390/su17083506