Grassland-Based Farming Systems Targeting Agroecology: Which Indicators Should Be Used for On-Farm Assessment?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Survey Data Collection
2.2. Data Analysis
3. Results
3.1. Description of the Sample
3.2. Description of the PCA Scatter Plot
3.3. Analysis of the Indicators Through PCA Loadings Plot
3.4. Qualitative Information on Grazing: Management Criteria and Learning and Innovative Aspects of Farmers
4. Discussion
4.1. Agroecological Definition Is Represented by Principal Components
4.2. Choice and Explanation of Indicators
4.3. Importance of Quantitative and Qualitative Indicators in Agroecology
4.4. A First Step for On-Farm Assessment According to Agroecology in Grassland-Based Farming Systems
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stroparo, T.R.; Floriani, N. Agroecology, slow food and sustainable development goals (SDGs): Resilience of agro-food systems, combat hunger, and local governance. Rev. Eng. Na Agric.-REVENG 2024, 32, 27–36. [Google Scholar] [CrossRef]
- UN. Transforming Our World: The 2030 Agenda for Sustainable Development. Available online: https://sustainabledevelopment.un.org/post2015/transformingourworld/publication (accessed on 5 February 2025).
- Gliessman, S.R. Agroecology: The Ecology of Sustainable Food Systems; CRC Press: Boca Raton, FL, USA, 2007; ISBN 978-0-8493-2845-9. [Google Scholar]
- Molina, M. Agroecology and Politics. How To Get Sustainability? About the Necessity for a Political Agroecology. J. Sustain. Agric. 2012, 37, 45–59. [Google Scholar]
- Francis, C.; Lieblein, G.; Gliessman, S.; Breland, T.A.; Creamer, N.; Harwood, R.; Salomonsson, L.; Helenius, J.; Rickerl, D.; Salvador, R.; et al. Agroecology: The Ecology of Food Systems. J. Sustain. Agric. 2003, 22, 99–118. [Google Scholar] [CrossRef]
- Dumont, B.; Groot, J.C.J.; Tichit, M. Review: Make Ruminants Green Again—How Can Sustainable Intensification and Agroecology Converge for a Better Future? Animal 2018, 12, s210–s219. [Google Scholar] [CrossRef]
- Lowe, E.B.; Fochesatto, A.; Rissman, A.R. Managed Grazing and Agroecological Transformation in the Midwestern United States. Front. Sustain. Food Syst. 2023, 7, 1096230. [Google Scholar] [CrossRef]
- Schils, R.L.M.; Bufe, C.; Rhymer, C.M.; Francksen, R.M.; Klaus, V.H.; Abdalla, M.; Milazzo, F.; Lellei-Kovács, E.; ten Berge, H.; Bertora, C.; et al. Permanent Grasslands in Europe: Land Use Change and Intensification Decrease Their Multifunctionality. Agric. Ecosyst. Environ. 2022, 330, 107891. [Google Scholar] [CrossRef]
- Kaufmann, L.; Mayer, A.; Matej, S.; Kalt, G.; Lauk, C.; Theurl, M.C.; Erb, K.-H. Regional Self-Sufficiency: A Multi-Dimensional Analysis Relating Agricultural Production and Consumption in the European Union. Sustain. Prod. Consum. 2022, 34, 12–25. [Google Scholar] [CrossRef]
- Koczura, M.; Dumont, B. Accompagner la transition agroécologique des systèmes laitiers de montagne: Quels outils d’évaluation prennent en compte la diversité intra-exploitation ? Inra Prod. Anim. 2021, 34, 47–60. [Google Scholar] [CrossRef]
- Benedetti del Rio, E.; Michaud, A.; Berton, M.; Sturaro, E. Indicators addressing agroecology in grassland-based farming systems: A critical review. Agron. Sustain. Dev. 2025; Submitted. [Google Scholar]
- Pointereau, P.; Paracchini, M.-L.; Terres, J.; Jiguet, F.; Le, B.Y.; Biala, K. Identification of High Nature Value Farmland in France Through Statistical Information and Farm Practices Surveys. Available online: https://publications.jrc.ec.europa.eu/repository/handle/JRC37553 (accessed on 14 September 2024).
- Berton, M.; Bovolenta, S.; Corazzin, M.; Gallo, L.; Pinterits, S.; Ramanzin, M.; Ressi, W.; Spigarelli, C.; Zuliani, A.; Sturaro, E. Environmental impacts of milk production and processing in the Eastern Alps: A “cradle-to-dairy gate” LCA approach. J. Clean. Prod. 2021, 303, 127065. [Google Scholar] [CrossRef]
- Aubron, C.; Noël, L.; Lasseur, J. Labor as a Driver of Changes in Herd Feeding Patterns: Evidence from a Diachronic Approach in Mediterranean France and Lessons for Agroecology. Ecol. Econ. 2016, 127, 68–79. [Google Scholar] [CrossRef]
- Duval, J.; Cournut, S.; Hostiou, N. Livestock Farmers’ Working Conditions in Agroecological Farming Systems. A Review. Agron. Sustain. Dev. 2021, 41, 22. [Google Scholar] [CrossRef]
- Peeters, A.; Wezel, A. Agroecological Principles and Practices for Grass-Based Farming Systems. In Agroecological Practices for Sustainable Agriculture: Principles, Applications, and Making the Transition; World Scientific: London, UK, 2017; pp. 293–354. ISBN 978-1-78634-305-5. [Google Scholar]
- Battini, F.; Agostini, A.; Tabaglio, V.; Amaducci, S. Environmental Impacts of Different Dairy Farming Systems in the Po Valley. J. Clean. Prod. 2016, 112, 91–102. [Google Scholar] [CrossRef]
- Berton, M.; Sturaro, E.; Schiavon, S.; Cecchinato, A.; Gallo, L. Management Factors Affecting the Environmental Impact of Cereal-Based Dairy Farms. Ital. J. Anim. Sci. 2023, 22, 497–512. [Google Scholar] [CrossRef]
- Ogino, A.; Orito, H.; Shimada, K.; Hirooka, H. Evaluating Environmental Impacts of the Japanese Beef Cow–Calf System by the Life Cycle Assessment Method. Anim. Sci. J. 2007, 78, 424–432. [Google Scholar] [CrossRef]
- Berton, M.; Agabriel, J.; Gallo, L.; Lherm, M.; Ramanzin, M.; Sturaro, E. Environmental Footprint of the Integrated France–Italy Beef Production System Assessed through a Multi-Indicator Approach. Agric. Syst. 2017, 155, 33–42. [Google Scholar] [CrossRef]
- Steinfeld, H. Livestock’s Long Shadow: Environmental Issues and Options; Food & Agriculture Org.: Rome, Italy, 2006. [Google Scholar]
- Sasu-Boakye, Y.; Cederberg, C.; Wirsenius, S. Localising Livestock Protein Feed Production and the Impact on Land Use and Greenhouse Gas Emissions. Animal 2014, 8, 1339–1348. [Google Scholar] [CrossRef] [PubMed]
- Bouttes, M.; Bancarel, A.; Doumayzel, S.; Viguié, S.; Cristobal, M.S.; Martin, G. Conversion to Organic Farming Increases Dairy Farmers’ Satisfaction Independently of the Strategies Implemented. Agron. Sustain. Dev. 2020, 40, 12. [Google Scholar] [CrossRef]
- Farruggia, A.; Pomiès, D.; Coppa, M.; Ferlay, A.; Verdier-Metz, I.; Le Morvan, A.; Bethier, A.; Pompanon, F.; Troquier, O.; Martin, B. Animal Performances, Pasture Biodiversity and Dairy Product Quality: How It Works in Contrasted Mountain Grazing Systems. Agric. Ecosyst. Environ. 2014, 185, 231–244. [Google Scholar] [CrossRef]
- Pornaro, C.; Spigarelli, C.; Pasut, D.; Ramanzin, M.; Bovolenta, S.; Sturaro, E.; Macolino, S. Plant biodiversity of mountain grasslands as influenced by dairy farm management in the Eastern Alps. Agric. Ecosyst. Environ. 2021, 320, 107583. [Google Scholar] [CrossRef]
- Altieri, M.A.; Nicholls, C.I. Agroecology: A brief account of its origins and currents of thought in Latin America. Agroecol. Sustain. Food. Syst. 2017, 41, 231–237. [Google Scholar] [CrossRef]
- Cremilleux, M.; Michaud, A.; Cayre, P.; Martin, B.; Rigolot, C.; Michelin, Y. Combining Systemic and Pragmatic Approaches for the Holistic Diagnosis of a Farm in Agroecological Transition in a Health Context. Front. Sustain. Food Syst. 2023, 7, 875820. [Google Scholar] [CrossRef]
- Doré, T.; Makowski, D.; Malézieux, E.; Munier-Jolain, N.; Tchamitchian, M.; Tittonell, P. Facing up to the Paradigm of Ecological Intensification in Agronomy: Revisiting Methods, Concepts and Knowledge. Eur. J. Agron. 2011, 34, 197–210. [Google Scholar] [CrossRef]
- Tittonell, P. Ecological Intensification of Agriculture—Sustainable by Nature. Curr. Opin. Environ. Sustain. 2014, 8, 53–61. [Google Scholar] [CrossRef]
- Haddaway, N.R.; Hedlund, K.; Jackson, L.E.; Kätterer, T.; Lugato, E.; Thomsen, I.K.; Jørgensen, H.B.; Söderström, B. What Are the Effects of Agricultural Management on Soil Organic Carbon in Boreo-Temperate Systems? Environ. Evid. 2015, 4, 23. [Google Scholar] [CrossRef]
- Dumont, A.M.; Baret, P.V. Why Working Conditions Are a Key Issue of Sustainability in Agriculture? A Comparison between Agroecological, Organic and Conventional Vegetable Systems. J. Rural Stud. 2017, 56, 53–64. [Google Scholar] [CrossRef]
- Bouttes, M.; San Cristobal, M.; Martin, G. Vulnerability to Climatic and Economic Variability Is Mainly Driven by Farmers’ Practices on French Organic Dairy Farms. Eur. J. Agron. 2018, 94, 89–97. [Google Scholar] [CrossRef]
- Sutherland, L.-A.; Burton, R.J.F.; Ingram, J.; Blackstock, K.; Slee, B.; Gotts, N. Triggering Change: Towards a Conceptualisation of Major Change Processes in Farm Decision-Making. J. Environ. Manag. 2012, 104, 142–151. [Google Scholar] [CrossRef]
- Stevenson, P. Turning the Commission’s Farm to Fork Strategy into a Far-Reaching Reform of EU Agriculture. Derecho Anim. Forum Anim. Law Stud. 2020, 11, 177. [Google Scholar] [CrossRef]
- Soussana, J.-F.; Klumpp, K.; Ehrhardt, F. The Role of Grassland in Mitigating Climate Change. In Proceedings of the Organising Committee of the 25th General Meeting of the European Grassland Federation IBERS, Aberystwyth, UK, 7–11 September 2014; pp. 75–87. [Google Scholar]
- Brewer, K.M.; Gaudin, A.C.M. Potential of Crop-Livestock Integration to Enhance Carbon Sequestration and Agroecosystem Functioning in Semi-Arid Croplands. Soil Biol. Biochem. 2020, 149, 107936. [Google Scholar] [CrossRef]
- Council of the Economic Community. Council Directive No. 75/268/EEC of the 28 April 1975 Concerning Mountain and Hill Farming and Farming in Certain Less- Favoured Areas. Official Journal L128/1. 1975. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:31975L0268&from=IT (accessed on 21 June 2024).
- FAO. Second International Symposium on Agroecology: Scaling Up Agroecology to Achieve Sustainable Development Goals, Rome, Italy, 3–5 April 2018. 2018. Available online: https://openknowledge.fao.org/server/api/core/bitstreams/8b8464d0-a76e-4906-9afa-294cb260418f/content (accessed on 5 February 2025).
Total (N 17) | France (N 10) | Italy (N 7) | ||||
---|---|---|---|---|---|---|
Variable | Mean | SD | Mean | SD | Mean | SD |
LU 1 (N) | 60.75 | 32.77 | 48.69 | 26.71 | 77.97 | 34.72 |
UAA 2 (ha) | 69.18 | 24.17 | 62.70 | 28.67 | 78.43 | 12.45 |
Grasslands (%) | 98.35 | 4.92 | 97.20 | 6.29 | 100.00 | 0.00 |
Pasture (%) | 55.71 | 24.90 | 58.45 | 24.09 | 51.79 | 27.44 |
Meadow (%) | 40.06 | 28.47 | 24.35 | 19.80 | 62.50 | 23.97 |
Total self-sufficiency (%) | 86.77 | 11.05 | 92.02 | 6.80 | 79.29 | 12.05 |
Forages self-sufficiency (%) | 93.57 | 11.43 | 93.23 | 14.38 | 94.07 | 6.11 |
Workers (N) | 1.89 | 0.73 | 1.92 | 0.90 | 1.86 | 0.35 |
Dimension | Category | Indicator | Total (N 17) | Meat (N 4) | Milk (N 13) | |||
---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | |||
Livestock productions | Animal production | Breeds (N) | 2.41 | 1.97 | 1.25 | 0.50 | 2.77 | 2.13 |
LU (N) | 60.75 | 32.77 | 59.53 | 17.54 | 61.12 | 36.80 | ||
Grassland management | Total feed self-sufficiency (%) | 86.77 | 11.05 | 91.94 | 5.73 | 85.18 | 11.96 | |
Forages self-sufficiency (%) | 93.57 | 11.43 | 92.44 | 15.13 | 93.92 | 10.79 | ||
Alternative practices 1 (N) | 0.47 | 0.72 | 0.25 | 0.50 | 0.54 | 0.78 | ||
Farm practices | Tractor use—permanent pasture (N) | 1.00 | 1.58 | 0.75 | 0.96 | 1.08 | 1.75 | |
Tractor use—temporary pasture (N) | 4.29 | 2.54 | 5.25 | 5.19 | 4.00 | 1.22 | ||
Environment | Land and soil quality | Pasture (%) | 55.71 | 24.90 | 57.00 | 14.28 | 55.31 | 27.84 |
LU/UAA (N/ha) | 0.84 | 0.30 | 0.87 | 0.36 | 0.83 | 0.29 | ||
LU/pasture (N/ha) | 1.66 | 1.58 | 1.26 | 0.48 | 1.78 | 1.79 | ||
Economic | Technical economic performances | Revenue 2/UAA (€/ha) | 1269.01 | 1159.39 | 450.41 | 481.60 | 1520.88 | 1200.91 |
Revenue/LU (€/N) | 1397.72 | 1008.71 | 436.53 | 278.77 | 1693.47 | 966.70 | ||
Social | Farmer-related social aspects | Revenue (Sat. degree) | 3.97 | 1.26 | 3.50 | 1.73 | 4.12 | 1.12 |
Workload (Sat. degree) | 3.79 | 1.08 | 3.75 | 1.26 | 3.81 | 1.07 |
Grazing | Farmers Perception | France | Italy |
---|---|---|---|
Management criteria (% of farmers) | Extensification 1 | 70 | 14 |
Self-sufficiency | 60 | 43 | |
Biodiversity | 30 | 14 | |
Quality of products | 30 | 43 | |
Resilience | 30 | 14 | |
Weed management | 0 | 29 | |
Learning and innovative aspects of farmers (% of farmers) | Workload 2 | 50 | 57 |
Management of grasslands | 70 | 43 | |
Production problems and climate | 50 | 86 | |
Social | 10 | 29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benedetti del Rio, E.; Michaud, A.; Brunschwig, G.; Sturaro, E. Grassland-Based Farming Systems Targeting Agroecology: Which Indicators Should Be Used for On-Farm Assessment? Sustainability 2025, 17, 2720. https://doi.org/10.3390/su17062720
Benedetti del Rio E, Michaud A, Brunschwig G, Sturaro E. Grassland-Based Farming Systems Targeting Agroecology: Which Indicators Should Be Used for On-Farm Assessment? Sustainability. 2025; 17(6):2720. https://doi.org/10.3390/su17062720
Chicago/Turabian StyleBenedetti del Rio, Elena, Audrey Michaud, Gilles Brunschwig, and Enrico Sturaro. 2025. "Grassland-Based Farming Systems Targeting Agroecology: Which Indicators Should Be Used for On-Farm Assessment?" Sustainability 17, no. 6: 2720. https://doi.org/10.3390/su17062720
APA StyleBenedetti del Rio, E., Michaud, A., Brunschwig, G., & Sturaro, E. (2025). Grassland-Based Farming Systems Targeting Agroecology: Which Indicators Should Be Used for On-Farm Assessment? Sustainability, 17(6), 2720. https://doi.org/10.3390/su17062720