Fabrication of High-Strength Waste-Wind-Turbine-Blade-Powder-Reinforced Polypropylene Composite via Solid-State Stretching
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of PP/WTB@550 Composites
2.3. Solid-State Stretching of PP/WTB@550 Samples
2.4. Characterization
3. Results
3.1. The Effect of Powder Content on the Properties of PP/WTB@550 Composites
3.2. The Effect of Stretching Rate on the Properties of PP/WTB@550 Composites
3.3. The Effect of Solid-State Stretching Temperature on the Structure and Properties of PP/WTB@550 Composites
3.4. The Effect of Stretching Ratio on the Properties of PP/WTB@550 Composites
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
WTB | Decommissioned wind turbine blade |
KH550 | Silane coupling agent |
PP | Polypropylene |
SEM | Scanning electron microscope |
DSC | Differential scanning calorimeter test |
SAXS | Two-dimensional small-angle X-ray scattering |
References
- Abbasi, H.; Antunes, M.; Velasco, J.I. Recent advances in carbon-based polymer nanocomposites for electromagnetic interference shielding. Prog. Mater. Sci. 2019, 103, 319–373. [Google Scholar] [CrossRef]
- Ahrens, A.; Bonde, A.; Sun, H.; Wittig, N.K.; Hammershøj, H.C.D.; Batista, G.M.F.; Sommerfeldt, A.; Frølich, S.; Birkedal, H.; Skrydstrup, T. Catalytic disconnection of C–O bonds in epoxy resins and composites. Nature 2023, 617, 730–737. [Google Scholar] [CrossRef] [PubMed]
- Rani, M.; Choudhary, P.; Krishnan, V.; Zafar, S. A review on recycling and reuse methods for carbon fiber/glass fiber composites waste from wind turbine blades. Compos. Part B Eng. 2021, 215, 108768. [Google Scholar] [CrossRef]
- Baturkin, D.; Hisseine, O.A.; Masmoudi, R.; Tagnit-Hamou, A.; Massicotte, L. Valorization of recycled FRP materials from wind turbine blades in concrete. Resour. Conserv. Recycl. 2021, 174, 105807. [Google Scholar] [CrossRef]
- Beauson, J.; Lilholt, H.; Brøndsted, P. Recycling solid residues recovered from glass fibre-reinforced composites—A review applied to wind turbine blade materials. J. Reinf. Plast. Compos. 2014, 33, 1542–1556. [Google Scholar] [CrossRef]
- Bledzki, A.K.; Seidlitz, H.; Goracy, K.; Urbaniak, M.; Rösch, J.J. Recycling of Carbon Fiber Reinforced Composite Polymers—Review—Part 1: Volume of Production, Recycling Technologies, Legislative Aspects. Polymers 2021, 13, 300. [Google Scholar] [CrossRef]
- Borjan, D.; Knez, Ž.; Knez, M. Recycling of Carbon Fiber-Reinforced Composites—Difficulties and Future Perspectives. Materials 2021, 14, 4191. [Google Scholar] [CrossRef]
- Braghiroli, F.L.; Passarini, L. Valorization of Biomass Residues from Forest Operations and Wood Manufacturing Presents a Wide Range of Sustainable and Innovative Possibilities. Curr. For. Rep. 2020, 6, 172–183. [Google Scholar] [CrossRef]
- Cao, M.-S.; Cai, Y.-Z.; He, P.; Shu, J.-C.; Cao, W.-Q.; Yuan, J. 2D MXenes: Electromagnetic property for microwave absorption and electromagnetic interference shielding. Chem. Eng. J. 2019, 359, 1265–1302. [Google Scholar] [CrossRef]
- Chen, C.Y.; Chen, W.H. Co-torrefaction followed by co-combustion of intermediate waste epoxy resins and woody biomass in the form of mini-pellet. Int. J. Energy Res. 2020, 44, 9317–9332. [Google Scholar] [CrossRef]
- Chen, J.; Wang, J.; Ni, A. Recycling and reuse of composite materials for wind turbine blades: An overview. J. Reinf. Plast. Compos. 2019, 38, 567–577. [Google Scholar] [CrossRef]
- Gonçalves, R.M.; Martinho, A.; Oliveira, J.P. Recycling of Reinforced Glass Fibers Waste: Current Status. Materials 2022, 15, 1596. [Google Scholar] [CrossRef] [PubMed]
- Kavaliauskas, Ž.; Kėželis, R.; Grigaitienė, V.; Marcinauskas, L.; Milieška, M.; Valinčius, V.; Uscila, R.; Snapkauskienė, V.; Gimžauskaitė, D.; Baltušnikas, A. Recycling of Wind Turbine Blades into Microfiber Using Plasma Technology. Materials 2023, 16, 3089. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Sahoo, S.; Joanni, E.; Singh, R.K.; Tan, W.K.; Kar, K.K.; Matsuda, A. Recent progress on carbon-based composite materials for microwave electromagnetic interference shielding. Carbon 2021, 177, 304–331. [Google Scholar] [CrossRef]
- Oliveux, G.; Dandy, L.O.; Leeke, G.A. Current status of recycling of fibre reinforced polymers: Review of technologies, reuse and resulting properties. Prog. Mater. Sci. 2015, 72, 61–99. [Google Scholar] [CrossRef]
- Mumtaz, H.; Sobek, S.; Sajdak, M.; Muzyka, R.; Werle, S. An experimental investigation and process optimization of the oxidative liquefaction process as the recycling method of the end-of-life wind turbine blades. Renew. Energy 2023, 211, 269–278. [Google Scholar] [CrossRef]
- Pickering, S.J. Recycling technologies for thermoset composite materials—Current status. Compos. Part A Appl. Sci. Manuf. 2006, 37, 1206–1215. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, J.; Jiang, Z.; Tang, T. Chemical recycling of carbon fibre reinforced epoxy resin composites in subcritical water: Synergistic effect of phenol and KOH on the decomposition efficiency. Polym. Degrad. Stab. 2012, 97, 214–220. [Google Scholar] [CrossRef]
- Marsh, G. Reclaiming value from post-use carbon composite. Reinf. Plast. 2008, 52, 36–39. [Google Scholar] [CrossRef]
- Meira Castro, A.C.; Carvalho, J.P.; Ribeiro, M.C.S.; Meixedo, J.P.; Silva, F.J.G.; Fiúza, A.; Dinis, M.L. An integrated recycling approach for GFRP pultrusion wastes: Recycling and reuse assessment into new composite materials using Fuzzy Boolean Nets. J. Clean. Prod. 2014, 66, 420–430. [Google Scholar] [CrossRef]
- Mumtaz, H.; Sobek, S.; Sajdak, M.; Muzyka, R.; Drewniak, S.; Werle, S. Oxidative liquefaction as an alternative method of recycling and the pyrolysis kinetics of wind turbine blades. Energy 2023, 278, 127950. [Google Scholar] [CrossRef]
- Zhang, R.H.; Shi, D.; Tjong, S.C.; Li, R.K.Y. Study on the β to α transformation of polypropylene crystals in compatibilized blend of polypropylene/polyamide-6. J. Polym. Sci. Part B Polym. Phys. 2007, 45, 2674–2681. [Google Scholar] [CrossRef]
- Zhang, Y.-P.; Zhou, C.-G.; Sun, W.-J.; Wang, T.; Jia, L.-C.; Yan, D.-X.; Li, Z.-M. Injection molding of segregated carbon nanotube/polypropylene composite with enhanced electromagnetic interference shielding and mechanical performance. Compos. Sci. Technol. 2020, 197, 108253. [Google Scholar] [CrossRef]
- Zhao, Q.; An, L.; Li, C.; Zhang, L.; Jiang, J.; Li, Y. Environment-friendly recycling of CFRP composites via gentle solvent system at atmospheric pressure. Compos. Sci. Technol. 2022, 224, 109461. [Google Scholar] [CrossRef]
- Zhou, J.; Hsu, T.G.; Wang, J. Mechanochemical Degradation and Recycling of Synthetic Polymers. Angew. Chem. Int. Ed. 2023, 62, e202300768. [Google Scholar] [CrossRef]
- Zhu, S.; Shi, R.; Qu, M.; Zhou, J.; Ye, C.; Zhang, L.; Cao, H.; Ge, D.; Chen, Q. Simultaneously improved mechanical and electromagnetic interference shielding properties of carbon fiber fabrics/epoxy composites via interface engineering. Compos. Sci. Technol. 2021, 207, 108696. [Google Scholar] [CrossRef]
- Pu, Z.; Yang, S.; Wang, Q. Recycling of waste wind turbine blades for high-performance polypropylene composites. J. Appl. Polym. Sci. 2024, 141, e55474. [Google Scholar] [CrossRef]
- Pu, Z.; Zhang, C.; Wang, F.; Kang, P.; Yang, S. Exploring the potential of waste carbon fiber reinforced epoxy for high-performance electromagnetic interference shielding. Polym. Compos. 2024, 1–14. [Google Scholar] [CrossRef]
- Wang, F.; Kang, P.; Yang, S. Upcycling of carbon fiber reinforced Polymer for Thermal management application. Ind. Eng. Chem. Res. 2024, 63, 7196–7205. [Google Scholar] [CrossRef]
- Yang, S.; Li, Y.; Nie, M.; Liu, X.; Wang, Q.; Chen, N.; Zhang, C. Lifecycle management for sustainable plastics: Recent progress from synthesis, processing to upcycling. Adv. Mater. 2024, 36, 2404115. [Google Scholar] [CrossRef]
- Zhang, J.-R.; Lin, X.; Lu, Z.-A. Material properties and tensile behaviors of polypropylene geogrid and geonet for reinforcement of soil structures. J. Wuhan Univ. Technol.-Mater. Sci. Ed. 2002, 17, 83–86. [Google Scholar] [CrossRef]
- Lou, C.-W.; Huang, C.-L.; Hsing, W.-H.; Tsai, M.-C.; Lin, J.-H. High strength polyester/polypropylene geogrids: Manufacturing techniques and application evaluations. J. Text. Inst. 2016, 108, 735–742. [Google Scholar] [CrossRef]
- Bhuiyan, M.A.R.; Darda, M.A.; Ali, A.; Talha, A.R.; Hossain, M.F.; Mohebbullah, M.; Islam, M.A. Heat insulating jute-reinforced recycled polyethylene and polypropylene bio-composites for energy conservation in buildings. Mater. Today Commun. 2023, 37, 106948. [Google Scholar] [CrossRef]
- ASTM International. ASTM D618-08; Standard Practice for Conditioning Plastics for Testing. ASTM International: West Conshohocken, PA, USA, 2008.
- ASTM International. ASTM D638-10; Standard Test Method for Tensile Properties of Plastics. ASTM International: West Conshohocken, PA, USA, 2010.
Sample | PP (wt. %) | PP-g-MAH (wt. %) | WTB (wt. %) |
---|---|---|---|
PP | 100 | 0 | 0 |
PP/WTB@550-10 | 85 | 5 | 10 |
PP/WTB@550-20 | 75 | 5 | 20 |
PP/WTB@550-30 | 65 | 5 | 30 |
Temperature (°C) | Tm (°C) | ΔH (J·g−1) |
---|---|---|
110 | 169.55 | 156.43 |
120 | 169.25 | 123.96 |
130 | 169.23 | 113.83 |
140 | 169.13 | 105.76 |
150 | 168.65 | 95.26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, B.; Wang, X.; Pu, Z.; Yang, S.; Nie, M. Fabrication of High-Strength Waste-Wind-Turbine-Blade-Powder-Reinforced Polypropylene Composite via Solid-State Stretching. Sustainability 2025, 17, 840. https://doi.org/10.3390/su17030840
Tan B, Wang X, Pu Z, Yang S, Nie M. Fabrication of High-Strength Waste-Wind-Turbine-Blade-Powder-Reinforced Polypropylene Composite via Solid-State Stretching. Sustainability. 2025; 17(3):840. https://doi.org/10.3390/su17030840
Chicago/Turabian StyleTan, Bo, Xiaotong Wang, Zhilong Pu, Shuangqiao Yang, and Min Nie. 2025. "Fabrication of High-Strength Waste-Wind-Turbine-Blade-Powder-Reinforced Polypropylene Composite via Solid-State Stretching" Sustainability 17, no. 3: 840. https://doi.org/10.3390/su17030840
APA StyleTan, B., Wang, X., Pu, Z., Yang, S., & Nie, M. (2025). Fabrication of High-Strength Waste-Wind-Turbine-Blade-Powder-Reinforced Polypropylene Composite via Solid-State Stretching. Sustainability, 17(3), 840. https://doi.org/10.3390/su17030840