Spatiotemporal Variations and Future Trends of Sucralose Contamination in Major Rivers of Zhejiang, China: An Emerging Concern and Sustainability Challenge
Abstract
1. Introduction
2. Materials and Methods
2.1. The Research Area and Sample Collection
2.2. Monitoring Point Layout
2.3. Main Reagents and Instruments for Detection
2.4. Detection of Sucralose
2.5. Quality Control and Assurance
2.6. Seasonal Kendall Test Method
2.7. Statistical Analysis
3. Results and Discussion
3.1. Sucralose Concentration in Eight Major River Basins in Zhejiang Province
3.1.1. The Qiantang River
3.1.2. The Beijing-Hangzhou Grand Canal
3.2. Analysis of Spatiotemporal Variation Characteristics of Sucralose in the Eight Major Rivers of Zhejiang Province
3.3. Application of the Seasonal Kendall Test Mathematical Model in the Trend Analysis of Sucralose Concentration
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Labrador, A.M.; Hernandez, O.H.; Moreno, F.J. A review of the state of sweeteners science: The natural versus artificial non-caloric sweeteners debate. Stevia rebaudiana and Siraitia grosvenorii into the spotlight. Crit. Rev. Biotechnol. 2024, 44, 1080–1102. [Google Scholar] [CrossRef]
- Ma, X.Y.; Yu, Q.; Huang, F.; Song, Y.L.; Lu, S.J.; Zhu, S.C.; Gao, N.Y. Research progress on emerging pollutant sucralose in water environment. Environ. Sci. Res. 2018, 31, 1495–1503. [Google Scholar] [CrossRef]
- Fu, K.; Wang, L.; Wei, C.; Li, J.; Zhang, J.; Zhou, Z.; Liang, Y. Sucralose and acesulfame as an indicator of domestic wastewater contamination in Wuhan surface water. Ecotoxicol. Environ. Saf. 2020, 189, 109980. [Google Scholar] [CrossRef]
- Mawhinney, D.B.; Young, R.B.; Vanderford, B.J.; Borch, T.; Snyder, S.A. Artificial sweetener sucralose in US drinking water systems. Environ. Sci. Technol. 2011, 45, 8716–8722. [Google Scholar] [CrossRef]
- Wang, S.R.; Gong, T. Research progress on sweeteners and human health. Food Ferment. Ind. 2024, 50, 371–379. [Google Scholar] [CrossRef]
- Ankul, S.S.; Srishti, S.; Rukaiah, F.B.; Sukanya, V.; Chitra, V. Unveiling the profound influence of sucralose on metabolism and its role in shaping obesity trends. Front. Nutr. 2024, 11, 1387646. [Google Scholar] [CrossRef]
- Kim, Y.J.; Jung, J.W.; Lee, K.A.; Lee, Y.A. Impact of excessive sucrose intake on mouse behavior across different developmental stages. Neuroreport 2024, 35, 936–946. [Google Scholar] [CrossRef]
- Huggett, D.B.; Stoddard, K.I. Effects of the artificial sweetener sucralose on Daphnia magna and Americamysis bahiasurvival, growth and reproduction. Food Chem. Toxicol. 2021, 49, 2575–2579. [Google Scholar] [CrossRef] [PubMed]
- Voss, S.; Newman, E.; Miller-Schulze, J.P. Quantification of sucralose in groundwater well drinking water by silylation derivatization and gas chromatography-mass spectrometry. Anal. Methods 2019, 11, 2790–2799. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, Z.; Zheng, H.; Zhu, S.; Zhang, K.; Li, X.; Ma, X.; Dietrich, A.M. Sucralose, a persistent artificial sweetener in the urban water cycle: Insights into occurrence, chlorinated byproducts formation, and human exposure. J. Environ. Chem. Eng. 2021, 9, 105293. [Google Scholar] [CrossRef]
- Wiklund, A.E.; Breitholtz, M.; Bengtsson, B.; Adolfsson-Erici, M. Sucralos—An ecotoxicological challenger? Chemosphere 2012, 86, 50–55. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.P. Distribution Characteristics, Potential Risk and Adsorption/Desorption Behavior of Emerging Contaminants in Aquatic Environment of the Middle and Lower Reaches of the Yellow River (Henan Section). Ph.D. Thesis, North China University of Water Resources and Electric Power, Zhengzhou, China, 2023. [Google Scholar]
- Gvozdić, E.; Matić Bujagić, I.; Đurkić, T.; Grujić, S. Artificial sweeteners acesulfame and sucralose: From wastewater constituents to groundwater contaminants. In Zbornik Radova Pisanih za 37. Međunarodni Kongres o Procesnoj Industriji; Savez Mašinskih i Elektrotehničkih Inženjera i Tehničara Srbije (SMEITS), Društvo za Procesnu Tehniku: Belgrade, Serbia, 2024; pp. 185–190. [Google Scholar] [CrossRef]
- Li, Z.Y.; Sui, J.Y.; Zhou, S.Y.; Zhang, Y.X.; Li, A.Q.; Fen, Z.J. Application overview and detection methods of sucralose in food. Guangxi Sugar Ind. 2024, 44, 22–26. [Google Scholar] [CrossRef]
- Shi, M.; Jiang, L.H.; Yuan, C.K.; Yang, J.; Zhou, N.; Chen, Y. Comparison of Three Instrumental Determination Methods for Sucralose in Beverages. Fujian Anal. Test. 2021, 5, 30–33. [Google Scholar] [CrossRef]
- Guo, X.H.; Lu, B.H.; Li, Y.J.; Liang, B.Y.; Wang, H.F.; Tao, L. LC-MS/MS LC-MS/MS liquid chromatography-mass spectrometry (LC-MS) was used to determine 22 chemical drugs illegally added to herbal tea. Chem. Res. 2024, 35, 219–224. [Google Scholar] [CrossRef]
- Zhou, Y.; Tang, Y.R.; Yu, Y.; Liu, S.; Mao, C.X.; Zheng, J.; Sun, L.; Liu, Y.; Shi, H.W. Determination of sweetener sucralose in Baijiu by LC-ESI-MS/MS. Brew. Technol. 2018, 12, 120–123. [Google Scholar] [CrossRef]
- Zhong, M.; Ge, Y.; Wang, W.W. Feature extraction and accuracy analysis of eight major water systems in Zhejiang Province based on SRTM DEM. Sci. Technol. Eng. 2013, 13, 6544–6548. [Google Scholar] [CrossRef]
- Xiao, S.S.; He, Y.B.; Liu, J.D.; Zhang, A.J.; Wang, J.; Luo, W.; He, H.S.; Zhou, Z.M. Biological integrity index was used to evaluate the health of water ecosystem in the Qiantang River Basin-Zhejiang Section. Aquat. Sci. 2021, 40, 740–749. [Google Scholar] [CrossRef]
- GB3838-2002; Standard for Surface Water Environmental Quality of China. China Environmental Press: Beijing, China, 2002.
- The State Environmental Protection Administration. Water and Wastewater Monitoring and Analysis Method, 4th ed.; China Environmental Science Press: Beijing, China, 2002. [Google Scholar]
- Ghalhari, G.F.; Dastjerdi, J.K.; Nokhandan, M.H. Using Mann Kendall and t-test methods in identifying trends of climatic elements: A case study of northern parts of Iran. Manag. Sci. 2012, 2, 911–920. [Google Scholar] [CrossRef]
- Hirsch, R.M.; Slack, J.R.; Smith, R.A. Techniques of trend analysis for monthly water quality data. Water Resour. Res. 1982, 18, 107–121. [Google Scholar] [CrossRef]
- Yu, D.S.; Yuan, H.L.; Zhang, Y.; Li, S.C.; Sun, Z.H. Water quality change trend and main driving factors on the west bank of the Taihu Lake Lake. Environ. Pollut. Prev. 2017, 39, 1063–1066. [Google Scholar] [CrossRef]
- Young, N.; Welch, J.; Hill, T.; Sees, M.; Beazley, M.; Heider, E.C. Longitudinal Analysis of Sucralose at a Water Treatment Wetland. Environments 2022, 9, 111. [Google Scholar] [CrossRef]
- Naidu, R.; Espana, V.A.A.; Liu, Y.; Jit, J. Emerging contaminants in the environment: Risk-based analysis for better management. Chemosphere 2016, 154, 350–357. [Google Scholar] [CrossRef]
- Richardson, S.D. Water analysis: Emerging contaminants and current issues. Anal. Chem. 2009, 81, 4645–4677. [Google Scholar] [CrossRef]
- Gao, P. Chasing “emerging” contaminants: An endless journey toward environmental health. Environ. Sci. Technol. 2024, 58, 1790–1792. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, W.; Guo, D.L.; Pei, Y. An Intelligent Predicating Algorithm for Air Temperature-Water Quality Relationship in Water Source. Adm. Tech. Environ. Monit. 2018, 5, 15–19. [Google Scholar] [CrossRef]
- Arash, A.; Hiwa, F.; Mahmoudian, S.M.; Lotfirad, M.; Iraj, S.; Hossein, S. Selection of the best machine learning method for estimation of concentration of different water quality parameters. Sustain. Water Resour. Manag. 2022, 8, 172. [Google Scholar] [CrossRef]
- Li, S.L.; Ren, Y.H.; Fu, Y.Y.; Gao, X.S.; Jiang, C.; Wu, G.; Ren, H.Q.; Geng, J.J. Fate of artificial sweeteners through wastewater treatment plants and water treatment processes. PLoS ONE 2018, 13, e0189867. [Google Scholar] [CrossRef]
- Zhu, S.C.; Lu, S.J.; Song, Y.L.; Zhu, L.D.; Zhang, Y.; Ma, X.Y. Investigation on the artificial sweetener sucralose in typical drinking water systems. J. Zhejiang Univ. 2019, 53, 2198–2204. [Google Scholar] [CrossRef]
- Liu, P.; Shao, L.; Zhang, Y.; Silvonen, V.; Oswin, H.; Cao, Y.; Guo, Z.; Ma, X.; Morawska, L. Atmospheric microplastic deposition associated with GDP and population growth: Insights from megacities in northern China. J. Hazard. Mater. 2024, 469, 134024. [Google Scholar] [CrossRef]
- Klingelhöfer, D.; Braun, M.; Quarcoo, D.; Brüggmann, D.; Groneberg, D.A. Research landscape of a global environmental challenge: Microplastics. Water Res. 2020, 170, 115358. [Google Scholar] [CrossRef] [PubMed]







| Chemical Compound | Abbreviation | Structural Formula | Molecular Formula | Molecular Weight | CAS | Relative Sweetness |
| Sucralose | SUC | ![]() | C12H19Cl3O8 | 397.63 g/mol | 56038-13-2 | 600 |
| Detection Object | Median Concentration (μg/L) | Concentration Trend (μg/L/year) | Significant Level (%) | Evaluation Results |
| The Qiantang River | 1.6 | 0.275 | 0.00 | Rise |
| The Yong River | 1 | 0.167 | 0.00 | Rise |
| The Beijing-Hangzhou Grand Canal | 3 | 0.41 | 0.00 | Rise |
| The Ou River | 0 | 0.00 | 100.00 | No significant upward or downward trend (=0) |
| The Jiao River | 1.1 | 0.20 | 0.00 | Rise |
| The Tiaoxi River | 2.7 | 0.20 | 0.00 | Rise |
| The Feiyun River | 1.4 | 0.27 | 0.00 | Rise |
| The Ao River | 1.5 | 0.20 | 0.00 | Rise |
| Test Object | Actual Sucralose Concentration in 2024 (μg/L) | Predicted Concentration in 2024 (μg/L) | Absolute Deviation | Relative Deviation (%) |
| The Qiantang River | 2.47 | 2.59 | 0.12 | 4.63 |
| The Yong River | 1.74 | 1.80 | 0.06 | 3.33 |
| The Beijing-Hangzhou Grand Canal | 5.30 | 5.76 | 0.46 | 8.00 |
| The Ou River | 0.00 | 0 | 0.00 | / |
| The Jiao River | 2.02 | 2.09 | 0.07 | 3.35 |
| The Tiaoxi River | 3.67 | 3.70 | 0.03 | 0.81 |
| The Feiyun River | 3.01 | 2.90 | −0.11 | −3.79 |
| The Ao River | 2.40 | 2.42 | 0.02 | 0.83 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Ni, S.; Huang, Z.; Wang, Z.; Liu, Z. Spatiotemporal Variations and Future Trends of Sucralose Contamination in Major Rivers of Zhejiang, China: An Emerging Concern and Sustainability Challenge. Sustainability 2025, 17, 9935. https://doi.org/10.3390/su17229935
Zhang W, Ni S, Huang Z, Wang Z, Liu Z. Spatiotemporal Variations and Future Trends of Sucralose Contamination in Major Rivers of Zhejiang, China: An Emerging Concern and Sustainability Challenge. Sustainability. 2025; 17(22):9935. https://doi.org/10.3390/su17229935
Chicago/Turabian StyleZhang, Wen, Shiyuan Ni, Zike Huang, Zhequan Wang, and Zhiwei Liu. 2025. "Spatiotemporal Variations and Future Trends of Sucralose Contamination in Major Rivers of Zhejiang, China: An Emerging Concern and Sustainability Challenge" Sustainability 17, no. 22: 9935. https://doi.org/10.3390/su17229935
APA StyleZhang, W., Ni, S., Huang, Z., Wang, Z., & Liu, Z. (2025). Spatiotemporal Variations and Future Trends of Sucralose Contamination in Major Rivers of Zhejiang, China: An Emerging Concern and Sustainability Challenge. Sustainability, 17(22), 9935. https://doi.org/10.3390/su17229935


