Tomato Growth Monitoring and Phenological Analysis Using Deep Learning-Based Instance Segmentation and 3D Point Cloud Reconstruction
Abstract
Share and Cite
Timprae, W.; Sagawa, T.; Baar, S.; Kondo, S.; Okada, Y.; Sato, K.; Rumahorbo, P.S.; Lyu, Y.; Shibuya, K.; Gama, Y.; et al. Tomato Growth Monitoring and Phenological Analysis Using Deep Learning-Based Instance Segmentation and 3D Point Cloud Reconstruction. Sustainability 2025, 17, 10120. https://doi.org/10.3390/su172210120
Timprae W, Sagawa T, Baar S, Kondo S, Okada Y, Sato K, Rumahorbo PS, Lyu Y, Shibuya K, Gama Y, et al. Tomato Growth Monitoring and Phenological Analysis Using Deep Learning-Based Instance Segmentation and 3D Point Cloud Reconstruction. Sustainability. 2025; 17(22):10120. https://doi.org/10.3390/su172210120
Chicago/Turabian StyleTimprae, Warut, Tatsuki Sagawa, Stefan Baar, Satoshi Kondo, Yoshifumi Okada, Kazuhiko Sato, Poltak Sandro Rumahorbo, Yan Lyu, Kyuki Shibuya, Yoshiki Gama, and et al. 2025. "Tomato Growth Monitoring and Phenological Analysis Using Deep Learning-Based Instance Segmentation and 3D Point Cloud Reconstruction" Sustainability 17, no. 22: 10120. https://doi.org/10.3390/su172210120
APA StyleTimprae, W., Sagawa, T., Baar, S., Kondo, S., Okada, Y., Sato, K., Rumahorbo, P. S., Lyu, Y., Shibuya, K., Gama, Y., Hatanaka, Y., & Watanabe, S. (2025). Tomato Growth Monitoring and Phenological Analysis Using Deep Learning-Based Instance Segmentation and 3D Point Cloud Reconstruction. Sustainability, 17(22), 10120. https://doi.org/10.3390/su172210120

