Assessing the Impact of Road Infrastructure on Air Pollution: Evidence from Türkiye
Abstract
1. Introduction
2. Literature Review
3. Data and Methodology
3.1. Data and Variables
3.2. Methodological Framework
4. Empirical Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Intergovernmental Panel on Climate Change. Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Pachauri, R.K., Reisinger, A., Eds.; IPCC: Geneva, Switzerland, 2007; Available online: https://www.ipcc.ch/report/ar4/syr/ (accessed on 14 August 2025).
- Intergovernmental Panel on Climate Change. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Pean, C., Chen, Y., Goldfarb, L., Gomis, M.I., Matthews, J.B., Berger, S., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021. [Google Scholar] [CrossRef]
- European Commission. The European Green Deal: Communication from the Commission. 2019. Available online: https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal_en (accessed on 10 March 2025).
- The European Parliament and the Council of the European Union. Directive (EU) 2024/2881 of the European Parliament and of the Council of 24 April 2024 on Ambient Air Quality and Cleaner Air for Europe (AAQD). Official Journal of the European Union, L. 2024, pp. 1–54. Available online: https://eur-lex.europa.eu/eli/dir/2024/2881/oj (accessed on 19 October 2025).
- Turkish Statistical Institute (TurkStat). Population Density by Province, 2007–2023. Available online: https://www.tuik.gov.tr (accessed on 9 March 2024).
- General Directorate of Highways. Inventory of National and Provincial Roads [Devlet ve İl Yolları Envanteri]. Republic of Türkiye Ministry of Transport and Infrastructure. Available online: https://www.kgm.gov.tr (accessed on 3 December 2024).
- Turkish Statistical Institute (TurkStat). Motor Vehicle by Province, 2007–2023. Available online: https://www.tuik.gov.tr (accessed on 24 February 2024).
- Xia, F.; Cheng, X.; Lei, Z.; Xu, J.; Liu, Y.; Zhang, Y.; Zhang, Q. Heterogeneous Impacts of Local Traffic Congestion on Local Air Pollution within a City: Utilizing Taxi Trajectory Data. J. Environ. Econ. Manag. 2023, 122, 102896. [Google Scholar] [CrossRef]
- Pant, P.; Harrison, R.M. Estimation of the Contribution of Road Traffic Emissions to Particulate Matter Concentrations from Field Measurements: A Review. Atmos. Environ. 2013, 77, 78–97. [Google Scholar] [CrossRef]
- Wang, H.; Chen, C.; Huang, C.; Fu, L. On-Road Vehicle Emission Inventory and Its Uncertainty Analysis for Shanghai, China. Sci. Total Environ. 2008, 398, 60–67. [Google Scholar] [CrossRef]
- Du, Z.; Hu, M.; Peng, J.; Guo, S.; Zheng, R.; Zheng, J.; Shang, D.; Qin, Y.; Niu, H.; Li, M.; et al. Potential of Secondary Aerosol Formation from Chinese Gasoline Engine Exhaust. J. Environ. Sci. 2018, 66, 348–357. [Google Scholar] [CrossRef]
- Wang, J.S.; Chan, T.L.; Ning, Z.; Leung, C.W.; Cheung, C.S.; Hung, W.T. Roadside Measurement and Prediction of CO and PM2.5 Dispersion from On-Road Vehicles in Hong Kong. Transp. Res. Part D 2006, 11, 242–249. [Google Scholar] [CrossRef]
- Jin, J.; Jin, J. Traffic Congestion and Air Pollution: Empirical Evidence Before/After COVID-19 in Seoul, Korea. Int. J. Sustain. Transp. 2023, 17, 1356–1369. [Google Scholar] [CrossRef]
- Lu, J.; Li, B.; Li, H.; Al-Barakani, A. Expansion of City Scale, Traffic Modes, Traffic Congestion, and Air Pollution. Cities 2021, 108, 102974. [Google Scholar] [CrossRef]
- Turkish Statistical Institute (TurkStat). Available online: https://www.tuik.gov.tr (accessed on 22 March 2023).
- Li, J.; Heap, A.D. Spatial Interpolation Methods Applied in the Environmental Sciences: A Review. Environ. Model. Softw. 2014, 53, 173–189. [Google Scholar] [CrossRef]
- Li, L.; Losser, T.; Yorke, C.; Piltner, R. Fast Inverse Distance Weighting-Based Spatiotemporal Interpolation: A Web-Based Application of Interpolating Daily Fine Particulate Matter PM2.5 in the Contiguous U.S. Using Parallel Programming and k-d Tree. Int. J. Environ. Res. Public Health 2014, 11, 9101–9141. [Google Scholar] [CrossRef]
- Lone, F.A.; Bona, S.K.; Khan, I.J.; Nazir, N.; Kirmani, N.A.; Khan, A.A. Spatial Interpolation of the Concentrations of Particulate Matter and Carbon Dioxide of Some Selected Tourist Sites in Srinagar City, Jammu and Kashmir, India. Curr. World Environ. 2022, 17, 122. [Google Scholar] [CrossRef]
- Xie, R.; Fang, J.; Liu, C. The Effects of Transportation Infrastructure on Urban Carbon Emissions. Appl. Energy 2017, 196, 199–207. [Google Scholar] [CrossRef]
- Han, J.; Meng, X.; Zhang, Y.; Liu, J. The Impact of Infrastructure Stock Density on CO2 Emissions: Evidence from China Provinces. Sustainability 2017, 9, 2312. [Google Scholar] [CrossRef]
- Churchill, S.A.; Inekwe, J.; Ivanovski, K.; Smyth, R. Transport Infrastructure and CO2 Emissions in the OECD Over the Long Run. Transp. Res. Part D Transp. Environ. 2021, 95, 102857. [Google Scholar] [CrossRef]
- Peng, W.; Yu, X.; Haron, N.A. Relative Improvements Between Roads and Railways and Transport Carbon Dioxide Emissions: An Environmental Kuznets Curve Hypothesis Test in China. Sustain. Futures 2025, 9, 100520. [Google Scholar] [CrossRef]
- Wang, Y.; Ali, A.; Chen, Z. Dynamic Relationships Between Environment-Related Technologies, Agricultural Value Added, Transport Infrastructure and Environmental Emissions in the Five Most Populous Countries. Sci. Rep. 2025, 15, 2308. [Google Scholar] [CrossRef]
- Cassady, A.; Dutzik, T.; Figdor, E. More Highways, More Pollution: Road-Building and Air Pollution in America’s Cities; U.S. PIRG Education Fund: Washington, DC, USA, 2004; Available online: https://frontiergroup.org/wp-content/uploads/2012/03/US-More-Highways-More-Pollution-text-cover.pdf (accessed on 17 March 2025).
- Ye, F.; Li, Y. Road Traffic Infrastructure Construction and Air Pollution Based on the Perspective of Spatial Spillover. Sustainability 2024, 16, 9627. [Google Scholar] [CrossRef]
- Luo, Z.; Wan, G.; Wang, C.; Zhang, X. Urban Pollution and Road Infrastructure: A Case Study of China. China Econ. Rev. 2018, 49, 171–183. [Google Scholar] [CrossRef]
- Sun, C.; Luo, Y.; Li, J. Urban Traffic Infrastructure Investment and Air Pollution: Evidence from the 83 Cities in China. J. Clean. Prod. 2018, 172, 488–496. [Google Scholar] [CrossRef]
- Sun, C.; Zhang, W.; Luo, Y.; Li, J. Road Construction and Air Quality: Empirical Study of Cities in China. J. Clean. Prod. 2021, 319, 128649. [Google Scholar] [CrossRef]
- Tezel-Oguz, M.N. Application of Reduction Scenarios on Traffic-Related NOx Emissions in Trabzon, Türkiye. Atmos. Pollut. Res. 2020, 11, 2379–2389. [Google Scholar] [CrossRef]
- Schultz, E.S.; Hallberg, J.; Bellander, T.; Bergström, A.; Bottai, M.; Chiesa, F.; Gustafsson, P.M.; Gruzieva, O.; Thunqvist, P.; Pershagen, G.; et al. Early-Life Exposure to Traffic-Related Air Pollution and Lung Function in Adolescence. Am. J. Respir. Crit. Care Med. 2016, 193, 171–177. [Google Scholar] [CrossRef]
- Nitoiu, C.; Cofaru, C.; Popescu, M. Influence of Road and Traffic Conditions on Emissions and Fuel Consumption of Light Vehicles in a Real Urban Driving Cycle. Environ. Sci. Pollut. Res. 2025, 32, 15050–15065. [Google Scholar] [CrossRef]
- Hansen, L.P. Large Sample Properties of Generalized Method of Moments Estimators. Econometrica 1982, 50, 1029–1054. [Google Scholar] [CrossRef]
- Blundell, R.; Bond, S. Initial Conditions and Moment Restrictions in Dynamic Panel Data Models. J. Econom. 1998, 87, 115–143. [Google Scholar] [CrossRef]
- Arellano, M.; Bond, S. Some Tests of Specification for Panel Data: Monte Carlo Evidence and Application to Employment Equations. Rev. Econ. Stud. 1991, 58, 277–297. [Google Scholar] [CrossRef]
- Baum, C.F.; Schaffer, M.E.; Stillman, S. Instrumental Variables and GMM: Estimation and Testing. Stata J. 2003, 3, 1–31. [Google Scholar] [CrossRef]
- Mutlu, A. Air Quality Impact of Particulate Matter (PM10) Releases from an Industrial Source. Environ. Monit. Assess. 2020, 192, 1–17. [Google Scholar] [CrossRef]
- İpek, Z.; Uyanık, İ. Contribution of Residential Heating to Air Pollution in An Industrial City of Turkey. Niğde Ömer Halisdemir Univ. J. Eng. Sci. 2023, 12, 1051–1058. [Google Scholar] [CrossRef]
- Cichowicz, R.; Wielgosinski, G.; Fetter, W. Dispersion of Atmospheric Air Pollution in Summer and Winter Season. Environ. Monit. Assess. 2017, 189, 605. [Google Scholar] [CrossRef]
- Baykara, M.; Im, U.; Unal, A. Evaluation of Impact of Residential Heating on Air Quality of Megacity Istanbul by CMAQ. Sci. Total Environ. 2019, 651, 1688–1697. [Google Scholar] [CrossRef]
- Harrison, R.M.; Deacon, A.R.; Jones, M.R.; Appleby, R.S. Sources and Processes Affecting Concentrations of PM10 and PM2.5 Particulate Matter in Birmingham (U.K.). Atmos. Environ. 1997, 31, 4103–4117. [Google Scholar] [CrossRef]
- Cuspilici, A.; Monforte, P.; Ragusa, M.A. 2017. Study of Saharan Dust Influence on PM10 Measures in Sicily from 2013 to 2015. Ecol. Indic. 2017, 76, 297–303. [Google Scholar] [CrossRef]
- Stojiljkovic, A.; Kauhaniemi, M.; Kukkonen, J.; Kupiainen, K.; Karppinen, A.; Denby, B.R.; Kousa, A.; Niemi, J.V.; Ketzel, M. The Impact of Measures to Reduce Ambient Air PM10 Concentrations Originating from Road Dust, Evaluated for a Street Canyon in Helsinki. Atmos. Chem. Phys. 2019, 19, 11199–11212. [Google Scholar] [CrossRef]
- Doğruparmak, Ş.Ç.; Demirarslan, K.O.; Çavuşoğlu, S.V. Evaluation of Turkey’s Road-Based Greenhouse Gas Inventory and Future Projections. Appl. Sci. 2025, 15, 7007. [Google Scholar] [CrossRef]


| Variable | Obs. | Mean | Std. Dev. | Min | Max |
|---|---|---|---|---|---|
| NOx (µg/m3) | 530 | 426.918 | 290.511 | 0.739 | 2046.794 |
| PM10 (µg/m3) | 945 | 52.223 | 18.671 | 11.721 | 136.388 |
| Total Road Length(km) | 891 | 796.710 | 465.698 | 131 | 3159 |
| Divided Highways (km) | 891 | 267.535 | 178.416 | 28.8 | 1234.486 |
| Asphalt Roads (km) | 891 | 752.324 | 441.648 | 121 | 3030 |
| GDP per capita (USD/person) | 891 | 8079.472 | 2999.435 | 2870.524 | 20,883 |
| Population Density (persons/km2) | 972 | 128.758 | 321.208 | 11.06 | 3061.58 |
| Forest Area (hectare) | 971 | 282,506.2 | 235,220.1 | 8 | 1,303,773 |
| Independent Variables | Coefficients and Standard Errors | |||||
|---|---|---|---|---|---|---|
| NOx | NOx | NOx | PM10 | PM10 | PM10 | |
| lagged DV | 0.413 *** (3.413) | 0.372 ** (2.499) | 0.408 *** (3.571) | 0.805 *** (11.780) | 0.755 *** (10.636) | 0.783 *** (13.653) |
| log road length | −1.083 ** | 0.080 | ||||
| (−2.096) | (0.352) | |||||
| log divided road | −1.589 ** | 0.377 | ||||
| (−2.306) | (1.047) | |||||
| log asphalt road | −1.032 ** | −0.009 | ||||
| (−2.295) | (−0.057) | |||||
| log GDP per capita | −0.394 | −0.801 | −0.291 | −0.133 | 0.108 | −0.171 |
| (−0.847) | (−1.074) | (−0.632) | (−0.767) | (0.412) | (−1.134) | |
| log population density | −0.022 | 0.258 | −0.067 | 0.068 | −0.015 | 0.055 |
| (−0.137) | (0.861) | (−0.390) | (1.050) | (−0.152) | (0.871) | |
| log forest area | 0.510 | 0.753 | 0.479 | 0.027 | 0.073 | −0.002 |
| (1.511) | (1.554) | (1.473) | (0.920) | (1.443) | (−0.066) | |
| Number of Observations | 396 | 396 | 396 | 784 | 784 | 784 |
| Number of Instruments | 64 | 64 | 64 | 64 | 64 | 64 |
| Number of Provinces | 66 | 66 | 66 | 80 | 80 | 80 |
| AR (2) | 0.195 | 0.314 | 0.163 | 0.932 | 0.880 | 0.939 |
| Hansen Test | 0.387 | 0.350 | 0.364 | 0.214 | 0.258 | 0.244 |
| Independent Variables | Coefficients and Standard Errors | ||
|---|---|---|---|
| PM10 | PM10 | PM10 | |
| lagged DV | 0.486 *** (6.586) | 0.532 *** (6.769) | 0.465 *** (6.572) |
| log road length | −0.226 (−1.362) | ||
| log divided road | −0.101 (−1.061) | ||
| log asphalt road | −0.181 (−1.173) | ||
| log GDP per capita | −0.251 * (−1.755) | −0.253 (−1.597) | −0.247 * (−1.687) |
| log population density | 0.023 (0.424) | 0.070 (1.215) | 0.029 (0.569) |
| log forest area | 0.088 (1.116) | 0.043 (0.484) | 0.067 (0.879) |
| Number of Observations | 394 | 394 | 394 |
| Number of Instruments | 64 | 64 | 64 |
| Number of Provinces | 65 | 65 | 65 |
| AR (2) | 0.746 | 0.745 | 0.758 |
| Hansen Test | 0.274 | 0.260 | 0.233 |
| Independent Variables | Coefficients and Standard Errors | |||||
|---|---|---|---|---|---|---|
| NOx | NOx | NOx | PM10 | PM10 | PM10 | |
| lagged DV | 0.534 *** (4.857) | 0.434 ** (3.932) | 0.519 *** (4.804) | 0.784 *** (12.823) | 0.756 *** (10.665) | 0.759 *** (13.589) |
| log road length | −1.025 ** | −0.088 | ||||
| (−2.106) | (−0.496) | |||||
| log divided road | −1.328 ** | 0.357 | ||||
| (−2.501) | (1.015) | |||||
| log asphalt road | −1.033 ** | −0.064 | ||||
| (−2.137) | (−0.379) | |||||
| log GDP per capita | −0.474 | −0.779 | −0.386 | −0.197 | 0.106 | −0.246 |
| (−1.060) | (−1.018) | (−0.837) | (−1.199) | (0.416) | (−1.570) | |
| log population density | 0.012 | 0.219 | −0.049 | 0.053 | −0.021 | 0.078 |
| (0.068) | (0.786) | (−0.254) | (0.773) | (−0.192) | (1.016) | |
| log forest area | 0.475 * | 0.730 * | 0.451 | 0.022 | 0.062 | −0.004 |
| (1.876) | (1.823) | (1.637) | (0.867) | (1.263) | (−0.153) | |
| Number of Observations | 367 | 367 | 367 | 755 | 755 | 755 |
| Number of Instruments | 64 | 64 | 64 | 64 | 64 | 64 |
| Number of Provinces | 63 | 63 | 63 | 77 | 77 | 77 |
| AR (2) | 0.330 | 0.501 | 0.307 | 0.955 | 0.868 | 0.945 |
| Hansen Test | 0.301 | 0.610 | 0.344 | 0.192 | 0.256 | 0.186 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Altay, K.; Tirgil, A.; Yanikkaya, H. Assessing the Impact of Road Infrastructure on Air Pollution: Evidence from Türkiye. Sustainability 2025, 17, 9840. https://doi.org/10.3390/su17219840
Altay K, Tirgil A, Yanikkaya H. Assessing the Impact of Road Infrastructure on Air Pollution: Evidence from Türkiye. Sustainability. 2025; 17(21):9840. https://doi.org/10.3390/su17219840
Chicago/Turabian StyleAltay, Kübra, Abdullah Tirgil, and Halit Yanikkaya. 2025. "Assessing the Impact of Road Infrastructure on Air Pollution: Evidence from Türkiye" Sustainability 17, no. 21: 9840. https://doi.org/10.3390/su17219840
APA StyleAltay, K., Tirgil, A., & Yanikkaya, H. (2025). Assessing the Impact of Road Infrastructure on Air Pollution: Evidence from Türkiye. Sustainability, 17(21), 9840. https://doi.org/10.3390/su17219840

