Assessing Radiological Risks of Natural Radionuclides on Sustainable Campus Environment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Geological and Geographical Conditions of the Sampling Area
2.2. Sampling and Samples’ Pretreatment
2.3. Analyses of 226Ra, 228Ra, 232Th, and 40K in the Soil Samples
2.4. Radiological Risk Calculation
2.5. Statistics
3. Results
3.1. Activity Concentration and Correlation of Nuclides
3.2. Descript Statistic and Frequency Distribution of Activity Concentration
3.3. Comparison with Reported Activity Concentrations
Area/Country (Soil Type) ** | 40K | 232Th | 226Ra | 137Cs | 232Th/226Ra | References |
---|---|---|---|---|---|---|
Neipu/TW (SS) | 505 | 53.4 | 30.1 | - | 1.78 | PS * |
Whole Island/TW (PFSs) | 609 | 45.0 | 31.1 | 5.6 | 1.45 | [50] |
Whole Island/TW (SS) | 407 | 33 | 23 | - | 1.50 | [47] |
Whole Island/TW (SS) | 539 | 41 | 23 | - | 1.78 | [51] |
Near NPP IV/TW (SS) | 436 | 26 | 24 | 7.1 | 1.08 | [36] |
Whole Island/TW (PFSs) | 670 | - | 21.1 | 6.7 | [52] | |
Pingtung/TW (TFS) | 702 | 55.1 | 36.3 | - | 1.52 | [54] |
Global average | 420 | 45 | 32 | 1.41 | [28] | |
Guangdong/China (SS) | 536 | 101.0 | 75.1 | - | 1.34 | [4] |
Shangrao/China (SS) | 742 | 59 | 63 | - | 1.30 | [7] |
Bangladesh (ALSs) | 762 | 64 | 47 | - | 1.36 | [1] |
India (SS) | 792 | 77.4 | 33.8 | - | 2.31 | [3] |
Tamil Nadu/India (HS) | 840 | 48 | 52 | - | 0.92 | [17] |
Guangdong/China (GSs) | 680 | 187 | 134 | - | 1.40 | [18] |
Dhanbad/India (SLSs) | 570 | 44.3 | 61.7 | - | 1.40 | [55] |
Bangladesh (GSs) | 947 | 83.2 | 65.9 | - | 1.30 | [53] |
Pernambuco/Brazil (TSSs) | 548 | 38 | 20 | - | 2.1 | [2] |
Alagoas/Brazil (SS) | 630 | 54 * | 28 | - | 1.93 | [21] |
Pakistan (Sand) | 509 | 43.2 | 24.5 | - | 1.76 | [27] |
Bulgaria/Turkey (SS) | 617 | 42.4 | 24.0 | - | 1.77 | [9] |
Spain (FSs) | 335–562 | 24–48 | 19–33 | - | 1.29–1.48 | [6] |
HCMC/Vietnam (SS) | 279 | 36.6 | 21.1 | - | 1.73 | [20] |
Tamil Nadu/India (IEDSs) | 253 | 39.9 | 22.8 | - | 1.75 | [31] |
Jeju Island/Korea (VS) | 314 | 35.6 | 32.4 | 20.8 | 1.10 | [5] |
Chittagong/Bangladesh (RDSs) | 321 | 46 | 18 | - | 2.56 | [30] |
Yerevan/Armenia | 424 | 37.3 | 45.7 | 8.0 | 2.26 | [11] |
Saudi Arabia (Sand) | 380 | 29.7 | 23.4 | - | 0.77 | [56] |
Qassim/Saudi Arabia (RS) | 67–94 | 6–19 | 10–19 | - | 0.86–1.18 | [25] |
Abu Qurqas/Egypt (ASs) | 158 | 12.2 | 22.3 | - | 0.85 | [33] |
India (SS) | 567 | 51.6 | 36.9 | - | 1.40 | [22] |
Bartin/Turkey (SS) | 136 | 7 | 8 | 2 | 1.14 | [57] |
Nigeria (TESs) | 70.4 | 17.7 | 11.9 | - | 1.53 | [8] |
Ptolemais/Greece (SS) | 496 | 36 | 27 | - | 1.33 | [14] |
Saudi Arabia (SS) | 790 | 24.3 | 23.8 | - | 1.02 | [37] |
Canary Island/Spain (VS) | 384 | 28.9 | 25.2 | - | 1.15 | [16] |
Amman City/Jordan (USs) | 266 | 35.5 | 29.0 | - | 1.22 | [29] |
3.4. Activity Ratio of 232Th/226Ra
3.5. Radiological Hazard Indices
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dina, N.T.; Das, S.C.; Kabir, M.Z.; Rasul, M.G.; Deeba, F.; Rajib, M.; Islam, M.S.; Hayder, M.A.; Ali, M.I. Natural radioactivity and its radiological implications from soils and rocks in Jaintiapur area, North-east Bangladesh. J. Radioanal. Nucl. Chem. 2022, 331, 4457–4468. [Google Scholar] [CrossRef]
- do Carmo Leal, A.L.; da Costa Lauria, D.; Ribeiro, F.C.; Viglio, E.P.; Franzen, M.; Lima, E.d.A.M. Spatial distributions of natural radionuclides in soils of the state of Pernambuco, Brazil: Influence of bedrocks, soils types and climates. J Environ. Radioact. 2020, 211, 106046. [Google Scholar] [CrossRef] [PubMed]
- Srilatha, M.; Rangaswamy, D.; Sannappa, J. Measurement of natural radioactivity and radiation hazard assessment in the soil samples of Ramanagara and Tumkur districts, Karnataka, India. J. Radioanal. Nucl. Chem. 2015, 303, 993–1003. [Google Scholar] [CrossRef]
- Yang, J.; Sun, Y. Natural radioactivity and dose assessment in surface soil from Guangdong, a high background radiation province in China. J. Radiat. Res. Appl. Sci. 2022, 15, 145–151. [Google Scholar] [CrossRef]
- Kang, T.-W.; Park, W.-P.; Han, Y.-U.; Bong, K.M.; Kim, K. Natural and artificial radioactivity in volcanic ash soils of Jeju Island, Republic of Korea, and assessment of the radiation hazards: Importance of soil properties. J. Radioanal. Nucl. Chem. 2020, 323, 1113–1124. [Google Scholar] [CrossRef]
- Navas, A.; Soto, J.; Machın, J. 238U, 226Ra, 210Pb, 232Th and 40K activities in soil profiles of the Flysch sector (Central Spanish Pyrenees). Appl. Radiat. Isot. 2002, 57, 579–589. [Google Scholar] [CrossRef]
- Yang, B.; Zhou, Q.; Zhang, J.; Li, Z.; Li, W.; Tuo, F. Assessment of radioactivity level and associated radiation exposure in topsoil from eastern region of Shangrao Prefecture, China. J. Radioanal. Nucl. Chem. 2019, 319, 297–302. [Google Scholar] [CrossRef]
- Kolo, M.; Amin, Y.; Khandaker, M.; Abdullah, W. Radionuclide concentrations and excess lifetime cancer risk due to gamma radioactivity in tailing enriched soil around Maiganga coal mine, Northeast Nigeria. Int. J. Radiat. Res. 2017, 15, 71. [Google Scholar]
- Özden, S. Assessment of natural radioactivity levels and radiological hazard parameters of soils collected from Bulgaria–Turkey border region. Eur. Phys. J. Plus 2022, 137, 1368. [Google Scholar] [CrossRef]
- Aközcan, S. Natural and artificial radioactivity levels and hazards of soils in the Kücük Menderes Basin, Turkey. Environ. Earth Sci. 2014, 71, 4611–4614. [Google Scholar] [CrossRef]
- Belyaeva, O.; Movsisyan, N.; Pyuskyulyan, K.; Sahakyan, L.; Tepanosyan, G.; Saghatelyan, A. Yerevan soil radioactivity: Radiological and geochemical assessment. Chemosphere 2021, 265, 129173. [Google Scholar] [CrossRef] [PubMed]
- Elsaman, R.; Ali, G.; Uosif, M.; El-Taher, A.; Chong, K. Transfer factor of natural radionuclides from clay loam soil to sesame and Cowpea: Radiological hazards. Int. J. Radiat. Res. 2020, 18, 157–166. [Google Scholar]
- Lee, J.; Kim, H.; Kye, Y.U.; Lee, D.Y.; Jo, W.S.; Lee, C.G.; Kim, J.K.; Baek, J.-H.; Kang, Y.-R. Activity concentrations and radiological hazard assessments of 226Ra, 232Th, 40K, and 137Cs in soil samples obtained from the Dongnam Institute of Radiological & Medical Science, Korea. Nucl. Eng. Technol. 2023, 55, 2388–2394. [Google Scholar]
- Psichoudaki, M.; Papaefthymiou, H. Natural radioactivity measurements in the city of Ptolemais (Northern Greece). J. Environ. Radioact. 2008, 99, 1011–1017. [Google Scholar] [CrossRef]
- Amini Birami, F.; Moore, F.; Faghihi, R.; Keshavarzi, B. Distribution of natural radionuclides and assessment of the associated radiological hazards in the rock and soil samples from a high-level natural radiation area, Northern Iran. J. Radioanal. Nucl. Chem. 2019, 322, 2091–2103. [Google Scholar] [CrossRef]
- Arnedo, M.; Rubiano, J.; Alonso, H.; Tejera, A.; González, A.; González, J.; Gil, J.; Rodríguez, R.; Martel, P.; Bolivar, J. Mapping natural radioactivity of soils in the eastern Canary Islands. J. Environm. Radioact. 2017, 166, 242–258. [Google Scholar] [CrossRef]
- Jananee, B.; Rajalakshmi, A.; Thangam, V.; Bharath, K.M.; Sathish, V. Natural radioactivity in soils of Elephant hills, Tamilnadu, India. J. Radioanal. Nucl. Chem. 2021, 329, 1261–1268. [Google Scholar] [CrossRef]
- Song, G.; Chen, D.; Tang, Z.; Zhang, Z.; Xie, W. Natural radioactivity levels in topsoil from the Pearl river delta zone, Guangdong, China. J. Environ. Radioact. 2012, 103, 48–53. [Google Scholar] [CrossRef]
- Tabar, E.; Yakut, H.; Saç, M.M.; Taşköprü, C.; İçhedef, M.; Kuş, A. Natural radioactivity levels and related risk assessment in soil samples from Sakarya, Turkey. J. Radioanal. Nucl. Chem. 2017, 313, 249–259. [Google Scholar] [CrossRef]
- Tran, D.-K.; Truong, Y.; Le, N.-S.; Nguyen, V.-P.; Tran, H.-N. Environmental radioactivity and associated radiological hazards in surface soils in Ho Chi Minh City, Vietnam. J. Radioanal. Nucl. Chem. 2020, 326, 1773–1783. [Google Scholar] [CrossRef]
- Filgueiras, R.A.; Silva, A.X.; Ribeiro, F.C.A.; Lauria, D.C.; Viglio, E.P. Baseline, mapping and dose estimation of natural radioactivity in soils of the Brazilian state of Alagoas. Radiat. Phys. Chem. 2020, 167, 108332. [Google Scholar] [CrossRef]
- Srinivasa, E.; Rangaswamy, D.; Suresh, S.; Sannappa, J. Natural radioactivity levels and associated radiation hazards in soil samples of Chikkamagaluru district, Karnataka, India. J. Radioanal. Nucl. Chem. 2022, 331, 1899–1906. [Google Scholar] [CrossRef]
- Kurnaz, A.; Kucukomeroglu, B.; Damla, N.; Çevik, U. Radiological maps for Trabzon, Turkey. J. Environ. Radioact. 2011, 102, 393–399. [Google Scholar] [CrossRef] [PubMed]
- Isinkaye, M.O.; Ajiboye, Y. Natural radioactivity in surface soil of urban settlements in Ekiti State, Nigeria: Baseline mapping and the estimation of radiological risks. Arab. J. Geosci. 2022, 15, 557. [Google Scholar] [CrossRef]
- Alashrah, S. Radiation properties for red soil in Qassim province, Saudi Arabia. J. Radiat. Res. Appl. Sci. 2016, 9, 363–369. [Google Scholar] [CrossRef]
- Darwish, D.; Abul-Nasr, K.; El-Khayatt, A. The assessment of natural radioactivity and its associated radiological hazards and dose parameters in granite samples from South Sinai, Egypt. J. Radiat. Res. Appl. Sci. 2015, 8, 17–25. [Google Scholar] [CrossRef]
- Khan, K.; Akhter, P.; Orfi, S. Estimation of radiation doses associated with natural radioactivity in sand samples of the north western areas of Pakistan using Monte Carlo simulation. J. Radioanal. Nucl. Chem. 2005, 265, 371–375. [Google Scholar] [CrossRef]
- UNSCEAR. Sources and Effects of Ionizing Radiation; Report to General Assembly, with Scientific Annexes; United Nations: New York, NY, USA, 2000; Volume II. [Google Scholar]
- Hamideen, M.S. Correlations study between environmental radioactivity concentrations and some health risk indicators of soil samples in Amman city, Jordan. Int. J. Environ. Anal. Chem. 2022, 102, 380–390. [Google Scholar] [CrossRef]
- Rashed-Nizam, Q.M.; Rahman, M.M.; Kamal, M.; Chowdhury, M.I. Assessment of radionuclides in the soil of residential areas of the Chittagong metropolitan city, Bangladesh and evaluation of associated radiological risk. J. Radiat. Res. 2015, 56, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Senthilkumar, R.; Narayanaswamy, R. Assessment of radiological hazards in the industrial effluent disposed soil with statistical analyses. J. Radiat. Res. Appl. Sci. 2016, 9, 449–456. [Google Scholar] [CrossRef]
- Adjirackor, T.; Darko, E.O.; Sam, F. Naturally occurring radionuclide transfer from soil to vegetables in some farmlands in Ghana and statistical analysis. Radiat. Prot. Environ. 2017, 40, 34. [Google Scholar] [CrossRef]
- Elsaman, R.; Seleem, E.-M.; Salman, S.; Ella, E.E.; El-Taher, A. Evaluation of Natural Radioactivity Levels and Associated Radiological Risk in Soil from Siwa Oasis, Egypt. Radiochemistry 2022, 64, 409–415. [Google Scholar] [CrossRef]
- Isinkaye, O.M.; Adeleke, S.; Isah, D.A. Background radiation measurement and the assessment of radiological impacts due to natural radioactivity around Itakpe iron-ore mines. Mapan 2018, 33, 271–280. [Google Scholar] [CrossRef]
- Dosh, R.; Hasan, A.K.; Abojassim, A.A. Estimation of Natural Radioactivity in Soil of Primary Schools at Old City in Najaf. Arab. J. Nucl. Sci. Appl. 2023, 56, 117–125. [Google Scholar] [CrossRef]
- Tsai, T.-L.; Lin, C.-C.; Wang, T.-W.; Chu, T.-C. Radioactivity concentrations and dose assessment for soil samples around nuclear power plant IV in Taiwan. J. Radiol. Prot. 2008, 28, 347. [Google Scholar] [CrossRef] [PubMed]
- Alharbi, T. Establishment of natural radioactivity baseline, mapping, and radiological hazard assessment in soils of Al-Qassim, Al-Ghat, Al-Zulfi, and Al-Majmaah. Arab. J. Geosci. 2020, 13, 415. [Google Scholar] [CrossRef]
- Monged, M.H.; Abu Khatita, A.M.; El-Hemamy, S.T.; Sabet, H.S.; Al-Azhary, M.A. Environmental assessment of radioactivity levels and radiation hazards in soil at North Western-Mediterranean Sea coast, Egypt. Environ. Earth Sci. 2020, 79, 386. [Google Scholar] [CrossRef]
- Huang, K.C.; Chiang, J.L.; Huang, Y.K.; Chiu, H.P.; Huang, C.Y. A study on soil pore space characteristic under different vegetation in Laopi terrace. J. Taiwan Agric. Eng. 2009, 55, 81–94. [Google Scholar]
- McLean, E. Soil pH and lime requirement. In Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties; American Society of Agronomy, Soil Science Society of America: Madison, WI, USA, 1983; Volume 9, pp. 199–224. [Google Scholar]
- Kolomogorov, A. Sulla Determinazione Empirica Di Una Legge Di Distribuzione. Giorn. Dell’Istit. Ital. Degli Att. 1933, 4, 83–91. [Google Scholar]
- Smirnov, N. Table for Estimating the Goodness of Fit of Empirical Distributions. Ann. Math. Stat. 1948, 19, 279–281. [Google Scholar] [CrossRef]
- Janković, M.; Jelić, I.; Rajačić, M.; Krneta Nikolić, J.; Vukanac, I.; Dimović, S.; Sarap, N.; Šljivić-Ivanović, M. Distribution of Natural Radionuclides and 137Cs in Urban Soil Samples from the City of Novi Sad, Serbia-Radiological Risk Assessment. Toxics 2023, 11, 345. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, A.; Kurnaz, A.; Turhan, Ş.; Mirekhtiary, F. Radiation hazards and natural radioactivity levels in surface soil samples from dwelling areas of North Cyprus. J. Radioanal. Nucl. Chem. 2020, 324, 203–210. [Google Scholar] [CrossRef]
- Akkurt, İ.; Gunoglu, K.; Gunay, O.; Sarıhan, M. Natural radioactivity and radiological damage parameters for soil samples from Cekmekoy-İstanbul. Arab. J. Geosci. 2022, 15, 53. [Google Scholar] [CrossRef]
- Alazemi, N.; Bajoga, A.; Bradley, D.; Regan, P.; Shams, H. Soil radioactivity levels, radiological maps and risk assessment for the state of Kuwait. Chemosphere 2016, 154, 55–62. [Google Scholar] [CrossRef]
- Tsai, T.-L.; Liu, C.-C.; Chuang, C.-Y.; Wei, H.-J.; Men, L.-C. The effects of physico-chemical properties on natural radioactivity levels, associated dose rate and evaluation of radiation hazard in the soil of Taiwan using statistical analysis. J. Radioanal. Nucl. Chem. 2011, 288, 927–936. [Google Scholar] [CrossRef]
- Haribala; Hu, B.; Wang, C.; Xu, X.; Zhang, S.; Bao, S.; Li, Y. Assessment of radioactive materials and heavy metals in the surface soil around uranium mining area of Tongliao, China. Ecotox. Environ. Saf. 2016, 130, 185–192. [Google Scholar] [CrossRef]
- Ravisankar, R.; Chandrasekaran, A.; Vijayagopal, P.; Venkatraman, B.; Senthilkumar, G.; Eswaran, P.; Rajalakshmi, A. Natural radioactivity in soil samples of Yelagiri Hills, Tamil Nadu, India and the associated radiation hazards. Radiat. Phys. Chem. 2012, 81, 1789–1795. [Google Scholar] [CrossRef]
- Huang, W.-H.; Chen, T.-C.; Lin, S.-C.; Chen, Z.-M.; Yeh, Y.-L. Assessment Activity Concentrations of Rice Components (Root, Stem, Leaf, and Grain) and Transfer Factors (TF) from Paddy Soil to Rice Grain of Radionuclides 40K, 226Ra, 232Th, and 137Cs Investigation in Taiwan. Agronomy 2024, 15, 23. [Google Scholar] [CrossRef]
- Saito, K.; Inoue, K.; Ishita, Y.; Shimizu, H.; Fukushi, M. Distribution of gamma radiation dose rate and activity concentration in soil related with natural radionuclides on Taiwan main island. Radiat. Prot. Dosim. 2022, 198, 998–1003. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.-J.; Wang, C.-J.; Huang, C.-C.; Lin, Y.-M. Transfer factors of 90Sr and 137Cs from paddy soil to the rice plant in Taiwan. J. Environ. Radioact. 1998, 39, 23–34. [Google Scholar] [CrossRef]
- Yasmin, S.; Barua, B.S.; Kamal, M.; Rashid, M.A. An analysis for distribution of natural radionuclides in soil, sand and sediment of Potenga Sea beach area of Chittagong, Bangladesh. J. Environ. Prot. 2014, 5, 1553. [Google Scholar] [CrossRef]
- Huang, W.-H.; Huang, C.-M.; Chen, T.-C.; Liu, Y.-Y.; Lin, C.-C.; Yeh, Y.-L. Soil to tobacco component transfer factors for natural radionuclides 40K, 226Ra, and 232Th and the risk assessment of tobacco leaf in smoking. J. Environ. Sci. Health Part A 2022, 57, 737–745. [Google Scholar] [CrossRef] [PubMed]
- Zubair, M. Measurement of natural radioactivity in several sandy-loamy soil samples from Sijua, Dhanbad, India. Heliyon 2020, 6, e03430. [Google Scholar] [CrossRef] [PubMed]
- Alaamer, A. Assessment of human exposures to natural sources of radiation in soil of Riyadh, Saudi Arabia. Turkish J. Eng. Environ. Sci. 2008, 32, 229–234. [Google Scholar]
- Özdemir Öge, T.; Özdemir, F.B.; Öge, M. Assessment of environmental radioactivity in soil samples from Bartın Province, Turkey. J. Radioanal. Nucl. Chem. 2021, 328, 149–162. [Google Scholar] [CrossRef]
- Veerasamy, N.; Sahoo, S.K.; Inoue, K.; Arae, H.; Fukushi, M. Geochemical behavior of uranium and thorium in sand and sandy soil samples from a natural high background radiation area of the Odisha coast, India. Environ. Sci. Pollut. Res. 2020, 27, 31339–31349. [Google Scholar] [CrossRef] [PubMed]
- Duong, N.T.; Van Hao, D.; Duong, D.T.; Phan, T.T.; Le Xuan, H. Natural radionuclides and assessment of radiological hazards in MuongHum, Lao Cai, Vietnam. Chemosphere 2021, 270, 128671. [Google Scholar] [CrossRef] [PubMed]
- Tufail, M.; Asghar, M.; Akram, M.; Javied, S.; Khan, K.; Mujahid, S. Measurement of natural radioactivity in soil from Peshawar basin of Pakistan. J. Radioanal. Nucl. Chem. 2013, 298, 1085–1096. [Google Scholar] [CrossRef]
- Beretka, J.; Mathew, P. Natural radioactivity of Australian building materials, industrial wastes and by-products. Health Phys. 1985, 48, 87–95. [Google Scholar] [CrossRef] [PubMed]
- EC-European Commission. Radiological protection principles concerning the natural radioactivity of building materials. Radiat. Prot. 1999, 112, 1–16. [Google Scholar]
- Lin, Y.-M.; Chen, C.-J.; Lin, P.-H. Natural background radiation dose assessment in Taiwan. Environ. Int. 1996, 22, 45–48. [Google Scholar] [CrossRef]
Sample No | 40K | 232Th | 226Ra | 228Ra |
---|---|---|---|---|
Bq/kg | ||||
1 | 557.2 ± 2.6 | 55.3 ± 3.6 | 32.2 ± 5.5 | 63.4 ± 3.7 |
2 | 454.6 ± 2.8 | 58.6 ± 4.0 | 30.6 ± 6.4 | 60.1 ± 3.9 |
3 | 488.5 ± 2.6 | 48.9 ± 3.8 | 26.1 ± 5.4 | 51.2 ± 3.3 |
4 | 492.7 ± 2.8 | 55.6 ± 4.2 | 30.9 ± 5.7 | 57.2 ± 3.4 |
5 | 518.3 ± 2.6 | 56.5 ± 3.9 | 29.6 ± 5.3 | 58.4 ± 2.9 |
6 | 509.6 ± 2.9 | 55.3 ± 4.1 | 30.2 ± 5.9 | 59.2 ± 3.5 |
7 | 494.7 ± 2.6 | 55.7 ± 3.5 | 30.9 ± 5.3 | 61.6 ± 3.0 |
8 | 579.9 ± 2.7 | 56.8 ± 4.6 | 32.0 ± 5.5 | 60.0 ± 4.1 |
9 | 520.4 ± 3.0 | 58.0 ± 3.9 | 33.8 ± 6.3 | 61.3 ± 4.5 |
10 | 531.3 ± 2.5 | 39.1 ± 3.8 | 24.6 ± 5.0 | 44.1 ± 3.4 |
11 | 453.0 ± 2.8 | 53.6 ± 3.7 | 32.6 ± 5.5 | 54.8 ± 3.9 |
12 | 534.8 ± 2.7 | 49.7 ± 3.8 | 28.3 ± 5.7 | 54.5 ± 3.7 |
13 | 594.8 ± 2.7 | 60.3 ± 3.9 | 33.7 ± 5.9 | 63.6 ± 4.0 |
14 | 532.1 ± 2.5 | 40.5 ± 4.2 | 21.8 ± 6.5 | 44.7 ± 3.7 |
15 | 532.6 ± 2.5 | 53.9 ± 3.5 | 30.0 ± 5.2 | 60.7 ± 3.0 |
16 | 471.4 ± 2.9 | 51.2 ± 4.1 | 29.8 ± 5.6 | 51.0 ± 3.7 |
17 | 604.7 ± 2.5 | 43.0 ± 4.4 | 23.0 ± 6.7 | 42.5 ± 4.2 |
18 | 393.6 ± 3.5 | 52.3 ± 4.6 | 34.6 ± 6.0 | 57.8 ± 4.5 |
19 | 570.5 ± 2.8 | 57.0 ± 3.6 | 31.1 ± 6.5 | 65.9 ± 4.1 |
20 | 493.3 ± 2.9 | 54.5 ± 4.3 | 30.5 ± 6.5 | 56.0 ± 4.7 |
21 | 595.9 ± 2.4 | 55.5 ± 3.3 | 30.9 ± 5.2 | 57.5 ± 3.8 |
22 | 614.8 ± 2.4 | 58.6 ± 3.5 | 33.4 ± 5.4 | 60.6 ± 3.8 |
23 | 507.4 ± 2.9 | 48.8 ± 4.4 | 28.7 ± 5.7 | 55.9 ± 3.8 |
24 | 447.0 ± 3.0 | 53.7 ± 4.1 | 35.0 ± 5.5 | 60.4 ± 4.2 |
25 | 585.9 ± 2.4 | 56.3 ± 3.5 | 32.4 ± 5.2 | 63.1 ± 3.5 |
26 | 663.1 ± 2.5 | 60.5 ± 4.1 | 35.1 ± 6.2 | 62.0 ± 4.9 |
27 | 467.3 ± 2.6 | 42.8 ± 4.0 | 24.6 ± 5.8 | 44.5 ± 3.4 |
28 | 578.7 ± 2.7 | 58.6 ± 4.5 | 30.8 ± 5.9 | 58.2 ± 3.5 |
29 | 531.2 ± 2.7 | 49.7 ± 4.0 | 31.9 ± 6.5 | 55.4 ± 4.4 |
30 | 488.8 ± 2.6 | 53.9 ± 3.5 | 28.8 ± 5.3 | 56.9 ± 3.2 |
31 | 396.1 ± 2.9 | 46.0 ± 4.0 | 26.6 ± 5.5 | 51.4 ± 3.3 |
32 | 534.9 ± 2.8 | 57.0 ± 3.9 | 29.7 ± 5.7 | 54.8 ± 3.6 |
33 | 570.3 ± 2.5 | 41.2 ± 3.9 | 21.1 ± 6.8 | 41.8 ± 3.9 |
34 | 553.8 ± 2.8 | 60.4 ± 4.0 | 32.4 ± 5.6 | 61.9 ± 3.1 |
35 | 489.0 ± 2.6 | 41.9 ± 4.3 | 24.0 ± 5.6 | 45.7 ± 3.6 |
36 | 474.7 ± 3.0 | 55.7 ± 3.8 | 29.3 ± 5.7 | 56.6 ± 3.5 |
37 | 528.7 ± 3.0 | 54.0 ± 4.4 | 31.0 ± 5.7 | 58.3 ± 4.9 |
38 | 508.2 ± 2.6 | 41.5 ± 4.2 | 26.2 ± 5.5 | 42.0 ± 3.8 |
39 | 457.7 ± 2.7 | 41.2 ± 4.3 | 24.2 ± 5.5 | 41.2 ± 4.2 |
40 | 457.1 ± 3.3 | 52.5 ± 4.4 | 28.1 ± 6.5 | 54.7 ± 4.7 |
41 | 474.5 ± 2.8 | 53.4 ± 3.5 | 27.2 ± 5.3 | 52.0 ± 3.9 |
42 | 499.4 ± 2.7 | 55.9 ± 3.6 | 30.5 ± 5.7 | 58.3 ± 3.3 |
43 | 498.2 ± 2.7 | 55.4 ± 3.7 | 30.8 ± 5.5 | 55.7 ± 3.9 |
44 | 497.4 ± 2.9 | 58.8 ± 4.5 | 32.8 ± 5.7 | 57.0 ± 4.3 |
45 | 447.5 ± 3.2 | 58.1 ± 3.9 | 36.4 ± 6.0 | 58.8 ± 3.7 |
46 | 457.1 ± 2.6 | 52.4 ± 3.7 | 29.6 ± 5.5 | 55.4 ± 2.9 |
47 | 610.9 ± 2.6 | 58.9 ± 3.6 | 29.2 ± 5.7 | 59.7 ± 3.3 |
48 | 418.7 ± 3.3 | 48.6 ± 4.8 | 30.0 ± 6.3 | 49.7 ± 5.6 |
49 | 420.3 ± 3.2 | 51.2 ± 4.0 | 31.0 ± 5.9 | 53.3 ± 3.9 |
50 | 514.1 ± 2.6 | 46.7 ± 4.1 | 24.7 ± 5.6 | 49.9 ± 3.6 |
51 | 474.6 ± 2.9 | 54.3 ± 4.3 | 32.5 ± 6.1 | 59.7 ± 4.5 |
52 | 474.6 ± 3.2 | 54.8 ± 4.4 | 30.7 ± 5.6 | 57.4 ± 3.7 |
53 | 443.6 ± 2.9 | 52.4 ± 3.8 | 31.3 ± 5.4 | 55.0 ± 3.3 |
54 | 539.4 ± 2.6 | 53.5 ± 3.9 | 33.8 ± 5.1 | 58.4 ± 3.4 |
55 | 537.3 ± 3.0 | 52.9 ± 4.3 | 31.0 ± 5.8 | 51.3 ± 4.0 |
56 | 434.8 ± 2.9 | 57.1 ± 3.8 | 33.7 ± 5.3 | 58.9 ± 3.2 |
57 | 538.2 ± 2.8 | 50.9 ± 4.3 | 32.5 ± 6.0 | 55.8 ± 3.6 |
58 | 378.4 ± 3.2 | 45.5 ± 4.4 | 30.0 ± 5.9 | 48.7 ± 3.7 |
59 | 950.9 ± 2.2 | 66.1 ± 3.9 | 31.5 ± 6.1 | 61.3 ± 3.4 |
60 | 593.7 ± 2.6 | 55.9 ± 3.2 | 33.5 ± 5.6 | 63.4 ± 3.7 |
61 | 446.1 ± 3.0 | 54.8 ± 4.5 | 28.7 ± 6.7 | 51.4 ± 4.1 |
62 | 495.1 ± 2.8 | 51.7 ± 3.9 | 31.1 ± 5.4 | 56.3 ± 4.2 |
63 | 511.3 ± 2.5 | 55.3 ± 3.7 | 28.2 ± 5.5 | 57.0 ± 3.1 |
64 | 491.3 ± 2.7 | 54.9 ± 4.0 | 32.0 ± 5.5 | 59.4 ± 3.2 |
65 | 589.3 ± 2.7 | 58.3 ± 3.8 | 30.4 ± 5.7 | 58.3 ± 3.6 |
66 | 465.7 ± 2.9 | 52.8 ± 4.2 | 29.3 ± 5.7 | 56.6 ± 3.3 |
67 | 567.5 ± 2.9 | 52.0 ± 4.5 | 35.6 ± 5.4 | 51.0 ± 4.1 |
68 | 569.5 ± 2.5 | 58.8 ± 3.5 | 31.4 ± 5.6 | 58.0 ± 3.8 |
69 | 375.9 ± 3.4 | 57.5 ± 4.1 | 32.5 ± 5.6 | 57.7 ± 4.9 |
70 | 432.2 ± 3.2 | 51.5 ± 4.3 | 29.5 ± 6.2 | 50.2 ± 3.7 |
71 | 576.3 ± 2.7 | 59.9 ± 4.0 | 34.6 ± 5.5 | 61.9 ± 4.3 |
72 | 487.4 ± 3.2 | 61.7 ± 4.3 | 32.5 ± 6.0 | 59.9 ± 3.7 |
73 | 527.8 ± 3.0 | 50.1 ± 4.3 | 28.4 ± 6.4 | 50.7 ± 3.7 |
74 | 551.0 ± 2.6 | 57.2 ± 3.8 | 30.9 ± 5.7 | 62.7 ± 3.3 |
75 | 506.4 ± 2.9 | 52.1 ± 4.4 | 30.3 ± 5.5 | 58.3 ± 4.5 |
76 | 425.3 ± 3.0 | 55.0 ± 4.1 | 34.7 ± 5.3 | 57.9 ± 3.3 |
77 | 460.7 ± 3.0 | 47.4 ± 4.2 | 26.7 ± 6.4 | 48.3 ± 4.0 |
78 | 381.6 ± 3.2 | 55.1 ± 4.3 | 38.2 ± 5.6 | 57.2 ± 3.5 |
79 | 496.8 ± 2.7 | 51.5 ± 4.1 | 26.3 ± 5.7 | 50.7 ± 3.6 |
80 | 514.4 ± 2.6 | 54.3 ± 4.0 | 31.0 ± 5.4 | 56.8 ± 3.2 |
81 | 418.2 ± 3.0 | 48.4 ± 3.9 | 28.2 ± 5.6 | 52.7 ± 3.2 |
82 | 463.5 ± 3.0 | 51.4 ± 4.0 | 26.6 ± 5.8 | 51.6 ± 3.5 |
83 | 359.2 ± 3.4 | 46.8 ± 4.6 | 29.6 ± 6.3 | 49.2 ± 3.9 |
84 | 449.6 ± 3.0 | 52.7 ± 4.4 | 27.5 ± 6.1 | 52.3 ± 3.6 |
85 | 478.1 ± 2.7 | 50.5 ± 3.7 | 29.6 ± 5.2 | 55.1 ± 3.7 |
86 | 505.6 ± 3.1 | 57.0 ± 5.0 | 31.1 ± 6.1 | 56.3 ± 4.9 |
87 | 479.4 ± 2.8 | 49.9 ± 3.7 | 30.6 ± 5.4 | 56.1 ± 3.4 |
88 | 428.0 ± 3.2 | 53.5 ± 4.0 | 27.9 ± 6.1 | 55.5 ± 4.1 |
89 | 621.3 ± 2.4 | 54.4 ± 3.8 | 31.6 ± 5.0 | 62.2 ± 3.0 |
90 | 481.5 ± 3.0 | 61.3 ± 3.9 | 36.9 ± 5.4 | 63.0 ± 3.2 |
91 | 496.6 ± 2.9 | 56.3 ± 3.7 | 29.9 ± 6.6 | 60.5 ± 4.6 |
92 | 531.9 ± 3.0 | 57.0 ± 5.3 | 30.5 ± 6.1 | 60.5 ± 4.5 |
93 | 490.6 ± 2.8 | 56.4 ± 3.8 | 30.7 ± 5.5 | 57.5 ± 3.4 |
94 | 419.8 ± 3.3 | 55.9 ± 3.7 | 30.3 ± 5.9 | 58.3 ± 3.5 |
95 | 513.5 ± 2.7 | 56.7 ± 3.8 | 31.6 ± 6.0 | 60.4 ± 3.3 |
96 | 540.6 ± 2.7 | 59.0 ± 3.6 | 31.0 ± 5.4 | 61.1 ± 3.4 |
97 | 312.6 ± 3.3 | 44.9 ± 4.2 | 28.7 ± 5.4 | 47.6 ± 3.6 |
98 | 520.4 ± 3.0 | 62.7 ± 4.1 | 30.3 ± 5.8 | 65.4 ± 3.5 |
99 | 517.7 ± 2.7 | 54.2 ± 4.0 | 29.5 ± 5.6 | 60.7 ± 3.1 |
100 | 527.9 ± 2.7 | 54.0 ± 4.0 | 28.9 ± 5.9 | 58.1 ± 3.3 |
101 | 479.6 ± 3.2 | 56.5 ± 4.3 | 29.9 ± 5.8 | 59.1 ± 3.7 |
102 | 557.3 ± 2.9 | 57.4 ± 4.0 | 29.4 ± 5.8 | 61.8 ± 4.3 |
103 | 522.3 ± 3.1 | 54.3 ± 5.2 | 28.1 ± 7.0 | 56.7 ± 5.3 |
104 | 569.5 ± 2.9 | 54.7 ± 4.3 | 29.6 ± 6.5 | 55.1 ± 4.1 |
105 | 544.5 ± 2.6 | 44.8 ± 4.0 | 26.1 ± 5.9 | 49.3 ± 3.7 |
106 | 723.8 ± 2.1 | 44.4 ± 3.7 | 26.6 ± 5.3 | 49.7 ± 3.9 |
107 | 417.6 ± 3.5 | 57.6 ± 4.7 | 33.1 ± 6.6 | 59.3 ± 3.7 |
108 | 485.9 ± 2.9 | 55.4 ± 4.3 | 29.8 ± 5.8 | 54.7 ± 3.5 |
109 | 482.4 ± 3.0 | 54.9 ± 4.1 | 32.9 ± 6.5 | 57.0 ± 5.3 |
110 | 463.6 ± 2.8 | 49.3 ± 3.8 | 26.4 ± 5.8 | 51.0 ± 3.5 |
111 | 422.0 ± 3.4 | 56.7 ± 4.4 | 31.9 ± 6.1 | 60.1 ± 3.8 |
112 | 565.0 ± 2.6 | 56.3 ± 3.6 | 27.8 ± 5.8 | 55.7 ± 3.4 |
113 | 514.2 ± 2.5 | 53.3 ± 3.6 | 27.6 ± 5.3 | 53.9 ± 3.2 |
114 | 457.8 ± 2.9 | 53.4 ± 4.4 | 26.8 ± 6.3 | 56.3 ± 4.1 |
115 | 432.4 ± 3.0 | 55.4 ± 3.7 | 31.2 ± 5.9 | 62.0 ± 3.9 |
116 | 485.4 ± 2.9 | 48.2 ± 4.4 | 27.6 ± 6.6 | 53.8 ± 4.5 |
117 | 475.3 ± 2.6 | 51.7 ± 3.6 | 27.8 ± 5.5 | 53.3 ± 3.2 |
118 | 497.2 ± 2.8 | 47.5 ± 4.9 | 28.0 ± 5.9 | 48.5 ± 4.6 |
119 | 504.4 ± 3.0 | 56.6 ± 4.2 | 30.4 ± 6.7 | 56.2 ± 4.8 |
120 | 432.1 ± 3.1 | 53.6 ± 3.8 | 31.8 ± 5.4 | 60.0 ± 3.3 |
Parameters | 40K | 232Th | 226Ra | 232Th/226Ra |
---|---|---|---|---|
Mean, Bq/kg | 504.5 | 53.4 | 30.1 | 1.78 |
SD a, Bq/kg | 75.4 | 5.1 | 3.0 | 0.13 |
Minimum, Bq/kg | 312.6 | 39.1 | 21.1 | 1.44 |
Maximum, Bq/kg | 950.7 | 66.1 | 38.2 | 2.10 |
Median, Bq/kg | 497.3 | 54.3 | 30.4 | 1.78 |
Kurtosis | 9.80 | 0.57 | 0.77 | −0.13 |
Skewness | 1.78 | −0.73 | −0.29 | −0.21 |
CV, % | 15.0 | 9.5 | 10.0 | 7.3 |
p-value b | 0.27 | 0.09 | 0.44 | 0.68 |
Global average, Bq/kg | 420 | 45 | 32 | 1.41 |
Parameter | Raeq (Bq/kg) | Dex (nGy/h) | Hex | AEDex (μSv/y) |
---|---|---|---|---|
Mean | 145.2 | 67.2 | 0.39 | 82.4 |
SD a | 12.2 | 5.7 | 0.03 | 7.0 |
Minimum | 117.0 | 53.4 | 0.32 | 65.5 |
Maximum | 199.3 | 94.2 | 0.54 | 115.5 |
Median | 146.4 | 67.5 | 0.40 | 82.8 |
Kurtosis | 2.51 | 3.43 | 2.51 | 3.43 |
Skewness | 0.36 | 0.61 | 0.36 | 0.61 |
CV | 8.4 | 8.5 | 8.4 | 8.5 |
p-value b | 0.54 | 0.58 | 0.13 | 0.54 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, W.-H.; Chen, Z.-M.; Chen, T.-C.; Yeh, Y.-L. Assessing Radiological Risks of Natural Radionuclides on Sustainable Campus Environment. Sustainability 2025, 17, 691. https://doi.org/10.3390/su17020691
Huang W-H, Chen Z-M, Chen T-C, Yeh Y-L. Assessing Radiological Risks of Natural Radionuclides on Sustainable Campus Environment. Sustainability. 2025; 17(2):691. https://doi.org/10.3390/su17020691
Chicago/Turabian StyleHuang, Wei-Hsiang, Zhi-Mou Chen, Ting-Chien Chen, and Yi-Lung Yeh. 2025. "Assessing Radiological Risks of Natural Radionuclides on Sustainable Campus Environment" Sustainability 17, no. 2: 691. https://doi.org/10.3390/su17020691
APA StyleHuang, W.-H., Chen, Z.-M., Chen, T.-C., & Yeh, Y.-L. (2025). Assessing Radiological Risks of Natural Radionuclides on Sustainable Campus Environment. Sustainability, 17(2), 691. https://doi.org/10.3390/su17020691