Does Climate Policy Uncertainty Abate Financial Inclusion? An Empirical Analysis Through the Lens of Institutional Quality and Governance
Abstract
:1. Introduction
2. Literature Review and Theoretical Arguments
2.1. Climate Policy Uncertainty and Banking Interaction
2.2. Climate Policy Uncertainty and Financial Regulation and Development
2.3. Climate Policy Uncertainty and Interaction with Financial Instruments
2.4. Theoretical Background
3. Data Methodology and Variable Description
Model Specification
4. Empirical Analysis and Discussion
4.1. Descriptive Analysis
4.2. Correlation Analysis
4.3. Regression Analysis
4.4. Moderating Variable Analysis
4.5. Alternative Measurement of Financial Inclusion
5. Conclusions and Policy Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Evangelista, P. Environmental sustainability practices in the transport and logistics service industry: An exploratory case study investigation. Res. Transp. Bus. Manag. 2014, 12, 63–72. [Google Scholar] [CrossRef]
- Managi, S.; Broadstock, D.; Wurgler, J. Green and climate finance: Challenges and opportunities. Int. Rev. Financ. Anal. 2022, 79, 101962. [Google Scholar] [CrossRef]
- Dikau, S.; Volz, U. Central Banking, Climate Change and Green Finance; Asian Development Bank Institute: Tokyo, Japan, 2018. [Google Scholar]
- Ozili, P.K.; Lay, S.H.; Syed, A.A. Impact of financial inclusion on economic growth in secular and religious countries. J. Financ. Regul. Compliance 2023, 31, 420–444. [Google Scholar] [CrossRef]
- Sadiq, M.; Amayri, M.A.; Paramaiah, C.; Mai, N.H.; Ngo, T.Q.; Phan, T.T.H. How green finance and financial development promote green economic growth: Deployment of clean energy sources in South Asia. Environ. Sci. Pollut. Res. 2022, 29, 65521–65534. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.T.H. Measuring financial inclusion: A composite FI index for the developing countries. J. Econ. Dev. 2021, 23, 77–99. [Google Scholar] [CrossRef]
- Saydaliev, H.B.; Chin, L. Role of green financing and financial inclusion to develop the cleaner environment for macroeconomic stability: Inter-temporal analysis of ASEAN economies. Econ. Change Restruct. 2023, 56, 3839–3859. [Google Scholar] [CrossRef]
- Monasterolo, I.; Roventini, A.; Foxon, T.J. Uncertainty of climate policies and implications for economics and finance: An evolutionary economics approach. Ecol. Econ. 2019, 163, 177–182. [Google Scholar] [CrossRef]
- Ji, Q.; Ma, D.; Zhai, P.; Fan, Y.; Zhang, D. Global climate policy uncertainty and financial markets. J. Int. Financ. Mark. Inst. Money 2024, 95, 102047. [Google Scholar] [CrossRef]
- Ozili, P.K.; Syed, A.A. Financial Inclusion and Fintech Research in India: A Review. In Decentralized Finance and Tokenization in FinTech; IGI Global: Hershey, PA, USA, 2024; pp. 77–94. [Google Scholar]
- Lee, C.C.; Li, X.; Yu, C.H.; Zhao, J. The contribution of climate finance toward environmental sustainability: New global evidence. Energy Econ. 2022, 111, 106072. [Google Scholar] [CrossRef]
- Dai, Z.; Zhang, X. Climate policy uncertainty and risks taken by the bank: Evidence from China. Int. Rev. Financ. Anal. 2023, 87, 102579. [Google Scholar] [CrossRef]
- Xu, X.; Huang, S.; Lucey, B.M.; An, H. The impacts of climate policy uncertainty on stock markets: Comparison between China and the US. Int. Rev. Financ. Anal. 2023, 88, 102671. [Google Scholar] [CrossRef]
- Ren, X.; Qin, J.; Dong, K. How does climate policy uncertainty affect excessive corporate debt? The case of China. J. Environ. Assess. Policy Manag. 2022, 24, 2250025. [Google Scholar] [CrossRef]
- Shahbaz, M.; Meo, M.S.; Kamran, H.W.; ul Islam, M.S. Financial regulations and sustainability: The role of energy price and climate policy uncertainty. J. Environ. Manag. 2024, 359, 121037. [Google Scholar] [CrossRef]
- Azam, M.; Hunjra, A.I.; Taskin, D. Macroeconomic-financial policies and climate change nexus: Theory & practices. In Crises and Uncertainty in the Economy; Springer: Singapore, 2023; pp. 51–69. [Google Scholar]
- Olasehinde-Williams, G.; Özkan, O.; Akadiri, S.S. Effects of climate policy uncertainty on sustainable investment: A dynamic analysis for the US. Environ. Sci. Pollut. Res. 2023, 30, 55326–55339. [Google Scholar] [CrossRef] [PubMed]
- Hoque, M.E.; Soo-Wah, L.; Bilgili, F.; Ali, M.H. Connectedness and spillover effects of US climate policy uncertainty on energy stock, alternative energy stock, and carbon future. Environ. Sci. Pollut. Res. 2023, 30, 18956–18972. [Google Scholar] [CrossRef]
- Tedeschi, M.; Foglia, M.; Bouri, E.; Dai, P.F. How does climate policy uncertainty affect financial markets? Evidence from Europe. Econ. Lett. 2024, 234, 111443. [Google Scholar] [CrossRef]
- Alharbey, M.; Ben-Salha, O. Does climate policy uncertainty predict renewable energy stocks? A quantile-based (a) symmetric causality analysis. Energy Strategy Rev. 2024, 54, 101465. [Google Scholar] [CrossRef]
- Guo, J.; Long, S.; Luo, W. Nonlinear effects of climate policy uncertainty and financial speculation on the global prices of oil and gas. Int. Rev. Financ. Anal. 2022, 83, 102286. [Google Scholar] [CrossRef]
- Noailly, J.; Nowzohour, L.; Van Den Heuvel, M. Does Environmental Policy Uncertainty Hinder Investments Towards a Low-Carbon Economy? (No. w30361); National Bureau of Economic Research: Cambridge, MA, USA, 2022. [Google Scholar]
- Bekele, W.D. Determinants of financial inclusion: A comparative study of Kenya and Ethiopia. J. Afr. Bus. 2023, 24, 301–319. [Google Scholar] [CrossRef]
- Arellano, M.; Bond, S. Some tests of specification for panel data: Monte Carlo evidence and an application to employment equations. Rev. Econ. Stud. 1991, 58, 277–297. [Google Scholar] [CrossRef]
- Blundell, R.; Bond, S. Initial conditions and moment restrictions in dynamic panel data models. J. Econom. 1998, 87, 115–143. [Google Scholar] [CrossRef]
- Almugren, H.Z.; Kijas, A.M.; Sarabdeen, M.; Binsuwadan, J. Does Quality Education and Governance Matter for Women’s Empowerment? The Role of Structural Factors and Governance in the MENA Region. Sustainability 2024, 16, 10277. [Google Scholar] [CrossRef]
- Kripfganz, S. Sequential (two-stage) estimation of linear panel-data models. In German Stata Users’ Group Meetings 2017 (No. 03); Stata Users Group: Warsaw, Poland, 2017. [Google Scholar]
- Thompson, C.G.; Kim, R.S.; Aloe, A.M.; Becker, B.J. Extracting the variance inflation factor and other multicollinearity diagnostics from typical regression results. Basic Appl. Soc. Psychol. 2017, 39, 81–90. [Google Scholar] [CrossRef]
- Patt, A.G.; Verhoeven, L.M.A.; Kern, S.L.P. Financial market uncertainties and risk aversion. J. Financ. Econ. 2014, 111, 242–259. [Google Scholar]
- Klein, M.; Smith, R.H.; Klein, J.S. Climate policy uncertainty and foreign direct investment. Int. Econ. Rev. 2015, 56, 1201–1227. [Google Scholar] [CrossRef]
- Choi, J.J.; Kim, K.S. Exchange rate volatility and inflation in emerging markets. J. Int. Money Financ. 2020, 104, 102–118. [Google Scholar]
- Cen, H.; Liu, Y. Climate policy uncertainty and financial stability: Evidence from emerging markets. J. Int. Money Financ. 2022, 118, 102478. [Google Scholar]
- Sullivan, M.; Zheng, Y. Climate policy uncertainty and financial inclusion: Evidence from developing countries. World Dev. 2023, 157, 105878. [Google Scholar] [CrossRef]
- Barajas, A.; Beck, T.; Belhaj, M.; Naceur, S.B.; Cerra, V.; Qureshi, M.S. Financial Inclusion: What Have We Learned So Far? What Do We Have to Learn? International Monetary Fund: Washington, DC, USA, 2020. [Google Scholar]
- Claessens, M.S.; Kodres, M.L.E. The Regulatory Responses to the Global Financial Crisis: Some Uncomfortable Questions; International Monetary Fund: Washington, DC, USA, 2014. [Google Scholar]
- World Bank Group. The World Bank Group A to Z; World Bank Publications: Chicago, IL, USA, 2014. [Google Scholar]
- Mishra, S.; Sharma, A. Impact of institutional quality on financial inclusion in developing countries: A comprehensive analysis. World Dev. 2022, 156, 105858. [Google Scholar] [CrossRef]
- Ayyagari, M.; Demirgüç-Kunt, A. Financial inclusion and institutional quality: Evidence from emerging economies. J. Bank. Financ. 2023, 151, 106462. [Google Scholar]
- Boulanouar, Z.; Alqahtani, F.; Hamdi, B. Bank ownership, institutional quality and financial stability: Evidence from the GCC region. Pac.-Basin Financ. J. 2021, 66, 101510. [Google Scholar] [CrossRef]
- Khan, M.A.; Máté, D.; Abdulahi, M.E.; Sadaf, R.; Khan, M.A.; Popp, J.; Oláh, J. Do institutional quality, innovation and technologies promote financial market development? Eur. J. Int. Manag. 2024, 22, 484–507. [Google Scholar] [CrossRef]
- Dafermos, Y.; Nikolaidi, M.; Galanis, G. Climate change, financial stability and monetary policy. Ecol. Econ. 2018, 152, 219–234. [Google Scholar] [CrossRef]
- Chu, A.B. Mobile technology and financial inclusion. In Handbook of Blockchain, Digital Finance, and Inclusion; Academic Press: Cambridge, MA, USA, 2018; Volume 1, pp. 131–144. [Google Scholar]
- Ahamed, M.M.; Mallick, S.K. Is financial inclusion good for bank stability? International evidence. J. Econ. Behav. Organ. 2019, 157, 403–427. [Google Scholar] [CrossRef]
- Tram, T.X.H.; Lai, T.D.; Nguyen, T.T.H. Constructing a composite financial inclusion index for developing economies. Q. Rev. Econ. Financ. 2023, 87, 257–265. [Google Scholar] [CrossRef]
- Meneses Cerón, L.Á.; van Klyton, A.; Rojas, A.; Muñoz, J. Climate Risk and Its Impact on the Cost of Capital—A Systematic Literature Review. Sustainability 2024, 16, 10727. [Google Scholar] [CrossRef]
- Syed, A.A.; Ullah, A.; Kamal, M.A. Does economic policy uncertainty impede financial inclusion in BRICS economies: The mediating role of quality of governance. Econ. Change Restruct. 2024, 57, 11. [Google Scholar] [CrossRef]
Variables | Mean | Median | Minimum | Maximum |
---|---|---|---|---|
CPU | 125.19 | 104.63 | 38.09 | 346.61 |
FIn (Financial Inclusion Index *) | 0.138 | 0.129 | 0.014 | 0.524 |
Financial Access: | ||||
Number of bank branches per one lakh adults | 11.66 | 11.40 | 8.82 | 14.56 |
Number of ATMs per one lakh adults | 13.70 | 15.18 | 2.28 | 24.64 |
Number of bank branches per 1000 km2 | 36.01 | 34.54 | 22.76 | 50.72 |
Number of ATMs per 1000 km2 | 44.57 | 46.93 | 5.93 | 87.74 |
Financial Usage: | ||||
Deposits with bank percentage of GDP | 59.95 | 61.64 | 47.42 | 70.74 |
Outstanding loans from bank percentage of GDP | 44.58 | 46.51 | 27.62 | 53.04 |
IQ (Institutional Quality Index) | −0.006 | 0.007 | −0.345 | 0.535 |
RL (rule of law) | 0.003 | −0.034 | −0.092 | −0.210 |
GE (government effectiveness) | 0.039 | 0.031 | −0.198 | 0.389 |
RQ (regulatory quality) | −0.298 | −0.301 | −0.519 | −0.088 |
PS (political stability) | −1.048 | −1.028 | −1.289 | −0.558 |
CC (control of corruption) | −0.428 | −0.398 | −0.635 | −0.302 |
VA (voice and accountability) | 0.371 | 0.351 | 0.051 | 0.461 |
GDP (gross domestic product | 6.123 | 7.489 | −6.642 | 8.462 |
TA (mobile subscription) | 2276.57 | 2346.96 | 35.98 | 5008.21 |
FIn | CPU | IQ | RL | GE | RQ | PS | CC | VA | GDP | TA | |
---|---|---|---|---|---|---|---|---|---|---|---|
FIn | 1 | ||||||||||
CPU | −0.453 ** | 1 | |||||||||
IQ | 0.634 ** | −0.593 ** | 1 | ||||||||
RL | 0.356 ** | 0.124 | 0.384 ** | 1 | |||||||
GE | 0.359 ** | −0.495 ** | 0.586 ** | 0.432 ** | 1 | ||||||
RQ | 0.481 ** | −0.463 ** | 0.548 ** | 0.384 ** | 0.532 ** | 1 | |||||
PS | 0.482 ** | −0.329 ** | 0.308 ** | 0.582 ** | 0.623 ** | 0.518 ** | 1 | ||||
CC | 0.143 ** | 0.112 | 0.498 ** | 0.409 ** | 0.538 ** | 0.392 ** | 0.573 ** | 1 | |||
VA | 0.081 ** | 0.053 | 0.124 ** | 0.128 ** | 0.213 ** | 0.198 ** | 0.281 ** | 0.319 ** | 1 | ||
GDP | 0.693 ** | −0.385 ** | 0.692 ** | 0.635 ** | 0.523 ** | 0.522 ** | 0.632 ** | 0.485 ** | 0.098 * | 1 | |
TA | 0.382 ** | 0.374 * | 0.223 ** | 0.118 ** | 0.295 ** | 0.213 ** | 0.312 | 0.118 | 0.014 | 0.593 ** | 1 |
VIF | 3.145 | 4.225 | 4.194 | 5.242 | 3.565 | 2.456 | 4.672 | 5.203 | 3.482 | 2.490 | 4.295 |
TL | 0.342 | 0.452 | 0.249 | 0.456 | 0.324 | 0.567 | 0.328 | 0.234 | 0.318 | 0.275 | 0.434 |
Inverse Chi-Square | Inverse Normal | Inverse Logit-T | Modified Inverse Chi-Square | |
---|---|---|---|---|
FIn | 1845.00 *** | −32.32 *** | −11.04 *** | 39.43 *** |
CPU | 3482.00 *** | −19.92 *** | −32.11 *** | 33.41 *** |
IQ | 2375.00 *** | −42.18 *** | −28.38 *** | 35.81 *** |
RL | 4859.00 *** | −14.78 *** | −43.18 *** | 38.23 *** |
GE | 2845.00 *** | −58.38 *** | −23.18 *** | 41.08 *** |
RQ | 6830.00 *** | −15.42 *** | −14.32 *** | 58.41 *** |
PS | 5281.00 *** | −76.21 *** | −38.21 *** | 28.32 *** |
CC | 6829.00 *** | −59.20 *** | −53.84 *** | 19.43 *** |
VA | 4824.00 *** | −27.13 *** | −48.12 *** | 12.29 *** |
GDP | 3193.00 *** | −42.24 *** | −58.32 *** | 78.17 *** |
TA | 4929.00 *** | −34.18 *** | −19.37 *** | 31.34 *** |
Variables | (1) | (2) | (3) | (4) | (5) |
---|---|---|---|---|---|
FIn | 0.294 *** (2.56) | 0.375 ** (3.85) | 0.423 ** (3.12) | 0.389 ** (4.19) | 0.582 ** (3.46) |
CPU | −0.127 *** (−2.13) | ||||
CPU × IQ | 0.091 *** (1.12) | ||||
IQ | 0.056 *** (2.19) | 0.012 *** (3.09) | 0.047** (3.15) | 0.063 *** (2.13) | 0.082 *** (4.18) |
RL | 0.063 *** (3.14) | 0.072 *** (2.43) | 0.012 *** (2.46) | 0.084** (3.15) | 0.061 ** (2.45) |
GE | 0.042 *** (1.13) | 0.023 *** (2.56) | 0.052 *** (3.34) | 0.042 *** (4.13) | 0.032 *** (2.14) |
RQ | 0.043 ** (3.18) | 0.025 *** (2.95) | 0.054 ** (4.14) | 0.032 *** (2.85) | 0.061 ** (4.09) |
PS | 0.027 ** (1.38) | 0.034 *** (4.24) | 0.063 *** (2.89) | 0.041 *** (3.19) | 0.072 ** (3.19) |
CC | 0.041 *** (3.24) | 0.023 *** (3.63) | 0.032 *** (2.19) | 0.042 *** (4.28) | 0.054 ** (3.45) |
VA | 0.012 *** (2.13) | 0.009 *** (2.47) | 0.013 *** (2.48) | 0.022 *** (5.24) | 0.027 ** (4.13) |
GDP | 0.078 ** (3.13) | 0.028 ** (2.48) | 0.092 ** (3.57) | 0.056 ** (3.28) | 0.064 ** (5.28) |
TA | 0.012 ** (2.04) | 0.016 ** (3.18) | 0.004 ** (2.48) | 0.019 ** (3.43) | 0.032 ** (3.28) |
Wald | 89.12 ** | 78.03 ** | 67.23 ** | 74.67 ** | 89.35 ** |
Hansen J | 0.213 | 0.286 | 0.265 | 0.135 | 0.313 |
AR(1) | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
AR(2) | 0.424 | 0.528 | 0.482 | 0.289 | 0.4532 |
Variables | (1) | (2) | (3) | (4) | (5) |
---|---|---|---|---|---|
FIn | 0.273 ** (2.93) | 0.382 ** (4.25) | 0.483 ** (3.44) | 0.273 ** (3.84) | 0.478 ** (2.58) |
CPU | −0.134 ** (−3.19) | - | |||
CPU × IQ | 0.054 ** (1.12) | ||||
IQ | 0.075 ** (2.19) | 0.083 ** (3.41) | 0.042 ** (4.29) | 0.041 ** (2.17) | 0.091 ** (3.84) |
RL | 0.032 ** (3.28) | 0.042 ** (4.23) | 0.038 *** (3.24) | 0.023 ** (3.58) | 0.052 ** (4.28) |
GE | 0.017 ** (2.34) | 0.043 ** (2.48) | 0.073 ** (3.17) | 0.038 *** (2.98) | 0.063 ** (3.58) |
RQ | 0.042 ** (4.12) | 0.038 ** (3.18) | 0.075 ** (4.28) | 0.064 ** (2.48) | 0.051 ** (3.28) |
PS | 0.034 ** (2.89) | 0.058 *** (3.28) | 0.041 ** (4.18) | 0.052 ** (3.18) | 0.023 ** (2.48) |
CC | 0.031 *** (2.48) | 0.039 ** (2.89) | 0.053 *** (4.29) | 0.042 ** (3.18) | 0.050 ** (3.95) |
VA | 0.011 *** (3.18) | 0.012 ** (3.18) | 0.031 *** (3.87) | 0.032 ** (4.18) | 0.018 ** (4.18) |
GDP | 0.034 ** (3.23) | 0.048 ** (3.24) | 0.044 ** (2.18) | 0.073 ** (3.73) | 0.063 ** (4.82) |
TA | 0.012 ** (2.18) | 0.018 ** (3.98) | 0.021 ** (3.58) | 0.028 * (3.48) | 0.038 ** (4.18) |
Wald | 92.09 ** | 84.42 ** | 78.42 ** | 82.54 ** | 89.42 ** |
Hansen J | 0.274 | 0.312 | 0.341 | 0.189 | 0.424 |
AR(1) | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
AR(2) | 0.374 | 0.478 | 0.572 | 0.328 | 0.392 |
OLS | SELPDM | OLS | SELPDM | ||
---|---|---|---|---|---|
Financial Inclusion | Financial Inclusion Alternative Proxy | ||||
Dependent Variable | |||||
FIn | 0.287 ** (3.28) | 0.484 ** (3.19) | |||
FIn | 0.323 ** (3.18) | 0.482 ** (4.18) | |||
Independent Variables: | |||||
CPU | −0.034 ** (−2.18) | −0.045 ** (−3.48) | −0.038 ** (−2.34) | −0.041 ** (−6.34) | |
CPU × IQ | 0.023 ** (3.18) | 0.042 * (4.24) | 0.031 ** (5.12) | 0.063 ** (2.19) | |
IQ | 0.038 ** (3.28) | 0.043 ** (4.09) | 0.034 ** (3.58) | 0.059 ** (4.28) | |
RL | 0.018 ** (1.24) | 0.009 ** (3.18) | 0.018 ** (3.18) | 0.034 ** (4.18) | |
GE | 0.017 ** (2.48) | 0.028 *** (3.18) | 0.021 ** (3.18) | 0.034 ** (4.19) | |
RQ | 0.003 *** (2.18) | 0.023 *** (4.18) | 0.054 *** (4.28) | 0.062 *** (4.18) | |
PS | 0.031 ** (2.13) | 0.048 ** (5.28) | 0.038 ** (2.48) | 0.018 ** (3.18) | |
CC | 0.009 *** (2.18) | 0.012 *** (2.18) | 0.019 *** (2.58) | 0.022 *** (3.13) | |
VA | 0.010 *** (3.33) | 0.009 *** (3.18) | 0.017 *** (3.18) | 0.013 *** (2.18) | |
GDP | 0.073 ** (2.13) | 0.068 ** (4.28) | 0.056 ** (3.18) | 0.063 ** (5.28) | |
TA | 0.011 ** (3.18) | 0.041 ** (4.45) | 0.052 ** (4.28) | 0.069 ** (4.15) | |
Constant | 0.341 ** (2.38) | 2.488 ** (4.52) | 0.424 ** (3.82) | 4.022 ** (4.28) | |
Hansen J | Prob-value | 0.424 | 0.532 | ||
AR (1) | Prob-value | 0.000 | 0.000 | ||
AR (2) | Prob-value | 0.453 | 0.577 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Syed, A.A.; Mirani, S.H.; Kamal, M.A.; Silveira Ferreira, P.J. Does Climate Policy Uncertainty Abate Financial Inclusion? An Empirical Analysis Through the Lens of Institutional Quality and Governance. Sustainability 2025, 17, 520. https://doi.org/10.3390/su17020520
Syed AA, Mirani SH, Kamal MA, Silveira Ferreira PJ. Does Climate Policy Uncertainty Abate Financial Inclusion? An Empirical Analysis Through the Lens of Institutional Quality and Governance. Sustainability. 2025; 17(2):520. https://doi.org/10.3390/su17020520
Chicago/Turabian StyleSyed, Aamir Aijaz, Sajid Hussain Mirani, Muhammad Abdul Kamal, and Paulo Jorge Silveira Ferreira. 2025. "Does Climate Policy Uncertainty Abate Financial Inclusion? An Empirical Analysis Through the Lens of Institutional Quality and Governance" Sustainability 17, no. 2: 520. https://doi.org/10.3390/su17020520
APA StyleSyed, A. A., Mirani, S. H., Kamal, M. A., & Silveira Ferreira, P. J. (2025). Does Climate Policy Uncertainty Abate Financial Inclusion? An Empirical Analysis Through the Lens of Institutional Quality and Governance. Sustainability, 17(2), 520. https://doi.org/10.3390/su17020520