Selective Separation of Pd, Pt, and Rh from Wastes Using Commercial Extractants for the Sustainable Development of Critical Metals Management
Abstract
1. Introduction
1.1. Platinum Group Metals
1.2. Solvent Extraction
1.3. Aim and Scope of the Research
2. Materials and Methods
2.1. Reagents and Materials Used
2.2. Analytical Techniques
2.3. Extraction and Stripping Procedure
2.4. Calculations
- (1)
- The extraction efficiency (EE) was calculated as the ratio of the mass of the platinum group metal transferred to the organic phase to its initial mass in the aqueous phase:
- (2)
- Extraction coefficient (D) calculated as the ratio of the platinum group metal concentration in the organic phase to the platinum group metal concentration in the aqueous phase:
- (3)
- The selectivity coefficient (α) was defined as the ratio of the extraction coefficients of the individual metals:
- (1)
- The stripping efficiency (SE) was calculated as the ratio of the mass of the platinum group metal transferred from the organic phase to the aqueous phase:
3. Results
3.1. Extraction Studies
3.1.1. The Effect of pH
3.1.2. The Effect of Extractant Concentration
3.1.3. The Effect of Volume Phase Ratio
3.1.4. The Effect of Contact Time
3.2. Stripping Studies
4. Discussion
5. Conclusions
- Mextral 63H is a selective extractant of palladium relative to platinum and rhodium.
- Trioctylamine is a selective extractant of palladium and platinum relative to rhodium.
- A 2 mol/dm3 thiourea solution is an effective palladium stripping agents from Mextral 63H solution, and single-diluted nitric acid solutions and 2 mol/dm3 perchloric acid solutions are effective platinum stripping agents from trioctylamine solutions.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Panda, R.; Jha, M.K.; Pathak, D.D. Commercial Processes for the Extraction of Platinum Group Metals (PGMs). In Rare Metal Technology 2018; The Minerals, Metals and Materials Series; Springer International Publishing: Cham, Switzerland, 2018; Volume Part F5, pp. 119–130. [Google Scholar]
- Sinisalo, P.; Lundström, M. Refining Approaches in the Platinum Group Metal Processing Value Chain—A Review. Metals 2018, 8, 203. [Google Scholar] [CrossRef]
- Bernardis, F.L.; Grant, R.A.; Sherrington, D.C. A Review of Methods of Separation of the Platinum-Group Metals through Their Chloro-Complexes. React. Funct. Polym. 2005, 65, 205–217. [Google Scholar] [CrossRef]
- Pianowska, K.; Kluczka, J.; Benke, G.; Goc, K.; Malarz, J.; Ochmański, M.; Leszczyńska-Sejda, K. Solvent Extraction as a Method of Recovery and Separation of Platinum Group Metals. Materials 2023, 16, 4681. [Google Scholar] [CrossRef]
- International Energy Agency Global Critical Minerals Outlook. 2024. Available online: https://www.iea.org/reports/global-critical-minerals-outlook-2024?utm_content=buffer3599f&utm_medium=social&utm_source=linkedin.com&utm_campaign=buffer (accessed on 10 July 2025).
- European Comission. Study on the Review of the List of Critical Raw Materials; Publications Office of the EU: Brussels, Belgium, 2020. [Google Scholar]
- PGM Management. Available online: https://matthey.com/products-and-markets/pgms-and-circularity/pgm-management (accessed on 8 October 2025).
- Kinas, S.; Jermakowicz-Bartkowiak, D.; Pohl, P.; Dzimitrowicz, A.; Cyganowski, P. On the Path of Recovering Platinum-Group Metals and Rhenium: A Review on the Recent Advances in Secondary-Source and Waste Materials Processing. Hydrometallurgy 2024, 223, 106222. [Google Scholar] [CrossRef]
- Azmi, A.A.; Jai, J.; Zamanhuri, N.A.; Yahya, A. Precious Metals Recovery from Electroplating Wastewater: A Review. IOP Conf. Ser. Mater. Sci. Eng. 2018, 358, 012024. [Google Scholar] [CrossRef]
- Zheng, H.; Ding, Y.; Wen, Q.; Liu, B.; Zhang, S. Separation and Purification of Platinum Group Metals from Aqueous Solution: Recent Developments and Industrial Applications. Resour. Conserv. Recycl. 2021, 167, 105417. [Google Scholar] [CrossRef]
- Yakoumis, I.; Panou, M.; Moschovi, A.M.; Panias, D. Recovery of Platinum Group Metals from Spent Automotive Catalysts: A Review. Clean. Eng. Technol. 2021, 3, 100112. [Google Scholar] [CrossRef]
- Sethurajan, M.; van Hullebusch, E.D.; Fontana, D.; Akcil, A.; Deveci, H.; Batinic, B.; Leal, J.P.; Gasche, T.A.; Ali Kucuker, M.; Kuchta, K.; et al. Recent Advances on Hydrometallurgical Recovery of Critical and Precious Elements from End of Life Electronic Wastes—A Review. Crit. Rev. Environ. Sci. Technol. 2019, 49, 212–275. [Google Scholar] [CrossRef]
- Hughes, A.E.; Haque, N.; Northey, S.A.; Giddey, S. Platinum Group Metals: A Review of Resources, Production and Usage with a Focus on Catalysts. Resources 2021, 10, 93. [Google Scholar] [CrossRef]
- Paiva, A.P.; Piedras, F.V.; Rodrigues, P.G.; Nogueira, C.A. Hydrometallurgical Recovery of Platinum-Group Metals from Spent Auto-Catalysts—Focus on Leaching and Solvent Extraction. Sep. Purif. Technol. 2022, 286, 120474. [Google Scholar] [CrossRef]
- Hagelüken, C. Recycling the Platinum Group Metals: A European Perspective. Platin. Met. Rev. 2012, 56, 29–35. [Google Scholar] [CrossRef]
- Rao, M.; Xia, H.; Xu, Y.; Jiang, G.; Zhang, Q.; Yuan, Y.; Zhang, L. Study on Ultrasonic Assisted Intensive Leaching of Germanium from Germanium Concentrate Using HCl/NaOCl. Hydrometallurgy 2024, 230, 106385. [Google Scholar] [CrossRef]
- Xiong, Q.; Yuan, Z.; Zhang, Y.; Chen, Z.; Wei, K.; Ma, W. A New Approach for Separating Copper, Tin, and Lead from Photovoltaic Ribbon Wastes. Sol. Energy 2025, 299, 113810. [Google Scholar] [CrossRef]
- Nguyen, V.T.; Riaño, S.; Aktan, E.; Deferm, C.; Fransaer, J.; Binnemans, K. Solvometallurgical Recovery of Platinum Group Metals from Spent Automotive Catalysts. ACS Sustain. Chem. Eng. 2021, 9, 337–350. [Google Scholar] [CrossRef]
- Wang, M.; Tan, Q.; Chiang, J.F.; Li, J. Recovery of Rare and Precious Metals from Urban Mines—A Review. Front. Environ. Sci. Eng. 2017, 11, 1. [Google Scholar] [CrossRef]
- Goc, K.; Kluczka, J.; Benke, G.; Malarz, J.; Pianowska, K.; Leszczyńska-Sejda, K. Application of Ion Exchange for Recovery of Noble Metals. Minerals 2021, 11, 1188. [Google Scholar] [CrossRef]
- Saguru, C.; Ndlovu, S.; Moropeng, D. A Review of Recent Studies into Hydrometallurgical Methods for Recovering PGMs from Used Catalytic Converters. Hydrometallurgy 2018, 182, 44–56. [Google Scholar] [CrossRef]
- Sole, K.C. Solvent Extraction in the Hydrometallurgical Processing and Purification of Metals: Process Design and Selected Applications. In Solvent Extraction and Liquid Membranes; Fundamentals and Applications in New Materials; CRC Press: Boca Raton, FL, USA, 2008; pp. 141–200. [Google Scholar] [CrossRef]
- Lee, J.C.; Kurniawan, K.; Kim, S.; Nguyen, V.T.; Pandey, B.D. Ionic Liquids-Assisted Solvent Extraction of Precious Metals from Chloride Solutions. Sep. Purif. Rev. 2023, 52, 242–261. [Google Scholar] [CrossRef]
- Swain, B.; Jeong, J.; Kim, S.K.; Lee, J.C. Separation of Platinum and Palladium from Chloride Solution by Solvent Extraction Using Alamine 300. Hydrometallurgy 2010, 104, 1–7. [Google Scholar] [CrossRef]
- Raju, B.; Kumar, J.R.; Lee, J.Y.; Kwonc, H.S.; Kantam, M.L.; Reddy, B.R. Separation of Platinum and Rhodium from Chloride Solutions Containing Aluminum, Magnesium and Iron Using Solvent Extraction and Precipitation Methods. J. Hazard. Mater. 2012, 227–228, 142–147. [Google Scholar] [CrossRef]
- Rzelewska-Piekut, M.; Regel-Rosocka, M. Separation of Pt(IV), Pd(II), Ru(III) and Rh(III) from Model Chloride Solutions by Liquid-Liquid Extraction with Phosphonium Ionic Liquids. Sep. Purif. Technol. 2019, 212, 791–801. [Google Scholar] [CrossRef]
- Regel-Rosocka, M.; Rzelewska, M.; Baczynska, M.; Janus, M.; Wisniewski, M. Removal of Palladium(II) from Aqueous Chloride Solutions with Cyphos Phosphonium Ionic Liquids as Metal Ion Carriers for Liquid-Liquid Extraction and Transport across Polymer Inclusion Membranes. Physicochem. Probl. Miner. Process. 2015, 51, 621–631. [Google Scholar] [CrossRef]
- Cieszynska, A.; Wiśniewski, M. Extractive Recovery of Palladium(II) from Hydrochloric Acid Solutions with Cyphos®IL 104. Hydrometallurgy 2012, 113–114, 79–85. [Google Scholar] [CrossRef]
- Firmansyah, M.L.; Kubota, F.; Goto, M. Solvent Extraction of Pt(IV), Pd(II), and Rh(III) with the Ionic Liquid Trioctyl(Dodecyl) Phosphonium Chloride. J. Chem. Technol. Biotechnol. 2018, 93, 1714–1721. [Google Scholar] [CrossRef]
- Truong, H.T.; Lee, M.S. Separation of Pd(II) and Pt(IV) from Hydrochloric Acid Solutions by Solvent Extraction with Cyanex 301 and LIX 63. Miner. Eng. 2018, 115, 13–20. [Google Scholar] [CrossRef]
- Xing, W.D.; Lee, M.S.; Kim, Y.H. Separation of Gold(III) from Hydrochloric Acid Solution Containing Platinum(IV) and Palladium(II) by Solvent Extraction with Cyanex 272 and LIX 63. J. Ind. Eng. Chem. 2018, 59, 328–334. [Google Scholar] [CrossRef]
- Reddy, B.R.; Raju, B.; Lee, J.Y.; Park, H.K. Process for the Separation and Recovery of Palladium and Platinum from Spent Automobile Catalyst Leach Liquor Using LIX 84I and Alamine 336. J. Hazard. Mater. 2010, 180, 253–258. [Google Scholar] [CrossRef] [PubMed]
- Song, S.J.; Nguyen, V.N.H.; Lee, M.S. Separation of Pd(II) and Zn(II) from Sulfuric Acid Solution by Commercial Extractants. J. Korean Inst. Met. Mater. 2022, 60, 132–140. [Google Scholar] [CrossRef]
- Nguyen, T.N.H.; Song, S.J.; Lee, M.S. Solvent Extraction Separation of Au(III) from Pd(II), Cu(II), Ni(II) in HCl Solution Using Cationic, Neutral and Basic Extractants. J. Chem. Technol. Biotechnol. 2024, 99, 396–404. [Google Scholar] [CrossRef]
- Baek, J.W.; Lee, M.S. Separation of Rhenium(VII) and Vanadium(V) from Concentrated HCl Solution by Solvent Extraction with Alamine 336 and LIX 63. J. Korean Inst. Met. Mater. 2017, 55, 31–38. [Google Scholar] [CrossRef]
- Rudik, I.S.; Katasonova, O.N.; Mokhodoeva, O.B.; Maryutina, T.A.; Spivakov, B.Y.; Ilyukhin, I.V. Separation of Pt(IV), Pd(II) and Rh(III) from Chloride Solutions by Multistage Solvent Extraction Using Nitrogen-Containing Extractants. Ind. Lab. Diagn. Mater. 2019, 85, 5–10. [Google Scholar] [CrossRef]
- Katasonova, O.N.; Mokhodoeva, O.B.; Osipov, K.B.; Maryutina, T.A. Extractive Recovery and Separation of Palladium(II) and Platinum(IV) from Chloride Solutions. Russ. J. Appl. Chem. 2022, 95, 1107–1115. [Google Scholar] [CrossRef]
- Wang, J.; Liu, L.; Xu, W.; Liu, H.; Xu, G.; Huang, K.; Yu, F.; Huang, G. Separation of Pd and Pt from Highly Acidic Leach Liquor of Spent Automobile Catalysts with Monothio-Cyanex 272 and Trioctylamine. Int. J. Miner. Metall. Mater. 2023, 30, 877–885. [Google Scholar] [CrossRef]
- Rane, M.V. PGM Ore Processing: LIX Reagents for Palladium Extraction & Platinum Stripping from Alamine 336 Using NaOH-NaCl. Miner. Eng. 2019, 138, 119–124. [Google Scholar] [CrossRef]
- Goralska, E.; Coll, M.T.; Fortuny, A.; Kedari, C.S.; Sastre, A.M. Studies on the Selective Separation of Ir(IV), Ru(III) and Rh(III) from Chloride Solutions Using Alamine 336 in Kerosene. Solvent Extr. Ion Exch. 2007, 25, 65–77. [Google Scholar] [CrossRef]
- Mextral® 63H. KopperChem. Available online: https://en.kopperchem.com/proDetail/80.html (accessed on 10 July 2025).
- Drzazga, M.; Ciszewski, M.; Kozłowicz, S.; Kasierot, S. Comparison of Germanium Recovery from Copper(II) Sulfate-Based Solution Using Tertiary Amine and Oxime Extractant. Miner. Eng. 2024, 218, 108984. [Google Scholar] [CrossRef]
- Song, S.J.; Nguyen, V.N.H.; Lee, M.S. Separation of Pd(II) and Zn(II) by Solvent Extraction Using Commercial Extractants from Hydrochloric Acid Leaching Solution of Cemented Pd from Spent Electroplating Solutions. J. Korean Inst. Met. Mater. 2022, 60, 188–197. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Sonu, C.H.; Lee, M.S. Separation of Pt(IV), Pd(II), Rh(III) and Ir(IV) from Concentrated Hydrochloric Acid Solutions by Solvent Extraction. Hydrometallurgy 2016, 164, 71–77. [Google Scholar] [CrossRef]
- Alamine 308. Available online: https://www.chembk.com/en/chem/alamine%20308 (accessed on 10 July 2025).
- Jaree, A.; Khunphakdee, N. Separation of Concentrated Platinum(IV) and Rhodium(III) in Acidic Chloride Solution via Liquid-Liquid Extraction Using Tri-Octylamine. J. Ind. Eng. Chem. 2011, 17, 243–247. [Google Scholar] [CrossRef]
- Goc, K.; Kluczka, J.; Benke, G.; Malarz, J.; Pianowska, K.; Leszczyńska-Sejda, K. Precipitation of Precious Metals Concentrates from Post-Elution Solutions from Ion-Exchange Processes. Minerals 2024, 14, 625. [Google Scholar] [CrossRef]
- Yousif, A.M. Recovery and Then Individual Separation of Platinum, Palladium, and Rhodium from Spent Car Catalytic Converters Using Hydrometallurgical Technique Followed by Successive Precipitation Methods. J. Chem. 2019, 2019, 2318157. [Google Scholar] [CrossRef]
- Crundwell, F.K.; Moats, M.S.; Ramachandran, V.; Robinson, T.G.; Davenport, W.G. Refining of the Platinum-Group Metals. In Extractive Metallurgy of Nickel, Cobalt and Platinum Group Metals; Elsevier: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Kim, M.-S.; Kim, B.-S.; Kim, E.-Y.; Kim, S.-K.; Ryu, J.-W.; Lee, J.-C. Recovery of Platinum Group Metals from the Leach Solution of Spent Automotive Catalysts by Cementation. J. Korean Inst. Resour. Recycl. 2011, 20, 36–45. [Google Scholar] [CrossRef]
- Bourgeois, D.; Lacanau, V.; Mastretta, R.; Contino-Pépin, C.; Meyer, D. A Simple Process for the Recovery of Palladium from Wastes of Printed Circuit Boards. Hydrometallurgy 2020, 191, 105241. [Google Scholar] [CrossRef]
- Rydberg, J.; Cox, M.; Musikas, C.; Choppin, G.R. Solvent Extraction: Principles and Practice, 2nd ed.; Revised and Expanded Edited; Marcel Dekker, Inc.: New York, NY, USA, 2004; Volume 1, ISBN 9788578110796. [Google Scholar]
- Cowley, A. Johnson Mattey PGM Market Report; Johnson Matthey: London, UK, 2025. [Google Scholar]
Element | Pd | Pt | Rh | Au | Ir | Ag | Cu |
Concentration [g/dm3] | 1.86 | 2.25 | 0.38 | 9.39 × 10−2 | 8.46 × 10−2 | 5.33 × 10−2 | 16.8 |
Element | Fe | Ni | Te | Si | Cr | Sn | Al |
Concentration [g/dm3] | 0.53 | 0.13 | 0.26 | 0.01 | 0.11 | 0.05 | 0.01 |
Extractant | Stripping Agent | Pd/Pt in Organic Phase [g/dm3] | Pd/Pt in Aqueous Phase After Stripping [g/dm3] | Stripping Efficiency |
---|---|---|---|---|
Mextral 63H | 2 M TU solution | 3.0 | 2.83 | 94.44 |
2 M TU in 1 M HCl solution | 2.91 | 97.22 | ||
25% ammonia solution | 1.49 | 49.78 | ||
2 M KSCN solution | 1.34 | 44.89 | ||
Trioctylamine | 2 M TU solution | 2.44 | 1.39 | 56.79 |
2 M TU in 1 M HCl solution | 1.66 | 67.89 | ||
32.5% HNO3 solution (25 °C) | 2.43 | 99.82 | ||
32.5% HNO3 solution (50 °C) | 2.44 | 99.99 | ||
2 M HClO4 solution (25 °C) | 2.43 | 99.76 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pianowska, K.; Kluczka, J.; Benke, G.; Goc, K.; Leszczyńska-Sejda, K. Selective Separation of Pd, Pt, and Rh from Wastes Using Commercial Extractants for the Sustainable Development of Critical Metals Management. Sustainability 2025, 17, 8956. https://doi.org/10.3390/su17198956
Pianowska K, Kluczka J, Benke G, Goc K, Leszczyńska-Sejda K. Selective Separation of Pd, Pt, and Rh from Wastes Using Commercial Extractants for the Sustainable Development of Critical Metals Management. Sustainability. 2025; 17(19):8956. https://doi.org/10.3390/su17198956
Chicago/Turabian StylePianowska, Karolina, Joanna Kluczka, Grzegorz Benke, Karolina Goc, and Katarzyna Leszczyńska-Sejda. 2025. "Selective Separation of Pd, Pt, and Rh from Wastes Using Commercial Extractants for the Sustainable Development of Critical Metals Management" Sustainability 17, no. 19: 8956. https://doi.org/10.3390/su17198956
APA StylePianowska, K., Kluczka, J., Benke, G., Goc, K., & Leszczyńska-Sejda, K. (2025). Selective Separation of Pd, Pt, and Rh from Wastes Using Commercial Extractants for the Sustainable Development of Critical Metals Management. Sustainability, 17(19), 8956. https://doi.org/10.3390/su17198956