Research on Typical Estuarine Sedimentation Characteristics: A Case Study of the Liaohe Estuary Wetland
Abstract
1. Introduction
2. Materials and Methods
2.1. Definition of the Study Area
2.2. Research Methods
2.2.1. Selection and Processing of Remote-Sensing Images
2.2.2. Inversion of Historical Surface Elevation of Tidal Flat in the LEW
2.2.3. Characteristics of Tidal Flat Terrain Evolution in the LEW
3. Results and Analysis
3.1. Model Inversion Accuracy Verification
3.2. Overall Morphological Changes of Tidal Flat
3.3. Changes in Tidal Flat Surface Elevation
3.4. Characteristics of Sedimentation and Erosion in Tidal Flat
3.4.1. Spatial Changes in Tidal Flat Sedimentation and Erosion
3.4.2. Changes in Sedimentation Rate
4. Discussion
4.1. Historical Surface Elevation Reconstruction of Estuarine Wetland Tidal Flat Based on the Waterline Method
4.2. Sedimentation Dynamics and Rate Estimation from Waterline-Derived DEMs
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wu, Z.C.; Zhou, C.Y.; Wang, P.; Fei, Z.H. Responses of tidal dynamic and water exchange capacity to coastline change in the Bohai Sea, China. Front. Mar. Sci. 2023, 10, 1118795. [Google Scholar] [CrossRef]
- Jeandel, C. Overview of the mechanisms that could explain the ‘Boundary Exchange’ at the land-ocean contact. philosophical Trans. R. Soc. A-Math. Phys. Eng. Sci. 2016, 374, 20150287. [Google Scholar] [CrossRef]
- Grandjean, T.J.; Weenink, R.; van der Wal, D.; Addink, E.A.; Hu, Z.; Liu, S.; Wang, Z.B.; Lin, Y.; Bouma, T.J. Critical turbidity thresholds for maintenance of estuarine tidal flats worldwide. Nat. Geosci. 2024, 17, 539–544. [Google Scholar] [CrossRef]
- Bao, J.; Gao, S. Long-term reclamation of tidal flats of Chongming Island and ecological security of Yangtze estuary, China. Reg. Environ. Change 2024, 24, 1–13. [Google Scholar] [CrossRef]
- Moores, N.; Jung, H.; Kim, H.-J.; Hwang, B.-Y.; Hur, W.-H.; Borzée, A. The Hwaseong Wetlands Reclamation Area and Tidal Flats, Republic of Korea: A Case of Waterbird Conservation in the Yellow Sea. Conservation 2022, 2, 526–549. [Google Scholar] [CrossRef]
- Gao, Y.; Yi, Y.; Chen, K.; Xie, H. Simulation of suitable habitats for typical vegetation in the Yellow River Estuary based on complex hydrodynamic processes. Ecol. Indic. 2023, 154, 110623. [Google Scholar] [CrossRef]
- Mahamood, N.A.N.; Farhan Haron, N.; Mohd Ali, S.N.; Sediqi, M.N.; Jumain, M. Investigating Salinity Variation in Estuarine System: Effects of Upstream Water Levels—A Laboratory Study. J. Kejuruter. 2024, 36, 2147–2153. [Google Scholar] [CrossRef]
- He, W.; Zhou, H.; Zhang, J.; Xu, H.; Liu, C. Combined effects of runoff increase and sea level rise on the water exchange and saltwater intrusion for an estuary bay in non-flood season. Hydrol. Process. 2022, 36, e14727. [Google Scholar] [CrossRef]
- Chowdhury, S.R.; Hossain, M.S.; Sharifuzzaman, S.M. A simple and inexpensive method for muddy shore profiling. Chin. J. Oceanol. Limnol. 2014, 32, 1383–1391. [Google Scholar] [CrossRef]
- Deroin, J.-P.; Shimada, M. The importance of local mean time in remote sensing for mapping megatidal zones. Comptes Rendus Geosci. 2010, 342, 11–18. [Google Scholar] [CrossRef]
- Hu, Z.; Lenting, W.; van der Wal, D.; Bouma, T.J. Continuous monitoring bed-level dynamics on an intertidal flat: Introducing novel, stand-alone high-resolution SED-sensors. Geomorphology 2015, 245, 223–230. [Google Scholar] [CrossRef]
- Chen, B.B.; Chen, Z.D.; Song, C.P.; Pang, X.D.; Liu, P.X.; Kang, Y.Y. Quantitative Assessment of the Impact of Port Construction on the Surrounding Mudflat Topography Based on Remote Sensing-A Case Study of Binhai Port in Jiangsu Province. J. Mar. Sci. Eng. 2024, 12, 2290. [Google Scholar] [CrossRef]
- Wu, W.T.; Zhi, C.; Gao, Y.W.; Chen, C.P.; Chen, Z.Q.; Su, H.; Lu, W.F.; Tian, B. Increasing fragmentation and squeezing of coastal wetlands: Status, drivers, and sustainable protection from the perspective of remote sensing. Sci. Total Environ. 2022, 811, 152339. [Google Scholar] [CrossRef]
- Colacicco, R.; La Salandra, M.; Lapietra, I.; Refice, A.; Capolongo, D. Remote sensing techniques to assess badlands dynamics: Insights from a systematic review. Gisci. Remote Sens. 2025, 62, 2516347. [Google Scholar] [CrossRef]
- Javaid, A.; Mahmood, N.; Mehmood, M.Q. Review: Optimizing LiDAR technology for enhanced 3D remote sensing. In Proceedings of the Optical Instrument Science, Technology, and Applications III, Strasbourg, France, 7–12 April 2024. [Google Scholar]
- Song, H.; Jung, J. Unsupervised surface water mapping with airborne LiDAR data by leveraging physical properties of water. Gisci. Remote Sens. 2025, 62, 2437252. [Google Scholar] [CrossRef]
- Chavez, S.; Wdowinski, S.; Lagomasino, D.; Castañeda-Moya, E.; Fatoyinbo, T.; Moyer, R.P.; Smoak, J.M. Estimating Structural Damage to Mangrove Forests Using Airborne Lidar Imagery: Case Study of Damage Induced by the 2017 Hurricane Irma to Mangroves in the Florida Everglades, USA. Sensors 2023, 23, 6669. [Google Scholar] [CrossRef]
- Flores-de-Santiago, F.; Rodriguez-Sobreyra, R.; Alvarez-Sanchez, L.F.; Valderrama-Landeros, L.; Amezcua, F.; Flores-Verdugo, F. Understanding the natural expansion of white mangrove (Laguncularia racemosa) in an ephemeral inlet based on geomorphological analysis and remote sensing data. J. Environ. Manag. 2023, 338, 117820. [Google Scholar] [CrossRef]
- Niwa, H.; Ise, H.; Kamada, M. Suitable LiDAR Platform for Measuring the 3D Structure of Mangrove Forests. Remote Sens. 2023, 15, 1033. [Google Scholar] [CrossRef]
- Pershin, S.M.; Katsnelson, B.G.; Grishin, M.Y.; Lednev, V.N.; Zavozin, V.A.; Ostrovsky, I. Laser Remote Sensing of Lake Kinneret by Compact Fluorescence LiDAR. Sensors 2022, 22, 7307. [Google Scholar] [CrossRef] [PubMed]
- Shetty, D.; Kotian, R.; Sequeira, S.L.; Pavithra, N.R.; Umesh, P.; Gangadharan, K.V. An economical approach towards bathymetric mapping of shallow water basins using unmanned surface vessel. In Proceedings of the ASME 2022 International Mechanical Engineering Congress and Exposition, IMECE2022, Columbus, OH, USA, 30 October–3 November 2022; Volume 5. [Google Scholar]
- Jeyaraj, S.; Ramakrishnan, B.; Ramsankaran, R. Application of Unmanned Aerial Vehicle (UAV) in the assessment of beach volume change—A case study of Malgund beach. In Proceedings of the OCEANS 2022, Chennai, India, 21–24 February 2022. [Google Scholar]
- Munawar, H.S.; Hammad, A.W.A.; Waller, S.T. Remote Sensing Methods for Flood Prediction: A Review. Sensors 2022, 22, 960. [Google Scholar] [CrossRef] [PubMed]
- Tingåker, T.; Ekelund, A. Recent developments in Airborne LiDAR bathymetry. In Proceedings of the Electro-Optical Remote Sensing XVI, Berlin, Germany, 5–7 September 2022. [Google Scholar]
- Kang, Y.Y.; Ding, X.R.; Xu, F.; Zhang, C.K.; Ge, X.P. Topographic mapping on large-scale tidal flats with an iterative approach on the waterline method. Estuar. Coast. Shelf Sci. 2017, 190, 11–22. [Google Scholar] [CrossRef]
- Koopmans, B.N.; Wang, Y. Satellite Data forTopographic Mapping of the Tidal Flats in the WaddenSea, the Netherlands. In Proceedings of the 2nd Thematie Conferenceon Remote Sensing for Marine and Coastal Environments, New Orleans, LA, USA, 31 January–2 February 1994; pp. 25–35. [Google Scholar]
- Shang, K.; Zhao, D.; Xie, Y.S. Monitoring waterline changes in coastal wetlands in the yellow river delta from long period remote sensing data. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 7651–7654. [Google Scholar]
- Yang, Z.H.; Wang, L.H.; Sun, W.W.; Xu, W.X.; Tian, B.; Zhou, Y.X.; Yang, G.; Chen, C. A New Adaptive Remote Sensing Extraction Algorithm for Complex Muddy Coast Waterline. Remote Sens. 2022, 14, 861. [Google Scholar] [CrossRef]
- Yang, H.; Chen, M.; Xi, X.T.; Wang, Y.X. A Novel Approach for Instantaneous Waterline Extraction for Tidal Flats. Remote Sens. 2024, 16, 413. [Google Scholar] [CrossRef]
- Zhang, S.S.; Xu, Q.; Wang, H.Y.; Kang, Y.Y.; Li, X.F. Automatic Waterline Extraction and Topographic Mapping of Tidal Flats From SAR Images Based on Deep Learning. Geophys. Res. Lett. 2022, 49, e2021GL096007. [Google Scholar] [CrossRef]
- Li, H.F.; Su, F.L.; Guo, C.J.; Dong, L.L.; Song, F.; Wei, C.; Zheng, Y.L. Landscape ecological risk assessment and driving mechanism of coastal estuarine tidal flats-A case study of the liaohe estuary wetlands. Front. Environ. Sci. 2022, 10, 1070009. [Google Scholar] [CrossRef]
- Geospatial Data Cloud. China Centre for Resources Satellite Data and Application. 2024. Available online: http://www.gscloud.cn/home (accessed on 11 September 2024).
- U.S. Geological Survey. EarthExplorer. 2024. Available online: http://earthexplorer.usgs.gov/ (accessed on 11 September 2024).
- Tan, J.B.; Chen, M.Q.; Xie, X.Y.; Zhang, C.; Mao, B.P.; Lei, G.B.; Wang, B.; Meng, X.B.; Guan, X.B.; Zhang, Y.F. Riparian Zone DEM Generation From Time-Series Sentinel-1 and Corresponding Water Level: A Novel Waterline Method. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4207110. [Google Scholar] [CrossRef]
- Lee, J.; Kim, K.; Kwak, G.-H.; Baek, W.-K.; Jang, Y.; Ryu, J.-H. Optimization of a multi-sensor satellite-based waterline method for rapid and extensive tidal flat topography mapping. Estuar. Coast. Shelf Sci. 2025, 318, 109235. [Google Scholar] [CrossRef]
- Mary, R.G.M.; Sannasiraj, S.A.; Raju, D.K. Coastal morphological changes due to the Nivar cyclone on the East Coast of India. Environ. Earth Sci. 2024, 83, 1–12. [Google Scholar] [CrossRef]
- Pinton, D.; Canestrelli, A.; Xu, S.Z. Managing dyke retreat: Importance of century-scale channel network evolution on storm surge modification over salt marshes under rising sea levels. Earth Surf. Process. Landf. 2023, 48, 830–849. [Google Scholar] [CrossRef]
- Zhang, S.; Gao, W.; Shao, D.; Nardin, W.; Gualtieri, C.; Sun, T. The Effects of Intra-Annual Variability of River Discharge on the Spatio-Temporal Dynamics of Saltmarsh Vegetation at River Mouth Bar: Insights from an Ecogeomorphological Model. J. Environ. Inform. 2023, 42, 108–122. [Google Scholar] [CrossRef]
- Liu, R.Q.; Cheng, H.Q.; Chen, J.F.; Teng, L.Z.; Ren, Z.D.; Yang, Q.; Fan, H.S.; Lefebvre, A. Subaqueous multiscale bedform morphology dynamics in a mountainous macrotidal estuary. Front. Mar. Sci. 2025, 12, 1585285. [Google Scholar] [CrossRef]
- Yang, Z.; Gao, W.; Yu, W.J.; Liu, J.; Du, J.; Li, P.; Xu, Y.Q.; Li, P. The spatiotemporal changes and influencing mechanisms of the coastline in the Yellow River Delta, China. Front. Mar. Sci. 2025, 11, 1490990. [Google Scholar] [CrossRef]
- Bird, C.O.; Bell, P.S.; Plater, A.J. Application of marine radar to monitoring seasonal and event-based changes in intertidal morphology. Geomorphology 2017, 285, 1–15. [Google Scholar] [CrossRef]
- Grant, M.J.; Hill, T.; Evans, S.; Law, M. Coastal Lagoonal Evolution within the Early Holocene Humber Estuary, eastern England. J. Quat. Sci. 2024, 39, 234–247. [Google Scholar] [CrossRef]
- Witt, M.; Patzke, J.; Nehlsen, E.; Fröhle, P. Erosion threshold of cohesive sediments in the German Wadden Sea: Temporal variability and comparison of in-situ and laboratory experiments. Estuar. Coast. Shelf Sci. 2025, 323, 109417. [Google Scholar] [CrossRef]
- Luo, F.; Wu, H.B.; Chen, Z.P.; Zheng, J.H.; Tao, A.F.; Zhao, H.P.; Dong, Y.F.; Lv, L. Long-term simulation of saltmarsh landscape based on hydro-sediment and vegetation Dynamics: Assessing future stability. Estuar. Coast. Shelf Sci. 2025, 323, 109400. [Google Scholar] [CrossRef]
- Zhang, X.Z. Exploring Sediment Dynamics in Coastal Bays by Numerical Modelling and Remote Sensing; Boston University: Boston, MA, USA, 2020. [Google Scholar]
- Liu, G.; Lou, Y.Y.; Wang, J.; Yang, Y.L.; Li, M.S.; Wei, W. Multi-decadal dynamics of the Changjiang estuarine tidal flat resource: Causes and threats. Ocean. Coast. Manag. 2025, 269, 107831. [Google Scholar] [CrossRef]
- Shen, Z.H.; Wang, C.; Chen, H.H.; Zhang, Z.H.; Wang, B.; Xia, Y.; Zhang, Q.; Wu, X.; Li, Q.Y.; Peng, T. Spatiotemporal evolution of typical silt-muddy coastlines and tidal flats and their response to human activities: A case study of the Yancheng Coast, China. Ocean. Coast. Manag. 2025, 269, 107851. [Google Scholar] [CrossRef]
- Zarei, R.; Darvishan, A.K.; Porto, P.; Zare, M.R. Using radiotracers and topographic metrics for sediment budgeting at pixel and hillslope scales: A case study from western Iran. Ecol. Indic. 2024, 167, 112711. [Google Scholar] [CrossRef]
- Porto, P.; Callegari, G. Relating 137Cs and sediment yield from uncultivated catchments: The role of particle size composition of soil and sediment in calculating soil erosion rates at the catchment scale. J. Soils Sediments 2023, 23, 3689–3705. [Google Scholar] [CrossRef]
- Zheng, J.; Xia, X.M.; Sun, H.C.; Chen, Y.N.; Sottolichio, A.; Jalón-Rojas, I.; Liu, Y.F.; Cai, T.L.; Wang, X.K.; He, Z.G. Geomorphological evolution in a medium macrotidal estuary across 88 years: Shift from natural to human-influenced states. J. Hydrol. 2025, 655, 132933. [Google Scholar] [CrossRef]
- Ryu, H.; Jung, H.S.; Ryu, J.H.; Lee, J.H. Impacts of Anthropogenic Structures on Coastal Morphodynamics: A Case Study of Sand Spit Evolution in the Ujeon Tidal Flat, South Korea. Ocean. Sci. J. 2024, 59, 1–16. [Google Scholar] [CrossRef]
- Li, P.; Jin, Y.D.; Gao, W.; Zhao, X.L. Spatial differentiation and dynamic mechanism of microgeomorphology based on acoustic spectrum data of the Huanghe (Yellow) River Delta. J. Oceanol. Limnol. 2023, 41, 2077–2089. [Google Scholar] [CrossRef]
- Yao, Z.J.; Li, G.J.; Yang, S.C.; Huang, G.R. Historical and future projected regional sea levels in the Pearl River Delta, South China. Reg. Stud. Mar. Sci. 2025, 89, 104324. [Google Scholar] [CrossRef]
- Wu, S.P.; Hu, Y.; Zhao, W.Z.; Gong, L.; Song, Y.H.; Li, C.H.; Li, X.Z.; Hossain, M.J.; Shan, X.M.; Fang, J.Y.; et al. Human flood adaptation characteristics: A comparative study of three global river deltas. J. Hydrol. 2025, 660, 133531. [Google Scholar] [CrossRef]
- Luo, W.; Shen, F.; He, Q.; Cao, F.; Zhao, H.; Li, M. Changes in suspended sediments in the Yangtze River Estuary from 1984 to 2020: Responses to basin and estuarine engineering constructions. Sci. Total Environ. 2022, 805, 150381. [Google Scholar] [CrossRef]
- Chen, W.; Ban, H.Y.; Mao, C.H.; Liang, H.D.; Jiang, M.T. Sediment Dynamics Subject to Sea Level Rise in the Yangtze River Estuary. J. Ocean. Univ. China 2024, 23, 1572–1582. [Google Scholar] [CrossRef]
Image Year | Included Months | Total Number of Scenes |
---|---|---|
2001 | 3, 5, 9, 10 | 18 |
2003 | 2, 3, 10 | 16 |
2005 | 2, 5, 9, 10 | 18 |
2007 | 2, 6, 9 | 16 |
2009 | 2, 8, 11 | 17 |
2011 | 1, 4, 9 | 16 |
2013 | 3, 9, 10, 11 | 17 |
2015 | 1, 6, 9 | 16 |
2017 | 1, 6, 11 | 17 |
2019 | 1, 5, 8, 11 | 18 |
2021 | 1, 4, 5, 12 | 18 |
Sedimentation–Erosion Intensity Level | Classification Criteria (Ha, cm) |
---|---|
Severe erosion zone | Ha < −60 |
Mild erosion zone | −60 ≤ Ha < −20 |
Erosion–sedimentation equilibrium zone | −20 ≤ Ha < 20 |
Mild sedimentation zone | 20 ≤ Ha < 60 |
Severe sedimentation zone | Ha ≥ 60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Wang, L.; Su, F.; Xiao, C.; Yan, M.; Song, F. Research on Typical Estuarine Sedimentation Characteristics: A Case Study of the Liaohe Estuary Wetland. Sustainability 2025, 17, 8410. https://doi.org/10.3390/su17188410
Li H, Wang L, Su F, Xiao C, Yan M, Song F. Research on Typical Estuarine Sedimentation Characteristics: A Case Study of the Liaohe Estuary Wetland. Sustainability. 2025; 17(18):8410. https://doi.org/10.3390/su17188410
Chicago/Turabian StyleLi, Haifu, Lei Wang, Fangli Su, Chengyu Xiao, Mengen Yan, and Fei Song. 2025. "Research on Typical Estuarine Sedimentation Characteristics: A Case Study of the Liaohe Estuary Wetland" Sustainability 17, no. 18: 8410. https://doi.org/10.3390/su17188410
APA StyleLi, H., Wang, L., Su, F., Xiao, C., Yan, M., & Song, F. (2025). Research on Typical Estuarine Sedimentation Characteristics: A Case Study of the Liaohe Estuary Wetland. Sustainability, 17(18), 8410. https://doi.org/10.3390/su17188410