Pareto-Based Optimization of PV and Battery in Home-PV-BES-EV System with Integrated Dynamic Energy Management Strategy
Abstract
1. Introduction
Novelty and Contribution
- A practical and comprehensive mathematical model employing two metaheuristic optimization techniques for optimal sizing of grid-connected PV and BES of the system with EV.
- A novel rule-based home energy management system that combines PV-BES-EV to enable the user to efficiently utilize the system. In the proposed HEMS, EV is addressed as a secondary load during charging and as an energy storage system that can supply power to the household load (V2H).
- A dynamic management of EV (charging/discharging based on SoC and TOU tariffs) in the proposed home energy management based on EV state of charge.
- Applying a fuzzy logic approach to find a compromised solution out of the Pareto fronts resulted from MOPSO and MOHHO.
2. Proposed System Configuration and Operation
3. Mathematical Modeling of the Proposed System
3.1. PV System
3.2. Battery Energy Storage (BES) System
3.3. EV Charging/Discharging
3.4. Inverter
3.5. Power Grid
3.6. Greenhouse Gas (GHG) Emission Estimation
3.7. Component Availability in the System
4. Data Collection
4.1. Solar Irradiance
4.2. Ambient Temperature
4.3. Electric Vehicle and Charger
4.4. Load Profile
5. Objective Functions
5.1. Limits of Decision Variables
5.2. Energy Balance of the System
6. Energy Management and Optimization
6.1. Home Energy Management Strategy
6.2. MOPSO and MOHHO Optimization Techniques
6.3. Best Compromise Solution
7. Results and Discussions
- Economically optimal solution (lowest COE)
- Renewable energy usage perspective (highest REF)
- Environmentally optimal solution (lowest GHG emission)
7.1. Flat Rate
7.2. TOU Rates
7.3. Performance Evaluation of MOPSO and MOHHO Techniques
7.4. Comparison with Recent Optimization Studies
7.5. Impacts on Urban Energy Sustainability and Resilience
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
MOPSO | MOHHO | ||||||||
---|---|---|---|---|---|---|---|---|---|
Sol | LPSP | COE | REF | Normalized | Sol | LPSP | COE | REF | Normalized |
1 | 0.0613 | 0.0224 | 0.5275 | 0.0067 | 1 | 0.0557 | 0.0238 | 0.5236 | 0.0065 |
2 | 0.0704 | 0.0223 | 0.5303 | 0.0058 | 2 | 0.0613 | 0.0227 | 0.5265 | 0.0059 |
3 | 0.0716 | 0.0211 | 0.5086 | 0.0056 | 3 | 0.0501 | 0.0427 | 0.5763 | 0.0062 |
4 | 0.0578 | 0.0230 | 0.5188 | 0.0069 | 4 | 0.0551 | 0.0244 | 0.5391 | 0.0067 |
5 | 0.0596 | 0.0239 | 0.5511 | 0.0071 | 5 | 0.0223 | 0.0685 | 0.9609 | 0.0121 |
6 | 0.0699 | 0.0216 | 0.5195 | 0.0058 | 6 | 0.0453 | 0.0351 | 0.6097 | 0.0079 |
7 | 0.0699 | 0.0216 | 0.5195 | 0.0058 | 7 | 0.0556 | 0.0392 | 0.5263 | 0.0052 |
8 | 0.0500 | 0.0307 | 0.5611 | 0.0076 | 8 | 0.0211 | 0.0483 | 0.8766 | 0.013 |
9 | 0.0186 | 0.0783 | 0.9697 | 0.0117 | 9 | 0.0240 | 0.0531 | 0.8345 | 0.0117 |
10 | 0.0716 | 0.0211 | 0.5086 | 0.0056 | 10 | 0.0498 | 0.0265 | 0.5733 | 0.0076 |
11 | 0.0541 | 0.0273 | 0.5438 | 0.0073 | 11 | 0.0196 | 0.0555 | 0.9256 | 0.0132 |
12 | 0.0225 | 0.0714 | 0.9608 | 0.0117 | 12 | 0.0200 | 0.0830 | 0.9718 | 0.0112 |
13 | 0.0704 | 0.0223 | 0.5303 | 0.0058 | 13 | 0.0220 | 0.0595 | 0.8929 | 0.0121 |
14 | 0.0461 | 0.0327 | 0.5933 | 0.0082 | 14 | 0.0242 | 0.0453 | 0.8592 | 0.0127 |
15 | 0.0216 | 0.0650 | 0.9384 | 0.0121 | 15 | 0.0237 | 0.0534 | 0.9154 | 0.0127 |
16 | 0.0204 | 0.0573 | 0.8804 | 0.0122 | 16 | 0.0211 | 0.0854 | 0.9731 | 0.0108 |
17 | 0.0699 | 0.0216 | 0.5195 | 0.0058 | 17 | 0.0463 | 0.0284 | 0.6312 | 0.0086 |
18 | 0.0229 | 0.0631 | 0.9217 | 0.0119 | 18 | 0.0207 | 0.0570 | 0.8865 | 0.0124 |
19 | 0.0469 | 0.0318 | 0.5931 | 0.0082 | 19 | 0.0409 | 0.0320 | 0.6882 | 0.0097 |
20 | 0.0213 | 0.0648 | 0.9322 | 0.0121 | 20 | 0.0425 | 0.0466 | 0.6403 | 0.0076 |
21 | 0.0340 | 0.0508 | 0.7537 | 0.0098 | 21 | 0.0219 | 0.0719 | 0.9643 | 0.0119 |
22 | 0.0242 | 0.0525 | 0.8257 | 0.0116 | 22 | 0.0207 | 0.0594 | 0.9087 | 0.0125 |
23 | 0.0699 | 0.0216 | 0.5195 | 0.0058 | 23 | 0.0318 | 0.0513 | 0.7650 | 0.01 |
24 | 0.0487 | 0.0332 | 0.5770 | 0.0077 | 24 | 0.0191 | 0.0603 | 0.9434 | 0.013 |
25 | 0.0592 | 0.0426 | 0.5077 | 0.005 | 25 | 0.0287 | 0.0437 | 0.7973 | 0.0115 |
26 | 0.0184 | 0.0773 | 0.9668 | 0.0117 | 26 | 0.0313 | 0.0376 | 0.7765 | 0.0115 |
27 | 0.0584 | 0.0253 | 0.5090 | 0.0066 | 27 | 0.0266 | 0.0511 | 0.8182 | 0.0114 |
28 | 0.0716 | 0.0211 | 0.5086 | 0.0056 | 28 | 0.0396 | 0.0343 | 0.7309 | 0.0101 |
29 | 0.0203 | 0.0582 | 0.8810 | 0.0121 | 29 | 0.0240 | 0.0447 | 0.8552 | 0.0127 |
30 | 0.0192 | 0.0764 | 0.9633 | 0.0117 | 30 | 0.0226 | 0.0610 | 0.9137 | 0.0121 |
31 | 0.0205 | 0.0636 | 0.9247 | 0.0122 | 31 | 0.0273 | 0.0398 | 0.8049 | 0.0121 |
32 | 0.0213 | 0.0648 | 0.9322 | 0.0121 | 32 | 0.0556 | 0.0392 | 0.5263 | 0.0052 |
33 | 0.0180 | 0.0864 | 0.9737 | 0.0111 | 33 | 0.0219 | 0.0589 | 0.9042 | 0.0123 |
34 | 0.0264 | 0.0538 | 0.8183 | 0.0111 | 34 | 0.0232 | 0.0586 | 0.9210 | 0.0124 |
35 | 0.0546 | 0.0302 | 0.5438 | 0.007 | 35 | 0.0551 | 0.0408 | 0.5430 | 0.0053 |
36 | 0.0250 | 0.0432 | 0.8383 | 0.0124 | 36 | 0.0482 | 0.0279 | 0.6203 | 0.0083 |
37 | 0.0212 | 0.0589 | 0.8873 | 0.0121 | 37 | 0.0287 | 0.0437 | 0.7973 | 0.0115 |
38 | 0.0541 | 0.0292 | 0.5440 | 0.0071 | 38 | 0.0400 | 0.0373 | 0.6714 | 0.0091 |
39 | 0.0220 | 0.0784 | 0.9708 | 0.0113 | 39 | 0.0227 | 0.0551 | 0.9234 | 0.0128 |
40 | 0.0457 | 0.0291 | 0.6208 | 0.0089 | 40 | 0.0295 | 0.0388 | 0.7929 | 0.0118 |
41 | 0.0267 | 0.0493 | 0.8171 | 0.0115 | 41 | 0.0261 | 0.0460 | 0.8642 | 0.0124 |
42 | 0.0180 | 0.0846 | 0.9737 | 0.0112 | 42 | 0.0229 | 0.0574 | 0.9130 | 0.0124 |
43 | 0.0205 | 0.0525 | 0.8868 | 0.0127 | 43 | 0.0414 | 0.0314 | 0.6769 | 0.0095 |
44 | 0.0207 | 0.0801 | 0.9700 | 0.0113 | 44 | 0.0576 | 0.0384 | 0.5281 | 0.005 |
45 | 0.0704 | 0.0223 | 0.5303 | 0.0058 | 45 | 0.0451 | 0.0287 | 0.6299 | 0.0087 |
46 | 0.0213 | 0.0648 | 0.9322 | 0.0121 | 46 | 0.0212 | 0.0481 | 0.8421 | 0.0126 |
47 | 0.0209 | 0.0794 | 0.9721 | 0.0114 | 47 | 0.0191 | 0.0603 | 0.9434 | 0.013 |
48 | 0.0186 | 0.0783 | 0.9697 | 0.0117 | 48 | 0.0409 | 0.0320 | 0.6882 | 0.0097 |
49 | 0.0498 | 0.0446 | 0.5760 | 0.0066 | 49 | 0.0502 | 0.0380 | 0.5773 | 0.0066 |
50 | 0.0393 | 0.0451 | 0.6554 | 0.0086 | 50 | 0.0242 | 0.0453 | 0.8592 | 0.0127 |
51 | 0.0225 | 0.0690 | 0.9498 | 0.0118 | 51 | 0.0492 | 0.0262 | 0.5817 | 0.0078 |
52 | 0.0430 | 0.0335 | 0.7158 | 0.0099 | 52 | 0.0216 | 0.0790 | 0.9690 | 0.0113 |
53 | 0.0289 | 0.0480 | 0.7758 | 0.0109 | 53 | 0.0223 | 0.0662 | 0.9573 | 0.0122 |
54 | 0.0398 | 0.0442 | 0.6558 | 0.0086 | 54 | 0.0265 | 0.0442 | 0.8086 | 0.0119 |
55 | 0.0376 | 0.0467 | 0.7008 | 0.0092 | 55 | 0.0205 | 0.0617 | 0.9251 | 0.0125 |
56 | 0.0180 | 0.0864 | 0.9737 | 0.0111 | 56 | 0.0492 | 0.0262 | 0.5817 | 0.0078 |
57 | 0.0180 | 0.0864 | 0.9737 | 0.0111 | 57 | 0.0556 | 0.0247 | 0.5612 | 0.0069 |
58 | 0.0305 | 0.0395 | 0.7855 | 0.0115 | 58 | 0.0200 | 0.0824 | 0.9714 | 0.0112 |
59 | 0.0347 | 0.0419 | 0.7421 | 0.0104 | 59 | 0.0256 | 0.0438 | 0.8441 | 0.0125 |
60 | 0.0442 | 0.0328 | 0.6252 | 0.0088 | 60 | 0.0430 | 0.0335 | 0.7158 | 0.0096 |
61 | 0.0469 | 0.0318 | 0.5931 | 0.0082 | 61 | 0.0232 | 0.0702 | 0.9613 | 0.0118 |
62 | 0.0345 | 0.0502 | 0.7423 | 0.0097 | 62 | 0.0555 | 0.0325 | 0.5280 | 0.0058 |
63 | 0.0219 | 0.0820 | 0.9711 | 0.011 | 63 | 0.0295 | 0.0388 | 0.7929 | 0.0118 |
64 | 0.0364 | 0.0395 | 0.7281 | 0.0102 | 64 | 0.0613 | 0.0227 | 0.5265 | 0.0059 |
65 | 0.0185 | 0.0792 | 0.9716 | 0.0116 | 65 | 0.0361 | 0.0497 | 0.7291 | 0.0092 |
66 | 0.0180 | 0.0855 | 0.9737 | 0.0112 | 66 | 0.0332 | 0.0365 | 0.7577 | 0.0111 |
67 | 0.0193 | 0.0835 | 0.9721 | 0.0112 | 67 | 0.0590 | 0.0233 | 0.5076 | 0.0059 |
68 | 0.0180 | 0.0855 | 0.9737 | 0.0112 | 68 | 0.0551 | 0.0244 | 0.5391 | 0.0067 |
69 | 0.0387 | 0.0410 | 0.6717 | 0.0092 | 69 | 0.0220 | 0.0595 | 0.8929 | 0.0121 |
70 | 0.0260 | 0.0619 | 0.9474 | 0.012 | 70 | 0.0226 | 0.0610 | 0.9137 | 0.0121 |
71 | 0.0180 | 0.0864 | 0.9737 | 0.0111 | 71 | 0.0212 | 0.0481 | 0.8421 | 0.0126 |
72 | 0.0215 | 0.0739 | 0.9677 | 0.0117 | 72 | 0.0501 | 0.0297 | 0.5608 | 0.0071 |
73 | 0.0227 | 0.0560 | 0.8529 | 0.0117 | 73 | 0.0599 | 0.0369 | 0.5091 | 0.0046 |
74 | 0.0487 | 0.0332 | 0.5770 | 0.0077 | 74 | 0.0313 | 0.0376 | 0.7765 | 0.0115 |
75 | 0.0224 | 0.0503 | 0.8984 | 0.0128 | 75 | 0.0211 | 0.0854 | 0.9731 | 0.0108 |
76 | 0.0186 | 0.0783 | 0.9697 | 0.0117 | 76 | 0.0167 | 0.0839 | 0.9724 | 0.0115 |
77 | 0.0537 | 0.0253 | 0.5734 | 0.0078 | 77 | 0.0498 | 0.0265 | 0.5733 | 0.0076 |
78 | 0.0180 | 0.0864 | 0.9737 | 0.0111 | 78 | 0.0548 | 0.0388 | 0.5431 | 0.0055 |
79 | 0.0180 | 0.0864 | 0.9737 | 0.0111 | 79 | 0.0280 | 0.0415 | 0.7760 | 0.0115 |
80 | 0.0556 | 0.0392 | 0.5263 | 0.0059 | 80 | 0.0400 | 0.0373 | 0.6714 | 0.0091 |
81 | 0.0180 | 0.0864 | 0.9737 | 0.0111 | 81 | 0.0229 | 0.0574 | 0.9130 | 0.0124 |
82 | 0.0180 | 0.0864 | 0.9737 | 0.0111 | 82 | 0.0241 | 0.0479 | 0.8253 | 0.0121 |
83 | 0.0182 | 0.0645 | 0.9407 | 0.0125 | 83 | 0.0240 | 0.0447 | 0.8552 | 0.0127 |
84 | 0.0219 | 0.0683 | 0.9536 | 0.012 | 84 | 0.0532 | 0.0271 | 0.6064 | 0.0075 |
85 | 0.0231 | 0.0738 | 0.9622 | 0.0115 | 85 | 0.0574 | 0.0232 | 0.5389 | 0.0065 |
86 | 0.0213 | 0.0775 | 0.9682 | 0.0114 | 86 | 0.0196 | 0.0555 | 0.9256 | 0.0132 |
87 | 0.0204 | 0.0653 | 0.9351 | 0.0122 | 87 | 0.0265 | 0.0442 | 0.8086 | 0.0119 |
88 | 0.0202 | 0.0576 | 0.8738 | 0.0121 | 88 | 0.0219 | 0.0589 | 0.9042 | 0.0123 |
89 | 0.0219 | 0.0820 | 0.9711 | 0.011 | 89 | 0.0532 | 0.0271 | 0.6064 | 0.0075 |
90 | 0.0204 | 0.0519 | 0.8588 | 0.0124 | 90 | 0.0580 | 0.0320 | 0.5092 | 0.0053 |
91 | 0.0305 | 0.0385 | 0.7831 | 0.0116 | 91 | 0.0377 | 0.0477 | 0.7009 | 0.0088 |
92 | 0.0221 | 0.0727 | 0.9669 | 0.0117 | 92 | 0.0266 | 0.0511 | 0.8182 | 0.0114 |
93 | 0.0225 | 0.0690 | 0.9498 | 0.0118 | 93 | 0.0223 | 0.0685 | 0.9609 | 0.0121 |
94 | 0.0232 | 0.0702 | 0.9613 | 0.0118 | 94 | 0.0396 | 0.0343 | 0.7309 | 0.0101 |
95 | 0.0467 | 0.0337 | 0.5935 | 0.0081 | 95 | 0.0366 | 0.0469 | 0.7289 | 0.0094 |
96 | 0.0213 | 0.0648 | 0.9322 | 0.0121 | 96 | 0.0451 | 0.0287 | 0.6299 | 0.0087 |
97 | 0.0196 | 0.0555 | 0.9256 | 0.0130 | 97 | 0.0596 | 0.0239 | 0.5511 | 0.0063 |
98 | 0.0225 | 0.0690 | 0.9498 | 0.0118 | 98 | 0.0216 | 0.0790 | 0.9690 | 0.0113 |
99 | 0.0295 | 0.0388 | 0.7929 | 0.0118 | 99 | 0.0557 | 0.0238 | 0.5236 | 0.0065 |
100 | 0.0432 | 0.0460 | 0.6247 | 0.0078 | 100 | 0.0225 | 0.0690 | 0.9498 | 0.0119 |
References
- IEA—International Energy Agency. Available online: https://www.iea.org/ (accessed on 4 August 2025).
- Zhang, W.; Maleki, A.; Rosen, M.A. A heuristic-based approach for optimizing a small independent solar and wind hybrid power scheme incorporating load forecasting. J. Clean. Prod. 2019, 241, 117920. [Google Scholar] [CrossRef]
- IEEE Industrial Electronics Society. IECON 2019-45th Annual Conference of the IEEE Industrial Electronics Society: Convention Center, Lisbon, Portugal, 14–17 October 2019; Universidade Nova de Lisboa, Institute of Electrical and Electronics Engineers, and IEEE Industrial Electronics Society: Lisbon, Portugal, 2019. [Google Scholar]
- Bhatti, R.; Salam, Z.; Ashique, R.H. Electric Vehicle Charging Using Photovoltaic based Microgrid for Remote Islands. Energy Procedia 2016, 103, 213–218. [Google Scholar] [CrossRef]
- Olatomiwa, L.; Mekhilef, S.; Ismail, M.S.; Moghavvemi, M. Energy management strategies in hybrid renewable energy systems: A review. Renew. Sustain. Energy Rev. 2016, 62, 821–835. [Google Scholar] [CrossRef]
- Lehtola, T.; Zahedi, A. Solar energy and wind power supply supported by storage technology: A review. Sustain. Energy Technol. Assess. 2019, 35, 25–31. [Google Scholar] [CrossRef]
- Richardson, D.B. Electric vehicles and the electric grid: A review of modeling approaches, Impacts, and renewable energy integration. Renew. Sustain. Energy Rev. 2013, 19, 247–254. [Google Scholar] [CrossRef]
- Monna, S.; Abdallah, R.; Juaidi, A.; Albatayneh, A.; Zapata-Sierra, A.J.; Manzano-Agugliaro, F. Potential Electricity Production by Installing Photovoltaic Systems on the Rooftops of Residential Buildings in Jordan: An Approach to Climate Change Mitigation. Energies 2022, 15, 496. [Google Scholar] [CrossRef]
- Zhu, Z.; Wang, Y.; Yuan, M.; Zhang, R.; Chen, Y.; Lou, G.; Sun, Y. Energy saving and carbon reduction schemes for families with the household PV-BES-EV system. Energy Build. 2023, 288, 113007. [Google Scholar] [CrossRef]
- Bódis, K.; Kougias, I.; Jäger-Waldau, A.; Taylor, N.; Szabó, S. A high-resolution geospatial assessment of the rooftop solar photovoltaic potential in the European Union. Renew. Sustain. Energy Rev. 2019, 114, 109309. [Google Scholar] [CrossRef]
- Khezri, R.; Mahmoudi, A.; Aki, H. Optimal planning of solar photovoltaic and battery storage systems for grid-connected residential sector: Review, challenges and new perspectives. Renew. Sustain. Energy Rev. 2022, 153, 111763. [Google Scholar] [CrossRef]
- Zheng, J.; Lin, Z.E.; Masanet, E.; Deshmukh, R.; Suh, S. Lifecycle cost and carbon implications of residential solar-plus-storage in California. iScience 2021, 24, 103492. [Google Scholar] [CrossRef]
- Zubair, M. PV energy penetration in Saudi Arabia: Current status, residential, and commercial users, local investment, use in modern agriculture. Int. J. Sustain. Eng. 2024, 17, 39–51. [Google Scholar] [CrossRef]
- KAPSARC. King Abdullah Petroleum Studies and Research Center. Home. Available online: https://www.kapsarc.org/ (accessed on 26 August 2024).
- Saudi Electricity Company. Available online: https://www.se.com.sa/en (accessed on 26 August 2024).
- Saudi Electricity Regulatory Authority. Available online: https://sera.gov.sa/ (accessed on 27 August 2024).
- Information About Saudi Green Initiative. Available online: https://www.greeninitiatives.gov.sa/about-sgi/ (accessed on 27 August 2024).
- Alyamani, R.; Pappelis, D.; Kamargianni, M. Modelling the determinants of electrical vehicles adoption in Riyadh, Saudi Arabia. Energy Policy 2024, 188, 114072. [Google Scholar] [CrossRef]
- Klabi, F.; Binzafrah, F. Exploring the relationships between Islam, some personal values, environmental concern, and electric vehicle purchase intention: The case of Saudi Arabia. J. Islam. Mark. 2023, 14, 366–393. [Google Scholar] [CrossRef]
- Shaher; Alqahtani, S.; Garada, A.; Cipcigan, L. Rooftop Solar Photovoltaic in Saudi Arabia to Supply Electricity Demand in Localised Urban Areas: A Study of the City of Abha. Energies 2023, 16, 4310. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, J.; Du, S.; Ma, H.; Zhao, W.; Li, H. Energy Management Strategies for Hybrid Construction Machinery: Evolution, Classification, Comparison and Future Trends. Energies 2019, 12, 2024. [Google Scholar] [CrossRef]
- Mahmud, K.; Town, G.E.; Morsalin, S.; Hossain, M.J. Integration of electric vehicles and management in the internet of energy. Renew. Sustain. Energy Rev. 2018, 82, 4179–4203. [Google Scholar] [CrossRef]
- Shi, Y.; Tuan, H.D.; Savkin, A.V.; Duong, T.Q.; Poor, H.V. Model Predictive Control for Smart Grids With Multiple Electric-Vehicle Charging Stations. IEEE Trans. Smart Grid 2019, 10, 2127–2136. [Google Scholar] [CrossRef]
- Barakat, S.; Ibrahim, H.; Elbaset, A.A. Multi-objective optimization of grid-connected PV-wind hybrid system considering reliability, cost, and environmental aspects. Sustain. Cities Soc. 2020, 60, 102178. [Google Scholar] [CrossRef]
- Çetinbaş, İ.; Tamyürek, B.; Demirtaş, M. Sizing optimization and design of an autonomous AC microgrid for commercial loads using Harris Hawks Optimization algorithm. Energy Convers. Manag. 2021, 245, 114562. [Google Scholar] [CrossRef]
- Aziz, N.I.A.; Sulaiman, S.I.; Shaari, S.; Musirin, I.; Sopian, K. Optimal sizing of stand-alone photovoltaic system by minimizing the loss of power supply probability. Sol. Energy 2017, 150, 220–228. [Google Scholar] [CrossRef]
- Almulhim, I. Understanding public awareness and attitudes toward renewable energy resources in Saudi Arabia. Renew. Energy 2022, 192, 572–582. [Google Scholar] [CrossRef]
- Amran, Y.H.A.; Amran, Y.H.M.; Alyousef, R.; Alabduljabbar, H. Renewable and sustainable energy production in Saudi Arabia according to Saudi Vision 2030; Current status and future prospects. J. Clean. Prod. 2020, 247, 119602. [Google Scholar] [CrossRef]
- Wu, Y.; Aziz, S.M.; Haque, M.H. Vehicle-to-home operation and multi-location charging of electric vehicles for energy cost optimisation of households with photovoltaic system and battery energy storage. Renew. Energy 2024, 221, 119729. [Google Scholar] [CrossRef]
- Borge-Diez, D.; Icaza, D.; Açıkkalp, E.; Amaris, H. Combined vehicle to building (V2B) and vehicle to home (V2H) strategy to increase electric vehicle market share. Energy 2021, 237, 121608. [Google Scholar] [CrossRef]
- Mohamed, A.S.; Zulkefli, A.M.; Sagar, S.M.V.; Gajjarapu, U.M.; Thomas, A.; Bhavaraju, V. Smart Vehicle-to-Home (V2H) Platform Enabled Home Energy Management System (HEMS) for Backup Supply. In Proceedings of the 2023 IEEE Green Technologies Conference (GreenTech), Denver, Colorado, 19–21 April 2023; pp. 73–77. [Google Scholar] [CrossRef]
- Liu, X.; Wu, Y.; Wu, H. PV-EV Integrated Home Energy Management Considering Residential Occupant Behaviors. Sustainability 2021, 13, 13826. [Google Scholar] [CrossRef]
- Kumar; Sah, B.; Deng, Y.; He, X.; Kumar, P.; Bansal, R.C. Application of multi-criteria decision analysis tool for design of a sustainable micro-grid for a remote village in the Himalayas. J. Eng. 2017, 2017, 2108–2113. [Google Scholar] [CrossRef]
- Nsafon, E.K.; Butu, H.M.; Owolabi, A.B.; Roh, J.W.; Suh, D.; Huh, J.S. Integrating multi-criteria analysis with PDCA cycle for sustainable energy planning in Africa: Application to hybrid mini-grid system in Cameroon. Sustain. Energy Technol. Assess. 2020, 37, 100628. [Google Scholar] [CrossRef]
- Abdmouleh, Z.; Gastli, A.; Ben-Brahim, L.; Haouari, M.; Al-Emadi, N.A. Review of optimization techniques applied for the integration of distributed generation from renewable energy sources. Renew. Energy 2017, 113, 266–280. [Google Scholar] [CrossRef]
- King Abdullah City for Atomic and Renewable Energy. Available online: https://apps.energy.gov.sa/tlc/home (accessed on 27 August 2024).
- Samy, M.; Barakat, S. Application of MOPSO to the Optimisation of an Off-Grid Photovoltaic System in a Rural Fruit Farm. J. Eng. Sci. Sustain. Ind. Technol. 2023, 1, 7–13. [Google Scholar] [CrossRef]
- Alsharif; Tan, C.W.; Ayop, R.; Lau, K.Y.; Dobi, A.M.D. A rule-based power management strategy for Vehicle-to-Grid system using antlion sizing optimization. J. Energy Storage 2021, 41, 102913. [Google Scholar] [CrossRef]
- Al Wahedi, A.; Bicer, Y. Development of an off-grid electrical vehicle charging station hybridized with renewables including battery cooling system and multiple energy storage units. Energy Rep. 2020, 6, 2006–2021. [Google Scholar] [CrossRef]
- Khan, W.; Ahmad, F.; Alam, M.S. Fast EV charging station integration with grid ensuring optimal and quality power exchange. Eng. Sci. Technol. Int. J. 2019, 22, 143–152. [Google Scholar] [CrossRef]
- Solanke, T.U.; Ramachandaramurthy, V.K.; Yong, J.Y.; Pasupuleti, J.; Kasinathan, P.; Rajagopalan, A. A review of strategic charging–discharging control of grid-connected electric vehicles. J. Energy Storage 2020, 28, 101193. [Google Scholar] [CrossRef]
- Luna, C.; Diaz, N.L.; Graells, M.; Vasquez, J.C.; Guerrero, J.M. Mixed-integer-linear-programming-based energy management system for hybrid PV-wind-battery microgrids: Modeling, design, and experimental verification. IEEE Trans. Power Electron. 2017, 32, 2769–2783. [Google Scholar] [CrossRef]
- Diaf, S.; Diaf, D.; Belhamel, M.; Haddadi, M.; Louche, A. A methodology for optimal sizing of autonomous hybrid PV/wind system. Energy Policy 2007, 35, 5708–5718. [Google Scholar] [CrossRef]
- Ogunjuyigbe, S.O.; Ayodele, T.R.; Akinola, O.A. Optimal allocation and sizing of PV/Wind/Split-diesel/Battery hybrid energy system for minimizing life cycle cost, carbon emission and dump energy of remote residential building. Appl. Energy 2016, 171, 153–171. [Google Scholar] [CrossRef]
- Mohseni, S.; Brent, A.C.; Burmester, D. A demand response-centred approach to the long-term equipment capacity planning of grid-independent micro-grids optimized by the moth-flame optimization algorithm. Energy Convers. Manag. 2019, 200, 112105. [Google Scholar] [CrossRef]
- García, P.; Torreglosa, J.P.; Fernández, L.M.; Jurado, F. Optimal energy management system for stand-alone wind turbine/photovoltaic/hydrogen/battery hybrid system with supervisory control based on fuzzy logic. Int. J. Hydrogen Energy 2013, 38, 14146–14158. [Google Scholar] [CrossRef]
- Sarker, M.T.; Haram, M.H.S.M.; Shern, S.J.; Ramasamy, G.; Al Farid, F. Second-Life Electric Vehicle Batteries for Home Photovoltaic Systems: Transforming Energy Storage and Sustainability. Energies 2024, 17, 2345. [Google Scholar] [CrossRef]
- Zafar, B.; Slama, S.A.B. PV-EV integrated home energy management using vehicle-to-home (V2H) technology and household occupant behaviors. Energy Strategy Rev. 2022, 44, 101001. [Google Scholar] [CrossRef]
- LG LG305N1C-G4 (305W) Solar Panel. Available online: http://www.solardesigntool.com/components/module-panel-solar/LG/3124/LG305N1C-G4/specification-data-sheet.html;jsessionid=4B1D60DE7ED94D02888A9B90F5D56123 (accessed on 27 August 2024).
- Mouli, G.R.C.; Bauer, P.; Zeman, M. System design for a solar powered electric vehicle charging station for workplaces. Appl. Energy 2016, 168, 434–443. [Google Scholar] [CrossRef]
- Bhatti, R.; Salam, Z. A rule-based energy management scheme for uninterrupted electric vehicles charging at constant price using photovoltaic-grid system. Renew. Energy 2018, 125, 384–400. [Google Scholar] [CrossRef]
- Bukar, L.; Tan, C.W.; Lau, K.Y. Optimal sizing of an autonomous photovoltaic/wind/battery/diesel generator microgrid using grasshopper optimization algorithm. Sol. Energy 2019, 188, 685–696. [Google Scholar] [CrossRef]
- Mallikarjun, P.; Thulasiraman, S.R.G.; Balachandran, P.K.; Zainuri, M.A.A.M. Economic energy optimization in microgrid with PV/wind/battery integrated wireless electric vehicle battery charging system using improved Harris Hawk Optimization. Sci. Rep. 2025, 15, 10028. [Google Scholar] [CrossRef]
- Borhanazad, H.; Mekhilef, S.; Ganapathy, V.G.; Modiri-Delshad, M.; Mirtaheri, A. Optimization of micro-grid system using MOPSO. Renew. Energy 2014, 71, 295–306. [Google Scholar] [CrossRef]
- Maleki; Khajeh, M.G.; Ameri, M. Optimal sizing of a grid independent hybrid renewable energy system incorporating resource uncertainty, and load uncertainty. Int. J. Electr. Power Energy Syst. 2016, 83, 514–524. [Google Scholar] [CrossRef]
- Ruan, H.; Berna-Escriche, C.; Álvarez-Piñeiro, L.; Blanco, D. Optimization of Solar Generation and Battery Storage for Electric Vehicle Charging with Demand-Side Management Strategies. World Electr. Veh. J. 2025, 16, 312. [Google Scholar] [CrossRef]
- Nissan Leaf (2022–2024) Price and Specifications—EV Database. Available online: https://ev-database.org/car/1656/Nissan-Leaf (accessed on 27 August 2024).
- Zhang, Y.; Qian, Z.; Li, B. The impact of car specifications, prices and incentives for battery electric vehicles in Norway: Choices of heterogeneous consumers. Transp. Res. Part C Emerg. Technol. 2016, 69, 386–401. [Google Scholar] [CrossRef]
- Al-Buraiki, S.; Al-Sharafi, A. Technoeconomic analysis and optimization of hybrid solar/wind/battery systems for a standalone house integrated with electric vehicle in Saudi Arabia. Energy Convers. Manag. 2021, 250, 114899. [Google Scholar] [CrossRef]
- Azarbakhsh, G.; Mahmoudi, A.; Kahourzade, S.; Yazdani, A.; Mahmud, A. Optimal Sizing of Photovoltaic and Battery Energy Storage for Residential Houses in South Australia by Considering Vehicle-to-Home Operation. IET Renew. Power Gener. 2025, 19, e70053. [Google Scholar] [CrossRef]
- Dufo-López, R.; Bernal-Agustín, J.L. Multi-objective design of PV–wind–diesel–hydrogen–battery systems. Renew. Energy 2008, 33, 2559–2572. [Google Scholar] [CrossRef]
- Solomon, S.; Change, C. 2007: The Physical Science Basis: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel Climate Change; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Myhre, G.; Shindell, D.; Bréon, F.M.; Collins, W.; Fuglestvedt, J.; Huang, J.; Koch, D.; Lamarque, J.F.; Lee, D.; Mendoza, B.; et al. Anthropogenic and Natural Radiative Forcing. In Climate Change 2013: The Physical Science Basis; Contribution of Working Group I; IPCC: Genva, Switzerland, 2013. [Google Scholar]
- Brander, M.; Sood, A.; Wylie, C.; Haughton, A.; Lovell, J. Technical Paper: Electricity-Specific Emission Factors for Grid Electricity. 2011. Available online: https://bravenewclimate.com/files/assets/media/pdf/electricity_factors_paper.pdf (accessed on 27 August 2024).
- Daniela-Abigail, H.L.; Vega-De-Lille, M.I.; Sacramento-Rivero, J.C.; Ponce-Caballero, C.; El-Mekaoui, A.; Navarro-Pineda, F. Life cycle assessment of photovoltaic panels including transportation and two end-of-life scenarios: Shaping a sustainable future for renewable energy. Renew. Energy Focus 2024, 51, 100649. [Google Scholar] [CrossRef]
- Life Cycle Greenhouse Gas Emissions. Available online: https://www.nrel.gov/docs/fy13osti/56487.pdf (accessed on 29 October 2024).
- Kaviani, K.; Baghaee, H.R.; Riahy, G.H. Optimal Sizing of a Stand-alone Wind/Photovoltaic Generation Unit using Particle Swarm Optimization. Simulation 2009, 85, 89–99. [Google Scholar] [CrossRef]
- Kumar, G.R.P.; Sattianadan, D.; Vijayakumar, K. A survey on power management strategies of hybrid energy systems in microgrid. Int. J. Electr. Comput. Eng. (IJECE) 2020, 10, 1667–1673. [Google Scholar] [CrossRef]
- Andwari, M.; Pesiridis, A.; Rajoo, S.; Martinez-Botas, R.; Esfahanian, V. A review of Battery Electric Vehicle technology and readiness levels. Renew. Sustain. Energy Rev. 2017, 78, 414–430. [Google Scholar] [CrossRef]
- Hannan, M.A.; Hoque, M.M.; Hussain, A.; Yusof, Y.; Ker, P.J. State-of-the-Art and Energy Management System of Lithium-Ion Batteries in Electric Vehicle Applications: Issues and Recommendations. IEEE Access 2018, 6, 19362–19378. [Google Scholar] [CrossRef]
- Dragičević, T.; Sučić, S.; Vasquez, J.C.; Guerrero, J.M. Flywheel-based distributed bus signalling strategy for the public fast charging station. IEEE Trans. Smart Grid 2014, 5, 2825–2835. [Google Scholar] [CrossRef]
- Aziz, M.; Oda, T.; Mitani, T.; Watanabe, Y.; Kashiwagi, T. Utilization of Electric Vehicles and Their Used Batteries for Peak-Load Shifting. Energies 2015, 8, 3720–3738. [Google Scholar] [CrossRef]
- Mohseni, S.; Brent, A.C.; Burmester, D. A comparison of metaheuristics for the optimal capacity planning of an isolated, battery-less, hydrogen-based micro-grid. Appl. Energy 2020, 259, 114224. [Google Scholar] [CrossRef]
- Bandopadhyay, J.; Roy, P.K. Application of hybrid multi-objective moth flame optimization technique for optimal performance of hybrid micro-grid system. Appl. Soft Comput. 2020, 95, 106487. [Google Scholar] [CrossRef]
- Mahdi, S.; Baygi, H.; Farzaneh, J. Application of Artificial intelligence techniques for optimum design of hybrid grid-independent PV/WT/battery power system. Int. J. Ind. Electron. Control Optim. 2020, 3, 275–289. [Google Scholar] [CrossRef]
- Ayop, R.; Isa, N.M.; Tan, C.W. Components sizing of photovoltaic stand-alone system based on loss of power supply probability. Renew. Sustain. Energy Rev. 2018, 81, 2731–2743. [Google Scholar] [CrossRef]
- Zhou, Z.; Sun, C.; Shi, R.; Chang, Z.; Zhou, S.; Li, Y. Robust Energy Scheduling in Vehicle-To-Grid Networks. IEEE Netw. 2017, 31, 30–37. [Google Scholar] [CrossRef]
- Qu, Y.; Zhu, Y.S.; Jiao, Y.C.; Wu, M.Y.; Suganthan, P.N.; Liang, J.J. A survey on multi-objective evolutionary algorithms for the solution of the environmental/economic dispatch problems. Swarm Evol. Comput. 2018, 38, 1–11. [Google Scholar] [CrossRef]
- Abido, M.A. Multiobjective evolutionary algorithms for electric power dispatch problem. IEEE Trans. Evol. Comput. 2006, 10, 315–329. [Google Scholar] [CrossRef]
- Sakawa, M.; Hitoshiyano, H.; Yumine, T. An Interactive Fuzzy Satisficing Method for Multiobjective Linear-Programming Problems and Its Application. IEEE Trans. Syst. Man. Cybern. 1987, 17, 654–661. [Google Scholar] [CrossRef]
- Mellal, M.A.; Pecht, M. A multi-objective design optimization framework for wind turbines under altitude consideration. Energy Convers. Manag. 2020, 222, 113212. [Google Scholar] [CrossRef]
- Almohammadi, K.M.; Allouhi, A. Techno-economic assessment and optimization of grid-connected solar PV systems in Saudi Arabia’s building sector. Util. Policy 2025, 93, 101885. [Google Scholar] [CrossRef]
Components | Parameters | Value | Unit | |
---|---|---|---|---|
PV system [37] | Lifetime | 25 | y | |
Rated power | 0.305 | kW | ||
Capital cost | 550 | USD/Unit | ||
O&M cost | 5 | USD/y | ||
Replacement cost | 0 | USD | ||
Temperature coefficient | 1/°C | |||
Derating factor | 0.9 | - | ||
NOCT | 47 | °C | ||
Battery Energy Storage (BES) [37] | Lifetime | 10 | y | |
Initial SOC | 100 | % | ||
20 | % | |||
80 | % | |||
Rate capacity | 4.8 | kWh | ||
Capital cost | 672 | USD | ||
O&M cost | 10 | USD/y | ||
Replacement cost | 500 | USD | ||
Self-discharge | 1 | %/day | ||
DOD | 80 | % | ||
Electric Grid | Importing price | Off-peak | 0.032 | USD/kWh |
Mid-peak | 0.048 | |||
On-peak | 0.080 | |||
Exporting price | Off-peak | 0.040 | USD/kWh | |
Mid-peak | 0.067 | |||
On-peak | 0.11 | |||
Inverter [38] | Capacity | 115 | kW | |
Capital cost | 2500 | USD | ||
O&M cost | 1 | USD/y | ||
Efficiency | 92 | % | ||
Lifetime | 20 | y | ||
Economic parameters | Project life | 25 | Y | |
Annual interest rate | 3 | % | ||
Annual inflation rate | 8 | % |
Time Intervals (Hours) | 00:00–8:00 | 8:00–11:00 | 11:00–12:00 | 12:00–14:00 | 14:00–17:00 | 17:00–22:00 | 22:00–00:00 |
Period Type | Off—Peak | Mid—Peak | On—Peak | Mid—Peak | On—Peak | Mid—Peak | Off—Peak |
Month | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Maximum | 787 | 904 | 951 | 1019 | 1029 | 1022 | 1013 | 1016 | 964 | 939 | 822 | 755 |
Month | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Maximum | 28 | 31 | 34 | 36 | 42 | 45 | 46 | 46 | 44 | 41 | 34 | 28 |
Minimum | 7 | 8 | 12 | 12 | 20 | 26 | 28 | 28 | 24 | 19 | 12 | 6 |
Battery Type | Capacity (kWh) | Range (km) | Energy Consumption (Wh/km) | Charge Port | Charging Power (kW AC) |
---|---|---|---|---|---|
Lithium-ion | 40 | 235 | 166 | Type 2 | 3.6 |
Season | Period | Mean Solar Irradiance (W/m2) | Max Solar Irradiance (W/m2) | Mean Ambient Temperature (°C) | Max Ambient Temperature (°C) | Mean Energy Demand (kW) | Peak Energy Demand (kW) | Min Energy Demand (kW) |
---|---|---|---|---|---|---|---|---|
Winter | Dec–Feb | 202.7501 | 904 | 16.7392 | 31 | 1.6922 | 7.046 | 0.11 |
Spring | Mar–Apr | 274.756 | 1019 | 23.8534 | 36 | 1.6452 | 6.756 | 0.114 |
Summer | May–Aug | 299.5369 | 1029 | 35.9874 | 46 | 3.522 | 10.694 | 0.172 |
Sep–Nov | 231.5545 | 964 | 28.7840 | 44 | 2.0322 | 7.754 | 0.138 |
Months | Index Total Daily G (kWh/m2) | Mean Solar Irradiance (W/m2) | Mean Ambient Temperature (°C) | Mean Energy Demand (kW) | Peak Energy Demand (kW) |
---|---|---|---|---|---|
Jan | 4.732 | 195.7608 | 13.7767 | 1.724 | 7.046 |
Feb | 5.447 | 230.2570 | 18.3575 | 1.968 | 6.606 |
Mar | 6.340 | 260.5621 | 22.5795 | 1.461 | 4.662 |
Apr | 6.899 | 289.6705 | 25.1425 | 1.828 | 6.756 |
May | 7.258 | 298.5193 | 32.7137 | 2.458 | 6.720 |
Jun | 7.584 | 316.6078 | 35.8438 | 3.483 | 10.694 |
Jul | 7.328 | 305.8533 | 37.8438 | 3.875 | 9.042 |
Aug | 6.777 | 279.0879 | 37.6329 | 4.331 | 10.086 |
Sep | 6.413 | 271.3158 | 34.9301 | 2.912 | 6.598 |
Oct | 5.610 | 230.5851 | 29.3767 | 2.020 | 6.154 |
Nov | 4.713 | 199.1942 | 22.8233 | 1.282 | 7.754 |
Dec | 4.386 | 181.3545 | 18.0548 | 1.385 | 4.066 |
Technique | Prospective | COE (USD/kWh) | NPC | LPSP (%) | REF (%) | Total GHG Emissions (Tone) | ||
---|---|---|---|---|---|---|---|---|
MOPSO | Economic | 0.0210 | 6.87 | 50.70 | 24 | 1 | 2616 | |
Renewable | 0.0866 | 108,652 | 1.80 | 97.37 | 100 | 25 | 1086 | |
Environment | 0.0718 | 89,232 | 2.67 | 95.57 | 74 | 25 | 927 | |
MOHHO | Economic | 0.0217 | 25,588 | 6.08 | 51.35 | 24 | 2 | 2525 |
Renewable | 0.0860 | 107,909 | 1.90 | 97.27 | 99 | 25 | 1085 | |
Environment | 0.0714 | 89,215 | 2.24 | 95.97 | 77 | 23 | 943 |
Technique | COE (USD/kWh) | NPC | LPSP (%) | REF (%) | Total GHG Emissions (Tone) | ||
---|---|---|---|---|---|---|---|
MOPSO | 0.0468 | 58,452 | 2.10 | 86.87 | 51 | 13 | 1152 |
MOHHO | 0.0582 | 73,076 | 1.88 | 93.58 | 66 | 16 | 972 |
Technique | Prospective | COE (USD/kWh) | NPC | LPSP (%) | REF (%) | Total GHG Emissions (Tone) | ||
---|---|---|---|---|---|---|---|---|
MOPSO | Economic | 0.0210 | 24,257 | 7.15 | 50.86 | 24 | 1 | 2595 |
Renewable | 0.0845 | 106,035 | 1.80 | 97.37 | 100 | 23 | 1086 | |
Environment | 0.0683 | 85,292 | 2.19 | 95.35 | 72 | 23 | 928 | |
MOHHO | Economic | 0.0226 | 26,595 | 6.13 | 52.65 | 24 | 3 | 2379 |
Renewable | 0.0854 | 106,819 | 2.11 | 97.30 | 98 | 25 | 1071 | |
Environment | 0.0689 | 86,069 | 2.24 | 94.98 | 70 | 25 | 929 |
Technique | Prospective | (MWh) | Grid Sell (MWh) | Grid Purchase (MWh) | PV Share (%) | V2H Share (%) | Grid Share (%) | Net Saving in CO2 Emission (%) |
---|---|---|---|---|---|---|---|---|
MOPSO | Economic | 12.45 | 3.02 | 13.36 | 45.80 | 5.05 | 49.13 | 30.97 |
Renewable | 51.89 | 25.43 | 1.40 | 97.37 | 0.00 | 2.62 | 71.09 | |
Environment | 37.36 | 12.40 | 1.82 | 95.31 | 0.04 | 4.64 | 75.31 | |
MOHHO | Economic | 12.45 | 1.30 | 12.15 | 48.53 | 4.11 | 47.34 | 36.73 |
Renewable | 50.85 | 24.42 | 1.40 | 97.30 | 0.00 | 2.69 | 71.51 | |
Environment | 36.32 | 11.51 | 1.92 | 94.91 | 0.06 | 5.01 | 75.28 |
Technique | COE (USD/kWh) | NPC | LPSP (%) | REF (%) | Total GHG Emissions (Tone) | ||
---|---|---|---|---|---|---|---|
MOPSO | 0.0554 | 69,503 | 1.96 | 92.55 | 66 | 13 | 1046 |
MOHHO | 0.0554 | 69,503 | 1.96 | 92.55 | 66 | 13 | 1046 |
Technique | (MWh) | Grid Sell (MWh) | Grid Purchase (MWh) | PV Share (%) | V2H Share (%) | Grid Share (%) | Net Saving in CO2 Emission (%) |
---|---|---|---|---|---|---|---|
MOPSO | 34.25 | 10.56 | 2.76 | 92.31 | 0.23 | 7.44 | 72.16 |
MOHHO | 34.25 | 10.56 | 2.76 | 92.31 | 0.23 | 7.44 | 72.16 |
Technique | Metric | Min | Max | Range | Mean | STD | Time |
---|---|---|---|---|---|---|---|
MOPSO | LPSP | 0.018 | 0.071 | 0.053 | 0.034 | 0.017 | 381 |
COE | 0.021 | 0.086 | 0.065 | 0.053 | 0.021 | ||
REF | 0.507 | 0.973 | 0.465 | 0.790 | 0.180 | ||
MOHHO | LPSP | 0.016 | 0.061 | 0.044 | 0.035 | 0.014 | 664 |
COE | 0.022 | 0.085 | 0.062 | 0.045 | 0.016 | ||
REF | 0.507 | 0.973 | 0.465 | 0.757 | 0.158 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aldaliee, A.A.; Mansor, N.N.; Mokhlis, H.; Ramasamy, A.K.; Awalin, L.J. Pareto-Based Optimization of PV and Battery in Home-PV-BES-EV System with Integrated Dynamic Energy Management Strategy. Sustainability 2025, 17, 7364. https://doi.org/10.3390/su17167364
Aldaliee AA, Mansor NN, Mokhlis H, Ramasamy AK, Awalin LJ. Pareto-Based Optimization of PV and Battery in Home-PV-BES-EV System with Integrated Dynamic Energy Management Strategy. Sustainability. 2025; 17(16):7364. https://doi.org/10.3390/su17167364
Chicago/Turabian StyleAldaliee, Abd Alrzak, Nurulafiqah Nadzirah Mansor, Hazlie Mokhlis, Agileswari K. Ramasamy, and Lilik Jamilatul Awalin. 2025. "Pareto-Based Optimization of PV and Battery in Home-PV-BES-EV System with Integrated Dynamic Energy Management Strategy" Sustainability 17, no. 16: 7364. https://doi.org/10.3390/su17167364
APA StyleAldaliee, A. A., Mansor, N. N., Mokhlis, H., Ramasamy, A. K., & Awalin, L. J. (2025). Pareto-Based Optimization of PV and Battery in Home-PV-BES-EV System with Integrated Dynamic Energy Management Strategy. Sustainability, 17(16), 7364. https://doi.org/10.3390/su17167364