Drivers of Population Dynamics in High-Altitude Counties of Sichuan Province, China
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Indicator System and Data Source
2.2.1. Dependent Variables: Resident Population, Urban Population, Rural Population
2.2.2. Independent Variables: Economy, Infrastructure, Healthcare
2.2.3. Temporal Harmonization of the Observation Framework
2.3. Methods
2.3.1. Geodetector Method
2.3.2. Construction of a Sustainable Population Migration Model
2.3.3. Model Validation Strategy
2.3.4. Digital Twin-Based Simulation and Decision-Support Platform
3. Results
3.1. Identification of Driving Factors
3.1.1. The Spatial Distribution Analysis of Population
3.1.2. Spatial Autocorrelation Analysis of Population
3.1.3. Identification of Driving Forces
3.2. Application of Sustainable Population Migration Index
3.3. Validation Outcomes: Lagged Effects and Back-Casting Evidence
3.4. Implementation of the Digital Twin Platform
4. Discussion
4.1. Drivers of Migration Dynamics
4.2. Predictive Validity of SPMI
4.3. Policy Simulation Insights
4.4. Relative Impact and Cost Implications
4.5. Theoretical Implications and Broader Significance
4.6. Methodological Limitations and Future Directions
5. Conclusions
5.1. Core Findings in a Global Context
5.2. Theoretical and Practical Contributions
5.3. Implications for Sustainable Development
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Population Type | Independent Variable | Five-Year Plan | p-Value | Significance | The Adjusted p-Value | Note |
---|---|---|---|---|---|---|
Permanent resident population | E7 | 10th | 0.1724 | No | 0.1775 | |
E8 | 12th | 0.3711 | No | 0.3711 | ||
E9 | 11th | 0.2339 | No | 0.2373 | ||
other | All the others | 0.000–0.0136 | Yes | ≤0.01423 | 67 significant results | |
Urban population | E7 | 12th | 0.2516 | No | 0.2516 | |
other | All the others | 0.000–0.0069 | Yes | ≤0.0072 | 67 significant results | |
Rural population | E7 | 10th | 0.3720 | No | 0.383 | |
E8 | 12th | 0.9503 | No | 0.9503 | ||
E9 | 11th | 0.4882 | No | 0.495 | ||
E9 | 12th | 0.0583 | No | 0.0609 | ||
other | All the others | 0.000–0.0105 | Yes | ≤0.0110 | 66 significant results |
Period | q Value | E1 | E2 | E3 | E4 | E5 | E6 | E7 | E8 | I1 | I2 | I3 | H1 | H2 | H3 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
10h | q_full | 0.544 | 0.789 | 0.350 | 0.519 | 0.502 | 0.554 | 0.032 | 0.322 | 0.160 | 0.460 | 0.544 | 0.779 | 0.611 | 0.601 |
q_noE | - | - | - | - | - | - | - | - | 0.160 | 0.460 | 0.544 | 0.779 | 0.611 | 0.601 | |
11h | q_full | 0.617 | 0.819 | 0.477 | 0.614 | 0.480 | 0.316 | 0.061 | 0.283 | 0.051 | 0.497 | 0.686 | 0.612 | 0.813 | 0.759 |
q_noE | - | - | - | - | - | - | - | - | 0.051 | 0.497 | 0.686 | 0.612 | 0.813 | 0.759 | |
12h | q_full | 0.661 | 0.880 | 0.568 | 0.565 | 0.530 | 0.688 | 0.071 | 0.023 | 0.119 | 0.592 | 0.738 | 0.481 | 0.774 | 0.459 |
q_noH | 0.661 | 0.880 | 0.568 | 0.565 | 0.530 | 0.688 | 0.071 | 0.023 | 0.119 | 0.592 | 0.738 | - | - | - | |
13h | q_full | 0.619 | 0.805 | 0.524 | 0.488 | 0.540 | 0.675 | 0.156 | 0.082 | 0.338 | 0.692 | 0.695 | 0.827 | 0.900 | 0.863 |
q_noH | 0.619 | 0.805 | 0.524 | 0.488 | 0.540 | 0.675 | 0.156 | 0.082 | 0.338 | 0.692 | 0.695 | - | - | - | |
14h | q_full | 0.696 | 0.742 | 0.518 | 0.736 | 0.387 | 0.616 | 0.401 | 0.414 | 0.306 | 0.771 | 0.698 | 0.719 | 0.937 | 0.869 |
q_noH | 0.696 | 0.742 | 0.518 | 0.736 | 0.387 | 0.616 | 0.401 | 0.414 | 0.306 | 0.771 | 0.698 | - | - | - |
References
- He, C.; Chen, T. Economic transition, urbanization and population redistribution in China. Habitat Int. 2016, 51, 39–47. [Google Scholar] [CrossRef]
- Wang, Y. Migration patterns in China extracted from mobile positioning data. Habitat Int. 2019, 86, 71–80. [Google Scholar] [CrossRef]
- Liu, Y.; Stillwell, J. Interprovincial migration, regional development and state policy in China,1985–2010. Appl. Spat. Anal. 2014, 7, 47–70. [Google Scholar] [CrossRef]
- Gu, H.; Liu, Z. Shen, T.; Meng, X. Modelling interprovincial migration in China from 1995 to 2015 based on an eigenvector spatial filtering negative binomial model. Popul. Space Place 2019, 25, e2253. [Google Scholar] [CrossRef]
- Li, J.; Li, J. Spatiotemporal distribution characteristics and mechanism analysis of urban population density: A case of Xi’an, Shaanxi, China. Cities 2019, 86, 62–70. [Google Scholar] [CrossRef]
- Liang, Z.; Li, Z. Changing Patterns of the Floating Population in China, 2000–2010. Popul. Dev. Rev. 2014, 40, 695–716. [Google Scholar] [CrossRef]
- Qi, W. China’s Different Spatial Patterns of Population Growth Based on the “Hu Line”. Geogr. Sci. 2016, 26, 1611–1625. [Google Scholar] [CrossRef]
- Pan, J.; Lai, J. Spatial Pattern of Population Mobility Among Cities in China: Case Study of the National Day Plus Mid-Autumn Festival Based on Tencent Migration Data. Cities 2019, 94, 55–69. [Google Scholar] [CrossRef]
- Wu, J.; Yu, Z.; Wei, Y.D.; Yang, L. Changing Distribution of Migrant Population and Its Influencing Factors in Urban China: Economic Transition, Public Policy, and Amenities. Habitat Int. 2019, 94, 102063. [Google Scholar] [CrossRef]
- Liu, J.; Yin, M. Long-Term Impacts of Urbanization Through Population Migration on China’s Energy Demand and CO2 Emissions. Mitig. Adapt. Strateg. Glob. Change 2020, 25, 1053–1071. [Google Scholar] [CrossRef]
- Park, S.; Lee, K. A Markov Chain Model for Population Distribution Prediction Considering Spatio-Temporal Characteristics by Migration Factors. J. Econ. Geogr. Soc. Korea 2019, 22, 351–365. [Google Scholar] [CrossRef]
- Luo, J.; Zhang, X.; Wu, Y.; Shen, J.; Shen, L.; Xing, X. Urban Land Expansion and the Floating Population in China: For Production or for Living? Cities 2018, 74, 219–228. [Google Scholar] [CrossRef]
- Ding, H.; Liu, Z. Areal Differentiation of Inter-Provincial Migration in China and Characteristics of the Flow Field. Acta Geogr. Sin. 2005, 60, 106–114. [Google Scholar]
- Wang, J.; Li, H. Approaches to Census Mapping: Chinese Solution in 2010 Rounded Census. Chin. Geogr. Sci. 2012, 22, 356–366. [Google Scholar] [CrossRef]
- Wang, L.; Xue, C. Spatio-Temporal Characteristics and Influencing Factors of Urban Floating Population in China from 2011 to 2015. Chin. J. Popul. Resour. Environ. 2019, 17, 359–373. [Google Scholar] [CrossRef]
- Wang, X.; Gao, X. The Evolution of China’s Floating Population and Its Impact on Urbanization: A Comparative Analysis Based on Inter- and Intra-Provincial Perspectives. Sci. Geogr. Sin. 2019, 39, 1866–1874. [Google Scholar]
- Mengjun, W. A Study on the Influencing Factors of the Willingness of the Transfer Population in Tibet’s Agriculture and Animal Husbandry to Become Urbanized from the Perspective of Push–Pull Theory—Taking Chengguan District of Lhasa as an Example. Master’s Thesis, Xizang University, Lhasa, China, 2024. [Google Scholar]
- Liu, D.; Li, Y. Social Vulnerability of Rural Households to Flood Hazards in Western Mountainous Regions of Henan Province, China. Nat. Hazards Earth Syst. Sci. 2016, 16, 1123–1134. [Google Scholar] [CrossRef]
- Stepus, S.I.; Averyanov, O.A.; Khoteeva, A.E.; Simakova, A.V.; Shabaeva, S.V. Motivational Drivers of Population Migration (on the Example of Young People in the Arctic Zone of Russia). Reg. Res. Russ. 2025, 15, 70–80. [Google Scholar] [CrossRef]
- Black, R.; Bellagamba, A. Migration Drivers and Migration Choice: Interrogating Responses to Migration and Development Interventions in West Africa. Comp. Migr. Stud. 2022, 10, 10. [Google Scholar] [CrossRef]
- Zhou, J.; Hui, C. Housing Prices, Migration, and Self-Selection of Migrants in China. Habitat Int. 2022, 119, 102479. [Google Scholar] [CrossRef]
- Kraft, S.; Halás, M. Functional Regions as a Platform to Define Integrated Transport System Zones: The Use of Population Flows Data. Appl. Geogr. 2022, 144, 102732. [Google Scholar] [CrossRef]
- Zhang, W.; Chong, Z. Spatial Patterns and Determinant Factors of Population Flow Networks in China: Analysis on Tencent Location Big Data. Cities 2020, 99, 102640. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, X.; Xu, M.; Zhang, X.; Shan, B.; Wang, A. Spatial Patterns and Driving Factors of Rural Population Loss Under Urban–Rural Integration Development: A Micro-Scale Study on the Village Level in a Hilly Region. Land 2022, 11, 99. [Google Scholar] [CrossRef]
- Al Abbasi, A.A.; Alam, M.J.; Saha, S.; Begum, I.A.; Rola-Rubzen, M.F. Impact of rural transformation on rural income and poverty for sustainable development in Bangladesh: A moments-quantile regression with fixed-effects models Approach. Sustain. Dev. 2025, 33, 2951–2974. [Google Scholar] [CrossRef]
- Duan, B.; Liu, S. Impact of fiscal poverty alleviation funds on poverty mitigation and economic expansion: Evidence from provincial panel data in China. China Agric. Econ. Rev. 2025, 17, 114–130. [Google Scholar] [CrossRef]
- Kang, Y.; Li, Y. The Impact of China’s Economic Growth on Poverty Alleviation: From Absolute to Relative Poverty. arXiv 2024, arXiv:2412.20176. [Google Scholar]
- Li, W.; Li, X. Influences of Population Pressure Change on Vegetation Greenness in China’s Mountainous Areas. Ecol. Evol. 2017, 7, 9041–9053. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; He, Y. Spatiotemporal Trends and Ecological Determinants in Population by Elevation in China Since 1990. Chin. Geogr. Sci. 2021, 31, 248–260. [Google Scholar] [CrossRef]
- Zhu, F.; Fang, Y. Effects of Altitude on County Economic Development in China. Mt. Sci. 2018, 15, 406–418. [Google Scholar] [CrossRef]
- National Bureau of Statistics of China. Seventh National Population Census Report; National Bureau of Statistics of China: Beijing, China, 2021. Available online: https://www.stats.gov.cn/english/PressRelease/202105/t20210510_1817185.html (accessed on 14 February 2025).
- De Haas, H. A Theory of Migration: The Aspirations–Capabilities Framework. Comp. Migr. Stud. 2021, 9, 8. [Google Scholar] [CrossRef]
- Niu, F. A push-pull model for inter-city migration simulation. Cities 2022, 131, 104005. [Google Scholar] [CrossRef]
- Mateus, M. Municipal Reform in Rural Alberta: The Case of Coal Transitions. Master’s Thesis, Simon Fraser University, Burnaby, BC, Canada, 2023. [Google Scholar]
- Mutlugün, B. Endogenous Income Distribution and Aggregate Demand: Empirical Evidence from Heterogeneous Panel Structural Vector Autoregression. Metroeconomica 2022, 73, 583–637. [Google Scholar] [CrossRef]
- Vendryes, T. Migration Constraints and Development: Hukou and Capital Accumulation in China. China Econ. Rev. 2011, 22, 669–692. [Google Scholar] [CrossRef]
- Wang, J.; Li, X.; Christakos, G.; Liao, Y. Geographical Detectors-Based Health Risk Assessment and Its Application in the Neural Tube Defects Study of the Heshun Region, China. Int. J. Geogr. Inf. Sci. 2010, 24, 107–127. [Google Scholar] [CrossRef]
- Hu, Y.; Wang, J.; Li, X.; Ren, D.; Zhu, J. Geographical Detector-Based Risk Assessment of the Under-Five Mortality in the 2008 Wenchuan Earthquake, China. PLoS ONE 2011, 6, e21427. [Google Scholar] [CrossRef] [PubMed]
- Getis, A. Handbook of Applied Spatial Analysis: Software Tools, Methods and Applications, 1st ed.; Springer: Berlin, Germany, 2009; pp. 255–278. [Google Scholar]
- Dale, M.R.T.; Fortin, M.J. Spatial Autocorrelation and Statistical Tests: Some Solutions. J. Agric. Biol. Environ. Stat. 2009, 14, 188–206. [Google Scholar] [CrossRef]
- Ping, J.L.; Green, C.J. Exploring Spatial Dependence of Cotton Yield Using Global and Local Autocorrelation Statistics. Field Crops Res. 2004, 89, 219–236. [Google Scholar] [CrossRef]
- Tiefelsdorf, M. Some Practical Applications of Moran’s I’s Exact Conditional Distribution. Pap. Reg. Sci. 1998, 27, 985–999. [Google Scholar] [CrossRef]
- Gedamu, W.T. A Spatial Autocorrelation Analysis of Road Traffic Crash by Severity Using Moran’s I Spatial Statistics: A Comparative Study of Addis Ababa and Berlin Cities. Accid. Anal. Prev. 2024, 200, 107535. [Google Scholar] [CrossRef] [PubMed]
- Tsai, P.J.; Lin, M.L. Spatial Autocorrelation Analysis of Health Care Hotspots in Taiwan in 2006. BMC Public Health 2009, 9, 464. [Google Scholar] [CrossRef]
- Zhu, M.F.; Yu, X. Spatiotemporal Characteristics and Driving Factors of Chemical Oxygen Demand Emissions in China’s Wastewater: An Analysis Based on Spatial Autocorrelation and Geodetector. Ecol. Indic. 2024, 166, 112308. [Google Scholar] [CrossRef]
- Wang, J.F.; Xu, C.D. Geodetector: Principle and Prospective. Acta Geogr. Sin. 2017, 72, 116–134. [Google Scholar]
- Lou, C.R.; Liu, H.Y. Socioeconomic Drivers of PM2.5 in the Accumulation Phase of Air Pollution Episodes in the Yangtze River Delta of China. Int. J. Environ. Res. Public Health 2016, 13, 928. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Xie, Y. Influence of Planting Patterns on Fluoroquinolone Residues in the Soil of an Intensive Vegetable Cultivation Area in Northern China. Sci. Total Environ. 2013, 458, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Ling, G. Driving Forces and Prediction of Urban Open Spaces Morphology: The Case of Shanghai, China Using Geodetector and CA-Markov Model. Ecol. Inform. 2024, 82, 102763. [Google Scholar] [CrossRef]
- Lee, S.E. A Theory of Migration. Demography 1966, 3, 47–57. [Google Scholar] [CrossRef]
- Chu, J.; Tong, D.; Gu, H.Y.; Cao, Z.; Pan, X.X. Nonlinear Characteristics of Distance-Decay Parameter in Intercity Links: Based on Human Mobility Big Data. Prog. Geogr. 2023, 42, 1–11. [Google Scholar] [CrossRef]
- Shen, F.; Wang, Q.; Zou, J.; Yan, H.; Wang, B. Air Pollution and Migration Decision of Migrants in Low-Carbon Society. Int. J. Environ. Res. Public Health 2023, 20, 870. [Google Scholar] [CrossRef] [PubMed]
- Manning, A. The Elusive Employment Effect of the Minimum Wage. J. Econ. Perspect. 2021, 35, 3–26. [Google Scholar] [CrossRef]
- Shi, F.; Geng, W.; Huang, R. Push–Pull Mechanisms in China’s Intercity Population Migration: Nonlinearity and Asymmetry. Cities 2025, 157, 105624. [Google Scholar] [CrossRef]
- Li, B.; Wu, S.; Zhu, Y. Agricultural Technological Progress, New Urbanization and the Transfer of Rural Surplus Labor Force: An Empirical Study Based on the “Push–Pull Theory” and Inter-Provincial Dynamic Panel Data. Bus. Rev. 2015, 10, 3–10. [Google Scholar]
- Tong, W.; Lo, K. Back to the Countryside: Rural Development and the Spatial Patterns of Population Migration in Zhejiang, China. Agriculture 2021, 11, 788. [Google Scholar] [CrossRef]
- Wang, Y.; Yao, X.; Liu, Y.; Li, X. Generating Population Migration Flow Data from Inter-Regional Relations Using Graph Convolutional Network. Int. J. Appl. Earth Obs. Geoinf. 2023, 118, 103238. [Google Scholar] [CrossRef]
- Cao, M.; Shen, J.Y.; Chen, Z. The Evaluation of Land Use Status in Mountainous Counties of Southwest China Based on Comprehensive Evaluation Models: A Case Study of Baoxing County, Sichuan Province. E3S Web Conf. 2018, 38, 01046. [Google Scholar] [CrossRef]
- Dick, D.; Hum, K.; Smith, L.; Street, K.; Hansen, J.; Schotanus, P.; Schwarz, D.; Papangelakis, E.; Peace, A.; Eyles, C. Improving Accessibility of In-Situ Paleontological Geoheritage via Digital Conservation: A Case Study Using iPad-Based LiDAR in the Niagara Aspiring Geopark. Geoheritage 2025, 17, 46. [Google Scholar] [CrossRef]
- Mohmand, Y.T.; Wang, A.; Saeed, A. The Impact of Transportation Infrastructure on Economic Growth: Empirical Evidence from Pakistan. Transp. Lett. 2017, 9, 63–69. [Google Scholar] [CrossRef]
- Xie, S.; Wang, J.; Chen, J.; Ritakallio, V.M. The Effect of Health on Urban-Settlement Intention of Rural-Urban Migrants in China. Health Place 2017, 47, 1–11. [Google Scholar] [CrossRef]
- Tao, H.; Shen, Y. Spatial difference of medical facility accessibility and influencing factors: A comparative study of registered and floating populations in Shanghai. Prog. Geogr. 2018, 378, 1075–1085. [Google Scholar]
- Zhang, L.; He, X.; Jia, Z. Industrial Agglomeration, Public Services and City Size: Evidence from 286 Cities in China. Land Use Policy 2023, 131, 106758. [Google Scholar] [CrossRef]
- Pang, L.; Wu, L. Distribution Characteristics and Influencing Factors of Intangible Cultural Heritage in Beijing–Tianjin–Hebei. Herit. Sci. 2023, 11, 19. [Google Scholar] [CrossRef]
- Calero, C.; Bedi, A.S.; Sparrow, R. Remittances, Liquidity Constraints and Human Capital Investments in Ecuador. World Dev. 2009, 37, 1143–1154. [Google Scholar] [CrossRef]
- Guo, C.; Ling, K.; Bai, X. Urbanization, Population Migration, and Rural Education Development. Soc. Sci. 2007, 6, 156–159. [Google Scholar]
- Fan, C.C.; Ma, L.J.C. Migration and the Socialist Transition: The Role of Migration in China’s Regional Development and Integration. World Dev. 2011, 39, 12–29. [Google Scholar]
- Guo, W. The Mechanism of Population Mobility Driving Economic Development from the Perspective of Social Networks. J. Econ. Manag. Sci. 2025, 8, 8–17. [Google Scholar] [CrossRef]
- Hou, X.; Gao, S.; Li, Q.; Kang, Y.; Chen, N.; Chen, K.; Rao, J.; Ellenberg, J.S.; Patz, J.A. Intracounty Modeling of COVID-19 Infection with Human Mobility: Assessing Spatial Heterogeneity with Business Traffic, Age, and Race. Proc. Natl. Acad. Sci. USA 2021, 118, e2020524118. [Google Scholar] [CrossRef]
- Zhao, H.; Tang, L.; Wang, J. Land Tenure Security, Land Reform and Rural-Urban Migration in China. Land 2021, 10, 556. [Google Scholar]
- Feng, W.; Liu, Y. Ecological Migration and the Governance of Poverty in Rural China: Policy Design and Institutional Dilemmas. China Popul. Dev. Stud. 2021, 5, 205–224. [Google Scholar]
- Abad, J.D.; Garcia, A.P.; Marín-Díaz, J.; Escobar, C.; Ortals, C.; Chicchon, H. Morphodynamics of Anabranching Structures in the Peruvian Amazon River. Earth Surf. Process. Landf. 2025, 50, e6020. [Google Scholar] [CrossRef]
- Kumar, A.; Mal, S.; Schickhoff, U.; Dimri, A.P. Basin-Scale Spatio-Temporal Development of Glacial Lakes in the Hindu Kush–Karakoram–Himalayas. Glob. Planet. Change 2025, 245, 104656. [Google Scholar] [CrossRef]
Indicator Type | Indicator | Units | Data Sources | Variable ID |
---|---|---|---|---|
Economy | Gross Regional Domestic Product | Ten thousand RMB | Provincial, city and county statistical yearbooks | E1 |
Primary Industry Production Value | Ten thousand RMB | Provincial, city and county statistical yearbooks | E2 | |
Secondary Industry Production Value | Ten thousand RMB | Provincial, city and county statistical yearbooks | E3 | |
Tertiary Industry Production Value | Ten thousand RMB | Provincial, city and county statistical yearbooks | E4 | |
Local Public Finance Revenue | Ten thousand RMB | Provincial, city and county statistical yearbooks | E5 | |
Total Retail Sales of Consumer Goods | Ten thousand RMB | Provincial, city and county statistical yearbooks | E6 | |
Urban Residents Average Disposable Income | RMB | Provincial, city and county statistical yearbooks | E7 | |
Farmers and Herdsmen Average Disposable Income | RMB | Provincial, city and county statistical yearbooks | E8 | |
Infrastructure | Investment in Fixed Assets of the Whole Society | Ten thousand RMB | Provincial, city and county statistical yearbooks | I1 |
Number of Primary Schools | Number of schools | Provincial, city and county statistical yearbooks | I2 | |
Number of General Secondary Schools | Number of schools | Provincial, city and county statistical yearbooks | I3 | |
Healthcare | Number of Hospitals and Health Centers | Number of Hospitals and Health Centers | Sichuan Provincial Health and Wellness Statistical Yearbook | H1 |
Number of Beds in Hospitals and Health Centers | Number of Beds | Sichuan Provincial Health and Wellness Statistical Yearbook | H2 | |
Number of Health Personnel in Health Facilities | Person | Sichuan Provincial Health and Wellness Statistical Yearbook | H3 |
Test Item | Comparative Group (Mean Difference ± Standard Deviation) | F- Value | p- Value | |
---|---|---|---|---|
Non-Key High-Altitude Counties (n = 42) | Non-Key Middle- and Low-Altitude Counties (n = 68) | |||
Population growth rate | 0.01 ± 0.01 | −0.01 ± 0.01 | 62.904 | 0.000 ** |
Five Year Plan | Population | Result | Economy | Infrastructure | Healthcare | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
E1 | E2 | E3 | E4 | E5 | E6 | E7 | E8 | I1 | I2 | I3 | H1 | H2 | H3 | |||
10th | Resident population | q | 0.544 | 0.789 | 0.350 | 0.519 | 0.502 | 0.554 | 0.032 | 0.322 | 0.160 | 0.460 | 0.544 | 0.779 | 0.611 | 0.601 |
p | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.172 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | ||
Rural population | q | 0.455 | 0.768 | 0.270 | 0.434 | 0.407 | 0.461 | 0.021 | 0.254 | 0.121 | 0.433 | 0.458 | 0.804 | 0.535 | 0.533 | |
p | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.372 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | ||
Urban population | q | 0.726 | 0.596 | 0.605 | 0.712 | 0.717 | 0.751 | 0.101 | 0.514 | 0.364 | 0.435 | 0.698 | 0.419 | 0.674 | 0.631 | |
p | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | ||
11th | Resident population | q | 0.617 | 0.819 | 0.477 | 0.614 | 0.480 | 0.316 | 0.061 | 0.283 | 0.051 | 0.497 | 0.686 | 0.612 | 0.813 | 0.759 |
p | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.014 | 0.000 | 0.234 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | ||
Rural population | q | 0.525 | 0.804 | 0.379 | 0.510 | 0.394 | 0.264 | 0.064 | 0.204 | 0.029 | 0.500 | 0.606 | 0.686 | 0.769 | 0.691 | |
p | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.010 | 0.000 | 0.488 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | ||
Urban population | q | 0.749 | 0.648 | 0.672 | 0.785 | 0.617 | 0.413 | 0.060 | 0.493 | 0.177 | 0.400 | 0.729 | 0.268 | 0.762 | 0.735 | |
p | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.015 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | ||
12th | Resident population | q | 0.661 | 0.880 | 0.568 | 0.565 | 0.530 | 0.688 | 0.071 | 0.023 | 0.119 | 0.592 | 0.738 | 0.481 | 0.774 | 0.459 |
p | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.009 | 0.371 | 0.003 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | ||
Rural population | q | 0.555 | 0.844 | 0.467 | 0.440 | 0.426 | 0.548 | 0.102 | 0.004 | 0.070 | 0.625 | 0.663 | 0.484 | 0.708 | 0.380 | |
p | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.950 | 0.058 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | ||
Urban population | q | 0.775 | 0.813 | 0.695 | 0.761 | 0.653 | 0.872 | 0.027 | 0.139 | 0.269 | 0.393 | 0.769 | 0.354 | 0.756 | 0.536 | |
p | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.252 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | ||
13th | Resident population | q | 0.619 | 0.805 | 0.524 | 0.488 | 0.540 | 0.675 | 0.156 | 0.082 | 0.338 | 0.692 | 0.695 | 0.827 | 0.900 | 0.863 |
p | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.009 | 0.006 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | ||
Rural population | q | 0.497 | 0.744 | 0.408 | 0.358 | 0.407 | 0.509 | 0.208 | 0.107 | 0.278 | 0.714 | 0.610 | 0.826 | 0.861 | 0.757 | |
p | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | ||
Urban Population | q | 0.737 | 0.800 | 0.658 | 0.656 | 0.683 | 0.877 | 0.060 | 0.125 | 0.367 | 0.519 | 0.688 | 0.618 | 0.831 | 0.877 | |
p | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.020 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | ||
14th | Resident population | q | 0.696 | 0.742 | 0.518 | 0.736 | 0.387 | 0.616 | 0.401 | 0.414 | 0.306 | 0.771 | 0.698 | 0.719 | 0.937 | 0.869 |
p | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | ||
Rural population | q | 0.611 | 0.651 | 0.415 | 0.610 | 0.312 | 0.463 | 0.507 | 0.404 | 0.280 | 0.818 | 0.629 | 0.700 | 0.896 | 0.780 | |
p | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | ||
Urban Population | q | 0.753 | 0.799 | 0.626 | 0.861 | 0.486 | 0.817 | 0.192 | 0.456 | 0.295 | 0.581 | 0.680 | 0.591 | 0.870 | 0.919 | |
p | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.007 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Population | Result | AI | PPI | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
E1 | E3 | E4 | E5 | E6 | E7 | I1 | I2 | I3 | H1 | H2 | H3 | E2 | E8 | ||
Resident population | Mean q-value | 0.627 | 0.487 | 0.584 | 0.488 | 0.570 | 0.172 | 0.231 | 0.602 | 0.672 | 0.684 | 0.807 | 0.710 | 0.807 | 0.275 |
Weight | 0.095 | 0.074 | 0.088 | 0.074 | 0.086 | 0.026 | 0.035 | 0.091 | 0.101 | 0.103 | 0.122 | 0.107 | 0.746 | 0.254 |
Variable | Coefficient (β) | Robust s.e. | t | 95% CI | p-Value |
---|---|---|---|---|---|
SMPIt−1 | 0.0024 | 0.0012 | 2.02 | 0.0001–0.0047 | 0.04 |
SMPIt−2 | 0.0022 | 0.0013 | 1.70 | −0.0003–0.0047 | 0.09 |
Name | SPMI_base | SPMI_scenA | Delta | Percentage (%) |
---|---|---|---|---|
Yanyuan | −3.340 | −3.071 | 0.269 | 8.05 |
Yuexi | −0.080 | 0.141 | 0.221 | 276.25 |
Muli | −0.199 | −0.082 | 0.118 | 59.30 |
Songpan | −0.367 | −0.281 | 0.086 | 23.43 |
Luhuo | −0.318 | −0.235 | 0.083 | 26.10 |
Jinchuan | −0.349 | −0.267 | 0.082 | 23.50 |
Ruoergai | −1.308 | −1.234 | 0.074 | 5.66 |
Batang | −0.491 | −0.434 | 0.057 | 11.61 |
Li | −0.515 | −0.470 | 0.046 | 8.93 |
Xiangcheng | −0.540 | −0.500 | 0.040 | 7.41 |
Average value | −0.751 | −0.643 | 0.108 | 14.33 |
Name | SPMI_base | SPMI_scenB | Delta | Percentage (%) |
---|---|---|---|---|
Jinyang | −0.014 | 0.078 | 0.092 | 657.14 |
Ganluo | 0.187 | 0.264 | 0.077 | 41.18 |
Pingwu | 0.107 | 0.181 | 0.074 | 69.16 |
Songpan | −0.367 | −0.308 | 0.060 | 16.35 |
Aba | −0.665 | −0.623 | 0.042 | 6.32 |
Mao | −0.566 | −0.531 | 0.035 | 6.18 |
Rangtang | −0.606 | −0.578 | 0.029 | 4.79 |
Heishui | −0.554 | −0.534 | 0.020 | 3.61 |
Daocheng | −0.437 | −0.418 | 0.018 | 4.12 |
Xiangcheng | −0.540 | −0.529 | 0.012 | 2.22 |
Average value | −0.346 | −0.300 | 0.047 | 13.29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, X.; Du, M.; Zhao, S. Drivers of Population Dynamics in High-Altitude Counties of Sichuan Province, China. Sustainability 2025, 17, 7051. https://doi.org/10.3390/su17157051
Dong X, Du M, Zhao S. Drivers of Population Dynamics in High-Altitude Counties of Sichuan Province, China. Sustainability. 2025; 17(15):7051. https://doi.org/10.3390/su17157051
Chicago/Turabian StyleDong, Xiangyu, Mengge Du, and Shichen Zhao. 2025. "Drivers of Population Dynamics in High-Altitude Counties of Sichuan Province, China" Sustainability 17, no. 15: 7051. https://doi.org/10.3390/su17157051
APA StyleDong, X., Du, M., & Zhao, S. (2025). Drivers of Population Dynamics in High-Altitude Counties of Sichuan Province, China. Sustainability, 17(15), 7051. https://doi.org/10.3390/su17157051