Recirculating Aquaculture Systems (RAS) for Cultivating Oncorhynchus mykiss and the Potential for IoT Integration: A Systematic Review and Bibliometric Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Literature Search and Screening
2.2. Data Synthesis and Analysis
3. Bibliometric Analysis
3.1. Production per Year
3.2. Scientific Production by Country
3.3. Contribution of the Journals
3.4. Authors’ Contributions
3.5. Keyword Analysis
- Disease diagnostics and fish health monitoring, which are crucial for maintaining stock health in intensive aquaculture, are underrepresented. Terms such as pathogen, disease, immune response, and diagnosis do not appear prominently, suggesting either a separate research stream not captured in this analysis or a gap in the integration of health diagnostics with RAS-focused trout research.
- Energy efficiency and climate impact, which are increasingly central to the sustainability of aquaculture systems, are also not reflected among the prominent keywords. Terms like energy use, carbon footprint, and renewable energy are absent, indicating an opportunity for future research to address the environmental footprint of RAS technologies.
- Similarly, socioeconomic and policy-related terms are missing, which may reflect the technical focus of the current literature, and there is a lack of interdisciplinary studies that assess adoption barriers, cost–benefit analysis, or farmer perceptions, particularly in low- and middle-income regions.
4. Aquaculture Recirculating Aquaculture Systems (RAS) for Oncorhynchus mykiss
5. Integration of IoT Technologies in RAS
- SDG 2 (Zero Hunger): Smart RAS can increase aquaculture productivity through precision control of environmental parameters, which enhances fish health and feed conversion efficiency. For example, the use of IoT-based water quality monitoring systems has been associated with up to 30% reductions in mortality rates and improved yield consistency in trout farming [83,84].
- SDG 12 (Responsible Consumption and Production): RAS significantly reduce water use by up to 90% compared to traditional systems, while IoT enables real-time resource tracking (e.g., feed, energy, water) and optimisation. This fosters more efficient and sustainable production cycles with quantifiable metrics such as litres of water used per kilogram of fish produced [85].
- SDG 13 (Climate Action): By reducing dependence on open water bodies and minimising effluent discharge, RAS mitigate the impact of climate-related variability (e.g., temperature or water availability). IoT platforms also allow the modelling and anticipation of environmental risks (e.g., oxygen drops), enabling adaptive responses to climate stressors [86].
- SDG 14 (Life Below Water): The adoption of closed-loop systems like RAS reduces aquaculture’s ecological footprint, particularly regarding nutrient runoff, antibiotic use, and escape of farmed species. IoT integration ensures early detection of water quality issues, preventing the discharge of harmful effluents into natural water bodies [87].
6. Current Challenges, Future Prospects, and Limitations
- The development and validation of self-calibrating multi-parameter sensors capable of measuring pH, dissolved oxygen, ammonia, and turbidity in real time. Experimental systems such as those developed by Lee et al. [79] and Suhaili et al. [80] using Raspberry Pi and ESP8266 platforms have demonstrated the potential for low-cost sensor networks with wireless connectivity, enabling effective monitoring and automation in aquaculture environments.
- The integration of Internet of Things (IoT) technologies in commercial-scale RAS through the use of energy-efficient communication protocols such as LoRaWAN and NB-IoT, which are particularly suitable for remote aquaculture facilities. These technologies allow for extended battery life, wide-area connectivity, and data transmission to cloud-based platforms for real-time analysis and decision making.
- The application of machine learning and artificial intelligence for the prediction of critical variables and autonomous environmental control. Libao et al. [81] reported the successful implementation of automated management systems using AI-driven models, resulting in improved water quality stability, reduced mortality, and increased productivity in trout farming operations.
- The feasibility of implementation in low- and middle-income regions should be addressed through modular system design, the use of open-source platforms, and training programs for local operators. This approach ensures cost-effectiveness and scalability, fostering technology adoption in diverse socioeconomic contexts.
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Halim, M.A.; Aziz, D.; Arshad, A.; Nur, N.L.; Nabi, M.M.; Islam, M.A.; Syukri, F. A Systematic Analysis of Recirculating Aquaculture Systems (RAS) and Biofloc Technology (BFT) for White Leg Shrimp (Litopenaeus vannamei) in the Indoor Farming System. Aquac. Eng. 2025, 110, 102544. [Google Scholar] [CrossRef]
- Choudhury, A.; Lepine, C.; Good, C. Methane and Hydrogen Sulfide Production from the Anaerobic Digestion of Fish Sludge from Recirculating Aquaculture Systems: Effect of Varying Initial Solid Concentrations. Fermentation 2023, 9, 94. [Google Scholar] [CrossRef]
- Papadopoulos, D.K.; Lattos, A.; Chatzigeorgiou, I.; Tsaballa, A.; Ntinas, G.K.; Giantsis, I.A. The Influence of Water Nitrate Concentration Combined with Elevated Temperature on Rainbow Trout Oncorhynchus mykiss in an Experimental Aquaponic Setup. Fishes 2024, 9, 74. [Google Scholar] [CrossRef]
- Laiboud, C.H.; Hachi, T.; Essabiri, H.; Boumalkha, O.; Elhammioui, Y.; El Moujtahid, A.; Abba, E.H. Assessment of the Impact of Density on the Growth of Fry (Oncorhynchus mikiss) at the Salmon Farming Station in the Middle Atlas Morocco. IOP Conf. Ser. Earth Environ. Sci. 2022, 1090, 012032. [Google Scholar] [CrossRef]
- Roy, J.; Terrier, F.; Marchand, M.; Herman, A.; Heraud, C.; Surget, A.; Lanuque, A.; Sandres, F.; Marandel, L. Effects of Low Stocking Densities on Zootechnical Parameters and Physiological Responses of Rainbow Trout (Oncorhynchus mykiss) Juveniles. Biology 2021, 10, 1040. [Google Scholar] [CrossRef] [PubMed]
- Salgado-Miranda, C. Necrosis pancreática infecciosa: Enfermedad emergente en la truticultura de México. Vet. Méx. 2006, 37, 467–477. [Google Scholar]
- Martínez-Tabche, L.; Olivan, L.G.; Martínez, M.G.; López, E.L. Estrés Producido Por Sedimentos Contaminados Con Níquel En Una Granja de Trucha Arcoiris, Oncorhynchus mykiss (Pisces: Salmonidae). Rev. Biol. Trop. 2002, 50, 1159–1168. [Google Scholar] [PubMed]
- Jacinda, A.K. Resirculating Aquaculture System (RAS) Technology Applications in Indonesia: A Review. J. Perikan. Kelaut. 2021, 11, 43–59. [Google Scholar] [CrossRef]
- Rodríguez-Leal, S.; Silva-Acosta, J.; Marzialetti, T.; Gallardo-Rodríguez, J.J. Lab- and Pilot-Scale Photo-Biofilter Performance with Algal–Bacterial Beads in a Recirculation Aquaculture System for Rearing Rainbow Trout. J. Appl. Phycol. 2023, 35, 1673–1683. [Google Scholar] [CrossRef]
- Patrón, G.D.; Ricardez-Sandoval, L. Economically Optimal Operation of Recirculating Aquaculture Systems under Uncertainty. Comput. Electron. Agric. 2024, 220, 108856. [Google Scholar] [CrossRef]
- Lindholm-Lehto, P.C. Developing a Robust and Sensitive Analytical Method to Detect Off-Flavor Compounds in Fish. Environ. Sci. Pollut. Res. 2022, 29, 55866–55876. [Google Scholar] [CrossRef] [PubMed]
- Shitu, A.; Liu, G.; Muhammad, A.I.; Zhang, Y.; Tadda, M.A.; Qi, W.; Liu, D.; Ye, Z.; Zhu, S. Recent Advances in Application of Moving Bed Bioreactors for Wastewater Treatment from Recirculating Aquaculture Systems: A Review. Aquac. Fish. 2022, 7, 244–258. [Google Scholar] [CrossRef]
- Prapti, D.R.; Mohamed Shariff, A.R.; Che Man, H.; Ramli, N.M.; Perumal, T.; Shariff, M. Internet of Things (IoT)-Based Aquaculture: An Overview of IoT Application on Water Quality Monitoring. Rev. Aquac. 2022, 14, 979–992. [Google Scholar] [CrossRef]
- Gupta, S.; Makridis, P.; Henry, I.; Velle-George, M.; Ribicic, D.; Bhatnagar, A.; Skalska-Tuomi, K.; Daneshvar, E.; Ciani, E.; Persson, D.; et al. Recent Developments in Recirculating Aquaculture Systems: A Review. Aquac. Res. 2024, 2024, 6096671. [Google Scholar] [CrossRef]
- Effendi, H.; Wahyuningsih, S.; Wardiatno, Y. The Use of Nile Tilapia (Oreochromis niloticus) Cultivation Wastewater for the Production of Romaine Lettuce (Lactuca sativa L. Var. longifolia) in Water Recirculation System. Appl. Water Sci. 2017, 7, 3055–3063. [Google Scholar] [CrossRef]
- Ray, A.J.; Lotz, J.M. Shrimp (Litopenaeus vannamei) Production and Stable Isotope Dynamics in Clear-Water Recirculating Aquaculture Systems versus Biofloc Systems. Aquac. Res. 2017, 48, 4390–4398. [Google Scholar] [CrossRef]
- Sri-uam, P.; Donnuea, S.; Powtongsook, S.; Pavasant, P. Integrated Multi-Trophic Recirculating Aquaculture System for Nile Tilapia (Oreochlomis niloticus). Sustainability 2016, 8, 592. [Google Scholar] [CrossRef]
- Zimmermann, S.; Kiessling, A.; Zhang, J. The Future of Intensive Tilapia Production and the Circular Bioeconomy without Effluents: Biofloc Technology, Recirculation Aquaculture Systems, Bio-RAS, Partitioned Aquaculture Systems and Integrated Multitrophic Aquaculture. Rev. Aquac. 2023, 15, 22–31. [Google Scholar] [CrossRef]
- Chen, Z.; Chang, Z.; Zhang, L.; Jiang, Y.; Ge, H.; Song, X.; Chen, S.; Zhao, F.; Li, J. Effects of Water Recirculation Rate on the Microbial Community and Water Quality in Relation to the Growth and Survival of White Shrimp (Litopenaeus vannamei). BMC Microbiol. 2019, 19, 192. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Watson, M. Guidance on Conducting a Systematic Literature Review. J. Plan. Educ. Res. 2019, 39, 93–112. [Google Scholar] [CrossRef]
- Flores-Iwasaki, M.; Guadalupe, G.A.; Pachas-Caycho, M.; Chapa-Gonza, S.; Mori-Zabarburú, R.C.; Guerrero-Abad, J.C. Internet of Things (IoT) Sensors for Water Quality Monitoring in Aquaculture Systems: A Systematic Review and Bibliometric Analysis. AgriEngineering 2025, 7, 78. [Google Scholar] [CrossRef]
- Guadalupe, G.A.; Grandez-Yoplac, D.E.; García, L.; Doménech, E. A Comprehensive Bibliometric Study in the Context of Chemical Hazards in Coffee. Toxics 2024, 12, 526. [Google Scholar] [CrossRef] [PubMed]
- Aria, M.; Cuccurullo, C. Bibliometrix: An R-Tool for Comprehensive Science Mapping Analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Skjølstrup, J.; McLean, E.; Nielsen, P.H.; Frier, J.-O. The Influence of Dietary Oxolinic Acid on Fluidised Bed Biofilter Performance in a Recirculation System for Rainbow Trout (Oncorhynchus mykiss). Aquaculture 2000, 183, 255–268. [Google Scholar] [CrossRef]
- Bebak-Williams, J.; Bullock, G.; Carson, M.C. Oxytetracycline Residues in a Freshwater Recirculating System. Aquaculture 2002, 205, 221–230. [Google Scholar] [CrossRef]
- Summerfelt, R.C.; Penne, C.R. Solids Removal in a Recirculating Aquaculture System Where the Majority of Flow Bypasses the Microscreen Filter. Aquac. Eng. 2005, 33, 214–224. [Google Scholar] [CrossRef]
- Papoutsoglou, S.E.; Karakatsouli, N.; Chiras, G. Dietary L-Tryptophan and Tank Colour Effects on Growth Performance of Rainbow Trout (Oncorhynchus mykiss) Juveniles Reared in a Recirculating Water System. Aquac. Eng. 2005, 32, 277–284. [Google Scholar] [CrossRef]
- Rasmussen, R.S.; Larsen, F.H.; Jensen, S. Fin Condition and Growth among Rainbow Trout Reared at Different Sizes, Densities and Feeding Frequencies in High-Temperature Re-Circulated Water. Aquac. Int. 2007, 15, 97–107. [Google Scholar] [CrossRef]
- Karakatsouli, N.; Papoutsoglou, S.E.; Panopoulos, G.; Papoutsoglou, E.S.; Chadio, S.; Kalogiannis, D. Effects of Light Spectrum on Growth and Stress Response of Rainbow Trout Oncorhynchus mykiss Reared under Recirculating System Conditions. Aquac. Eng. 2008, 38, 36–42. [Google Scholar] [CrossRef]
- Roque d’Orbcastel, E.; Person-Le Ruyet, J.; Le Bayon, N.; Blancheton, J.-P. Comparative Growth and Welfare in Rainbow Trout Reared in Recirculating and Flow through Rearing Systems. Aquac. Eng. 2009, 40, 79–86. [Google Scholar] [CrossRef]
- d’orbcastel, E.R.; Blancheton, J.-P.; Belaud, A. Water Quality and Rainbow Trout Performance in a Danish Model Farm Recirculating System: Comparison with a Flow through System. Aquac. Eng. 2009, 40, 135–143. [Google Scholar] [CrossRef]
- Good, C.; Davidson, J.; Welsh, C.; Brazil, B.; Snekvik, K.; Summerfelt, S. The Impact of Water Exchange Rate on the Health and Performance of Rainbow Trout Oncorhynchus mykiss in Water Recirculation Aquaculture Systems. Aquaculture 2009, 294, 80–85. [Google Scholar] [CrossRef]
- Good, C.; Davidson, J.; Welsh, C.; Snekvik, K.; Summerfelt, S. The Effects of Carbon Dioxide on Performance and Histopathology of Rainbow Trout Oncorhynchus mykiss in Water Recirculation Aquaculture Systems. Aquac. Eng. 2010, 42, 51–56. [Google Scholar] [CrossRef]
- Schrader, K.K.; Davidson, J.W.; Rimando, A.M.; Summerfelt, S.T. Evaluation of Ozonation on Levels of the Off-Flavor Compounds Geosmin and 2-Methylisoborneol in Water and Rainbow Trout Oncorhynchus mykiss from Recirculating Aquaculture Systems. Aquac. Eng. 2010, 43, 46–50. [Google Scholar] [CrossRef]
- Davidson, J.; Good, C.; Welsh, C.; Summerfelt, S. The Effects of Ozone and Water Exchange Rates on Water Quality and Rainbow Trout Oncorhynchus mykiss Performance in Replicated Water Recirculating Systems. Aquac. Eng. 2011, 44, 80–96. [Google Scholar] [CrossRef]
- Pedersen, L.-F.; Suhr, K.I.; Dalsgaard, J.; Pedersen, P.B.; Arvin, E. Effects of Feed Loading on Nitrogen Balances and Fish Performance in Replicated Recirculating Aquaculture Systems. Aquaculture 2012, 338–341, 237–245. [Google Scholar] [CrossRef]
- Davidson, J.; Good, C.; Barrows, F.T.; Welsh, C.; Kenney, P.B.; Summerfelt, S.T. Comparing the Effects of Feeding a Grain- or a Fish Meal-Based Diet on Water Quality, Waste Production, and Rainbow Trout Oncorhynchus mykiss Performance within Low Exchange Water Recirculating Aquaculture Systems. Aquac. Eng. 2013, 52, 45–57. [Google Scholar] [CrossRef]
- Auffret, M.; Yergeau, E.; Pilote, A.; Proulx, E.; Proulx, D.; Greer, C.W.; Vandenberg, G.; Villemur, R. Impact of Water Quality on the Bacterial Populations and Off-Flavours in Recirculating Aquaculture Systems. FEMS Microbiol. Ecol. 2013, 84, 235–247. [Google Scholar] [CrossRef] [PubMed]
- Good, C.; Davidson, J.; Kinman, C.; Brett Kenney, P.; Baeverfjord, G.; Summerfelt, S. Observations on Side-Swimming Rainbow Trout in Water Recirculation Aquaculture Systems. J. Aquat. Anim. Health 2014, 26, 219–224. [Google Scholar] [CrossRef] [PubMed]
- Meriac, A.; Eding, E.H.; Schrama, J.; Kamstra, A.; Verreth, J.A.J. Dietary Carbohydrate Composition Can Change Waste Production and Biofilter Load in Recirculating Aquaculture Systems. Aquaculture 2014, 420–421, 254–261. [Google Scholar] [CrossRef]
- Davidson, J.; Good, C.; Welsh, C.; Summerfelt, S.T. Comparing the Effects of High vs. Low Nitrate on the Health, Performance, and Welfare of Juvenile Rainbow Trout Oncorhynchus mykiss within Water Recirculating Aquaculture Systems. Aquac. Eng. 2014, 59, 30–40. [Google Scholar] [CrossRef]
- Hambly, A.C.; Arvin, E.; Pedersen, L.-F.; Pedersen, P.B.; Seredyńska-Sobecka, B.; Stedmon, C.A. Characterising Organic Matter in Recirculating Aquaculture Systems with Fluorescence EEM Spectroscopy. Water Res. 2015, 83, 112–120. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, P.; Pedersen, L.-F.; Pedersen, P.B. Microscreen Effects on Water Quality in Replicated Recirculating Aquaculture Systems. Aquac. Eng. 2015, 65, 17–26. [Google Scholar] [CrossRef]
- Colson, V.; Sadoul, B.; Valotaire, C.; Prunet, P.; Gaumé, M.; Labbé, L. Welfare Assessment of Rainbow Trout Reared in a Recirculating Aquaculture System: Comparison with a Flow-Through System. Aquaculture 2015, 436, 151–159. [Google Scholar] [CrossRef]
- Fernandes, P.M.; Pedersen, L.-F.; Pedersen, P.B. Influence of Fixed and Moving Bed Biofilters on Micro Particle Dynamics in a Recirculating Aquaculture System. Aquac. Eng. 2017, 78, 32–41. [Google Scholar] [CrossRef]
- Mota, V.C.; Martins, C.I.M.; Eding, E.H.; Canário, A.V.M.; Verreth, J.A.J. Cortisol and Testosterone Accumulation in a Low PH Recirculating Aquaculture System for Rainbow Trout (Oncorhynchus mykiss). Aquac. Res. 2017, 48, 3579–3588. [Google Scholar] [CrossRef]
- Rojas-Tirado, P.; Pedersen, P.B.; Pedersen, L.-F. Bacterial Activity Dynamics in the Water Phase during Start-up of Recirculating Aquaculture Systems. Aquac. Eng. 2017, 78, 24–31. [Google Scholar] [CrossRef]
- Spiliotopoulou, A.; Martin, R.; Pedersen, L.-F.; Andersen, H.R. Use of Fluorescence Spectroscopy to Control Ozone Dosage in Recirculating Aquaculture Systems. Water Res. 2017, 111, 357–365. [Google Scholar] [CrossRef] [PubMed]
- Rojas-Tirado, P.; Pedersen, P.B.; Vadstein, O.; Pedersen, L.-F. Changes in Microbial Water Quality in RAS Following Altered Feed Loading. Aquac. Eng. 2018, 81, 80–88. [Google Scholar] [CrossRef]
- Becke, C.; Schumann, M.; Steinhagen, D.; Geist, J.; Brinker, A. Physiological Consequences of Chronic Exposure of Rainbow Trout (Oncorhynchus mykiss) to Suspended Solid Load in Recirculating Aquaculture Systems. Aquaculture 2018, 484, 228–241. [Google Scholar] [CrossRef]
- Davidson, J.; Summerfelt, S.; Schrader, K.K.; Good, C. Integrating Activated Sludge Membrane Biological Reactors with Freshwater RAS: Preliminary Evaluation of Water Use, Water Quality, and Rainbow Trout Oncorhynchus mykiss Performance. Aquac. Eng. 2019, 87, 102022. [Google Scholar] [CrossRef]
- Kurdomanov, A.; Sirakov, I.; Stoyanova, S.; Velichkova, K.; Nedeva, I.; Staykov, Y. The Effect of Diet Supplemented with Proviotic® on Growth, Blood Biochemical Parameters and Meat Quality in Rainbow Trout (Oncorhynchus mykiss) Cultivated in Recirculation System. Aquac. Aquar. Conserv. Legis. 2019, 12, 404–412. [Google Scholar]
- Becke, C.; Schumann, M.; Steinhagen, D.; Rojas-Tirado, P.; Geist, J.; Brinker, A. Effects of Unionized Ammonia and Suspended Solids on Rainbow Trout (Oncorhynchus mykiss) in Recirculating Aquaculture Systems. Aquaculture 2019, 499, 348–357. [Google Scholar] [CrossRef]
- Lindholm-Lehto, P.; Pulkkinen, J.; Kiuru, T.; Koskela, J.; Vielma, J. Water Quality in Recirculating Aquaculture System Using Woodchip Denitrification and Slow Sand Filtration. Environ. Sci. Pollut. Res. 2020, 27, 17314–17328. [Google Scholar] [CrossRef] [PubMed]
- Velichkova, K.; Sirakov, I.; Valkova, E. The Effect of Sweet Flag (Acorus calamus L.) Supplemented Diet on Growth Performance, Biochemical Blood Parameters and Meat Quality of Rainbow Trout (Oncorhynchus mykiss W.) and Growth of Lettuce (Lactuca sativa L.) Cultivated in Aquaponic Recirculation System. Aquac. Aquar. Conserv. Legis. 2020, 13, 3840–3848. [Google Scholar]
- Suurnäkki, S.; Pulkkinen, J.T.; Lindholm-Lehto, P.C.; Tiirola, M.; Aalto, S.L. The Effect of Peracetic Acid on Microbial Community, Water Quality, Nitrification and Rainbow Trout (Oncorhynchus mykiss) Performance in Recirculating Aquaculture Systems. Aquaculture 2020, 516, 734534. [Google Scholar] [CrossRef]
- de Jesus Gregersen, K.J.; Pedersen, P.B.; Pedersen, L.-F.; Liu, D.; Dalsgaard, J. UV Irradiation and Micro Filtration Effects on Micro Particle Development and Microbial Water Quality in Recirculation Aquaculture Systems. Aquaculture 2020, 518, 734785. [Google Scholar] [CrossRef]
- de Jesus Gregersen, K.J.; Pedersen, L.-F.; Pedersen, P.B.; Syropoulou, E.; Dalsgaard, J. Foam Fractionation and Ozonation in Freshwater Recirculation Aquaculture Systems. Aquac. Eng. 2021, 95, 102195. [Google Scholar] [CrossRef]
- Lindholm-Lehto, P.C.; Kiuru, T.; Hannelin, P. Control of Off-Flavor Compounds in a Full-Scale Recirculating Aquaculture System Rearing Rainbow Trout Oncorhynchus mykiss. J. Appl. Aquac. 2022, 34, 469–488. [Google Scholar] [CrossRef]
- Lindholm-Lehto, P.C.; Koskela, J.; Leskinen, H.; Vielma, J.; Kause, A. Off-Flavors and Lipid Components in Rainbow Trout (Oncorhynchus mykiss) Reared in RAS: Differences in Families of Low and High Lipid Contents. Aquaculture 2022, 559, 738418. [Google Scholar] [CrossRef]
- Aalto, S.L.; Letelier-Gordo, C.O.; Pedersen, L.-F.; Pedersen, P.B. Effect of Biocarrier Material on Nitrification Performance during Start-up in Freshwater RAS. Aquac. Eng. 2022, 99, 102292. [Google Scholar] [CrossRef]
- Aalto, S.L.; Syropoulou, E.; de Jesus Gregersen, K.J.; Tiirola, M.; Pedersen, P.B.; Pedersen, L.-F. Microbiome Response to Foam Fractionation and Ozonation in RAS. Aquaculture 2022, 550, 737846. [Google Scholar] [CrossRef]
- Gesto, M.; de Jesus Gregersen, K.J.; Pedersen, L.-F. Effects of Ozonation and Foam Fractionation on Rainbow Trout Condition and Physiology in a Small-Scale Freshwater Recirculation Aquaculture System. Aquaculture 2022, 557, 738312. [Google Scholar] [CrossRef]
- Atique, F.; Lindholm-Lehto, P.; Pirhonen, J. Is Aquaponics Beneficial in Terms of Fish and Plant Growth and Water Quality in Comparison to Separate Recirculating Aquaculture and Hydroponic Systems? Water 2022, 14, 1447. [Google Scholar] [CrossRef]
- Lindholm-Lehto, P.C.; Logrén, N.; Mattila, S.; Pulkkinen, J.T.; Vielma, J.; Hopia, A. Quality of Rainbow Trout (Oncorhynchus mykiss) Reared in Recirculating Aquaculture System and during Depuration Based on Chemical and Sensory Analysis. Aquac. Res. 2023, 2023, 3537294. [Google Scholar] [CrossRef]
- de Jesus Gregersen, K.J.; Pedersen, L.-F. A Case Study Comparing the Addition of Two Different Carbon Sources in Pilot Scale RAS with Trout with and without Biofilters. Aquac. Eng. 2023, 103, 102370. [Google Scholar] [CrossRef]
- Huang, X.; Dalsgaard, J.; Aalto, S.L.; Lund, I.; Pedersen, P.B. Influence of Dietary Phosphorus on Orthophosphate Accumulation in Recirculating Aquaculture Systems with Rainbow Trout (Oncorhynchus mykiss). Aquac. Eng. 2023, 103, 102363. [Google Scholar] [CrossRef]
- Fanizza, C.; Trocino, A.; Stejskal, V.; Prokešová, M.D.; Zare, M.; Tran, H.Q.; Brambilla, F.; Xiccato, G.; Bordignon, F. Practical Low-Fishmeal Diets for Rainbow Trout (Oncorhynchus mykiss) Reared in RAS: Effects of Protein Meals on Fish Growth, Nutrient Digestibility, Feed Physical Quality, and Faecal Particle Size. Aquac. Rep. 2023, 28, 101435. [Google Scholar] [CrossRef]
- Pepe-Victoriano, R.; Pepe-Vargas, P.; Yañez-Valenzuela, M.; Aravena-Ambrosetti, H.; Olivares-Cantillano, G.; Méndez-Abarca, F.; Huanacuni, J.I.; Méndez, S.; Espinoza-Ramos, L. Growth of Oncorhynchus mykiss (Rainbow Trout) through a Recirculation System in the Foothills of the Extreme North of Chile. Animals 2024, 14, 2567. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Aalto, S.L.; Dalsgaard, J.; Pedersen, P.B. Can Dietary C:N Ratio Influence Water Quality and Microbiology in Recirculating Aquaculture Systems? Aquac. Int. 2024, 32, 7789–7805. [Google Scholar] [CrossRef]
- Podduturi, R.; Petersen, M.A.; Stougaard, P.; Jørgensen, N.O.G. Seasonal Fluctuations in Geosmin and Terpenes in Rainbow Trout (Oncorhynchus mykiss) in an Outdoor Commercial Recirculated Aquaculture System Facility. Fishes 2025, 10, 80. [Google Scholar] [CrossRef]
- Davidson, J.; Plautz, C.Z.; Grimm, C.; Jørgensen, N.O.G.; Podduturi, R.; Raines, C.; Snader, R.; Summerfelt, S.; Good, C. Evaluating the Microbial Effects of Stocking Freshwater Snails (Physa gyrina) in Water Reuse Systems Culturing Rainbow Trout (Oncorhynchus mykiss). J. Appl. Aquac. 2019, 31, 97–120. [Google Scholar] [CrossRef]
- Davidson, J.; Summerfelt, S.; Straus, D.L.; Schrader, K.K.; Good, C. Evaluating the Effects of Prolonged Peracetic Acid Dosing on Water Quality and Rainbow Trout Oncorhynchus mykiss Performance in Recirculation Aquaculture Systems. Aquac. Eng. 2019, 84, 117–127. [Google Scholar] [CrossRef]
- Encinas, C.; Ruiz, E.; Cortez, J.; Espinoza, A. Design and Implementation of a Distributed IoT System for the Monitoring of Water Quality in Aquaculture. In Proceedings of the Wireless Telecommunications Symposium, Chicago, IL, USA, 26–28 April 2017. [Google Scholar]
- Raju, K.R.S.R.; Varma, G.H.K. Knowledge Based Real Time Monitoring System for Aquaculture Using IoT. In Proceedings of the Proceedings—7th IEEE International Advanced Computing Conference, IACC 2017, Hyderabad, India, 5–7 January 2017. [Google Scholar]
- Medrano, K.; Hernández, E.; Tejada, R.; Moreno, A. Tecnologías IoT para el Monitoreo de la Calidad del Agua en la Acuicultura (IoT Technologies for Water Quality Monitoring in Aquaculture). Eur. Public Soc. Innov. Rev. 2025, 10, 1–16. [Google Scholar] [CrossRef]
- Lafont, M.; Dupont, S.; Cousin, P.; Vallauri, A.; Dupont, C. Back to the Future: IoT to Improve Aquaculture: Real-Time Monitoring and Algorithmic Prediction of Water Parameters for Aquaculture Needs. In Proceedings of the Global IoT Summit, GIoTS 2019—Proceedings, Aarhus, Denmark, 17–21 June 2019. [Google Scholar]
- Lee, J.; Angani, A.; Thalluri, T.; Shin, K.J. Realization of Water Process Control for Smart Fish Farm. In Proceedings of the 2020 International Conference on Electronics, Information, and Communication, ICEIC 2020, Barcelona, Spain, 19–22 January 2020. [Google Scholar]
- Suhaili, W.; Aziz, M.; Ramlee, H.; Patchmuthu, R.; Shams, S.; Mohamad, I.; Isa, M.; Nore, B. IoT Aquaculture System for Sea Bass and Giant Freshwater Prawn Farming in Brunei. In Proceedings of the 2023 13th International Conference on Information Technology in Asia, CITA 2023, Kota Samarahan, Malaysia, 3–4 August 2023; pp. 60–65. [Google Scholar]
- Libao, F.J.D.; Villaverde, O.S.M.; De Luna, N.A.P.U.; Comedia, V.J.G.; Luna, M.O.; Atienza, A.M.C.; Espena, G.D. Automated Control and IoT-Based Water Quality Monitoring System for a Molobicus Tilapia Recirculating Aquaculture System (RAS). In Proceedings of the 2024 IEEE Conference on Technologies for Sustainability, SusTech 2024, Portland, OR, USA, 14–17 April 2024; pp. 410–415. [Google Scholar]
- Zhang, Q.; Lan, Y.; Chen, L.; Yu, X.; Zhang, L. Study of NB-IoT-Based Unmanned Surface Vehicle System for Water Quality Monitoring of Aquaculture Ponds. In Proceedings of the International Society for Optical Engineering, Qingdao, China, 28–31 May 2021; Volume 11887. [Google Scholar]
- Bowman, M.N.; McManamay, R.A.; Perez, A.R.; Hamerly, G.; Arnold, W.; Steimle, E.; Kramer, K.; Norris, B.; Prangnell, D.; Matthews, M. Analysis of an Optical Imaging System Prototype for Autonomously Monitoring Zooplankton in an Aquaculture Facility. Aquac. Eng. 2024, 104, 102389. [Google Scholar] [CrossRef]
- Chandran, P.J.I.; Khalil, H.A.; Hashir, P.K.; S, V. Smart Technologies in Aquaculture: An Integrated IoT, AI, and Blockchain Framework for Sustainable Growth. Aquac. Eng. 2025, 111, 102584. [Google Scholar] [CrossRef]
- Liu, L.; Cheng, W.; Kuo, H.-W. A Narrative Review on Smart Sensors and IoT Solutions for Sustainable Agriculture and Aquaculture Practices. Sustainability 2025, 17, 5256. [Google Scholar] [CrossRef]
- Tchonkouang, R.D.; Onyeaka, H.; Nkoutchou, H. Assessing the Vulnerability of Food Supply Chains to Climate Change-Induced Disruptions. Sci. Total Environ. 2024, 920, 171047. [Google Scholar] [CrossRef] [PubMed]
- Woźniacka, K.; Bickley, L.K.; Heal, R.D.; Maclean, I.M.D.; Hasan, N.A.; Haque, M.M.; Stentiford, G.D.; Early, R.; Devlin, M.; Tyler, C.R. Seeking Environmentally Sustainable Solutions for Inland Aquaculture in Bangladesh. Environ. Chall. 2025, 18, 101062. [Google Scholar] [CrossRef]
Country | Year | Water Parameters | Tank System | Filter | Reference |
---|---|---|---|---|---|
Denmark | 2000 | -T°: 15.3 ± 0.5 -OD: 7.9 ± 0.4 | 2 of 1.5 m3 | Fluidised bed biofilter | [25] |
United States | 2002 | -T°: 14.3 ± 0.6 -pH: 7.07–7.22 | 2 of 1.5 m3 | Drum filter | [26] |
United States | 2005 | -T°: 15.8–18.1 -pH: 7.1–7.2 | 5 of 7.8 m3 | Drum filter | [27] |
Greece | 2005 | -T°: 16.0–16.3 -pH: 7.5–7.6 -OD: 8.2–8.7 -NO2−: 0.071–0.079 | 6 of 2.5 m3 | Biofilter | [28] |
Denmark | 2007 | -T°: 16.4–17.7 -pH: 6.0–6.1 -OD: ≥8 -NH3: <0.006 -NO2−: 1.0 ± 0.9 | 12 of 0.3 m3 | Biofilter | [29] |
Greece | 2008 | -T°: 16.6 ± 0.03 -pH: 7.18 ± 0.005 -OD: 9.1 ± 0.01 -NH3: 0.503 ± 0.0139 -NO2−: 0.187 ± 0.0084 | 12 of 0.17 m3 | Mechanical and biological filters, UV sterilization | [30] |
France | 2009 | -T°: 12 -pH: 7.33 ± 0.17 -OD: 8.4 ± 3.1 | 2 of 4.65 m3 | Biofilter | [31] |
France | 2009 | -T°: 12.6 ± 0.8 -pH: 7.36 ± 0.21 | 3 of 3.6 m3 | Moving bed filter | [32] |
United States | 2009 | -T°: 13.2 ± 0.0 -pH: 7.53 ± 0.03 -OD: 10.0 ± 0.0 -SST: 2.7 ± 0.1 | 6 of 1.6 m3 | Microscreen drum filter | [33] |
United States | 2010 | -T°: 13.9 ± 0.1 -pH: 7.17 ± 0.01 -OD: 10.1 -SST: 7.99 ± 0.37 | 6 of 9.5 m3 | Drum filter | [34] |
United States | 2010 | -T°: 15.2 -pH: 7.60 ± 0.02 -OD: 9.8 -SST: 3.4 ± 0.4 | 6 of 6.3 m3 | Ozonification | [35] |
United States | 2011 | -T°:14.0 ± 0.1 -pH: 7.47 ± 0.1 -OD: 10.7 ± 0.1 | 6 of 9.5 m3 | Drum filter and fluidised sand biofilter | [36] |
Denmark | 2012 | -T°: 18.0 -pH: 7.2–7.4 | 12 of 4.7 m3 | Biofilter | [37] |
United States | 2013 | -T°: 13.1 ± 0.1 -pH: 7.71 ± 0.01 -OD: 10.4 -SST: 8.9 ± 1.2 | 6 of 9.5 m3 | Drum filter and fluidized sand biofilter | [38] |
Canada | 2013 | -T°: 15.2 ± 0.4 -pH: 7.4 ± 0.4 | 4 of 1.5 m3 | Filter with sieves | [39] |
United States | 2014 | -pH: 7.080 ± 0.012 | 2 of 9.5 m3 | Biofilters | [40] |
Netherlands | 2014 | -T°: 15.7 ± 0.1 -pH: 6.9 ± 7.8 -OD: 9.0 -Conductivity: 905–2230 | 6 of 9.5 m3 | Trickling filters | [41] |
United States | 2014 | -T°: 15.5 -pH: 7.59 ± 0.01 -OD: 10.1 -SST: 6.6 ± 1.1 -Conductivity: 1215 ± 8 | 6 of 9.5 m3 | Drum filter and fluidized sand biofilter | [42] |
Denmark | 2015 | -T°: 18.0 -pH: 7.2–7.4 -OD: 7.2–8.5 | 4 of 8.5 m3 | Cellulose acetate filters | [43] |
Denmark | 2015 | -T°: 18 ± 0.4 -pH: 7.2–7.4 | 12 of 1.7 m3 | Biofilter | [44] |
France | 2015 | -T°: 16.4 -SST: 2.9 ± 0.32 | 10 of 6.5 m3 | Drum filter | [45] |
Denmark | 2017 | -pH: 7.2–7.6 -OD: 8 | 2 of 8.5 m3 | Drum filter | [46] |
Netherlands | 2017 | -T°: 16.0 ± 0.1 -pH: 7.3 ± 7.4 -OD: 8.1 ± 0.1 -Conductivity: 394.1 ± 0.4 -NO2−: 0.42 ± 0.03 -NO3−: 23.5 ± 0.3 | 6 of 6.5 m3 | Trickling filters | [47] |
Denmark | 2017 | -T°: 16–18 -pH: 7.2–7.5 -OD: 7–7.5 | 6 of 1.7 m3 | Submerged fixed-bed biofilter and trickling filter | [48] |
Denmark | 2017 | -pH: 6.9–8.0 | 1 of 8.5 m3 | Filters and ozonation | [49] |
Norway | 2018 | -T°: 19 ± 0.3 -pH: 7.3–7.4 | 6 of 1.8 m3 | Biofilters | [50] |
Germany | 2018 | -T°: 16 -pH: 6.5–8.5 -NTU: 2.2 ± 0.6 -SST: 3.9 | 10 of 3.3 m3 | Drum filter | [51] |
United States | 2019 | -T°: 13.8 ± 0.1 -pH: 7.0 ± 0.04 -OD: 9.9 ± 0.01 -SST: 11.0 ± 0.5 -NO2−: 0.042 ± 0.005 -NO3−: 201 ± 11 | 6 of 9,5 m3 | Drum filter and fluidised sand biofilter | [52] |
Bulgaria | 2019 | -T°: 15.9 ± 20 | 4 of 0.8 m3 | Mechanical filters (sedimentation tanks), moving-bed biofilter, and pumping sections | [53] |
Germany | 2019 | -T°: 14.5 ± 0.3 -pH: 6.5–8.5 -OD: 10.7 ± 0.2 -NTU: 2.1 ± 0.6 | 20 of 6 m3 | Drum filter | [54] |
Finland | 2020 | -T°: 15.5 ± 0.7 -pH: 7.2 -OD: 7.6–8.2 | 2 of 2.5 m3 | Sand filter | [55] |
Bulgaria | 2020 | -T°: 16.8–17.9 -pH: 7.4–8.11 -OD: 7.35–8.32 -Conductivity: 263–269 | 10 of 3 m3 | Mechanical filter (sedimentation tank) and biological filter | [56] |
Finland | 2020 | -T°: 16 °C. -pH: 7.2 -NTU: 2.0 ± 0.3 | 8 of 5 m3 | Drum filter with panels | [57] |
Denmark | 2020 | -T°: 15.8 ± 0.5 -pH: 7.1–7.5 -NO3−: 91.5–98.2 | 12 of 1.7 m3 | Fixed-bed biofilter and trickling filter | [58] |
Denmark | 2021 | -T°: 13.9 ± 0.5 | - | Drum filters and fixed-bed biofilters | [59] |
Morocco | 2022 | -T°: 16.8 ± 0.5 -pH: 7.0 -OD: 8.0–10.0 -NO2−: 0.45 -NO3−: 65 | 17 of 4.5 m3 | Drum filter | [60] |
Finland | 2022 | -T°: 16.1 ± 0.8 -pH: 7.1 ± 0.3 -OD: 98.2 ± 7.0 -NO2−: 0.03 ± 0.01 -NO3−: 40.4 ± 5.0 -NH3: 0.001 | 10 of 4.5 m3 | Drum filter | [61] |
Denmark | 2022 | -T°: 18.0–19.9 -pH: 7.4 ± 0.3 -OD: 8.9 ± 1.3 | 2 of 5 m3 | Drum filter | [62] |
Denmark | 2022 | -NTU: 7.02 ± 2.56 -NO2−: 119 ± 24.5 -NO3−: 57.5 ± 2.57 | 12 of 0.8 m3 | Biofilter | [63] |
Denmark | 2022 | -T°: 17 ± 2 -pH: 7.0–7.3 -NTU: 7.02 ± 4.34 | 12 of 1.2 m3 | Ozonation and foam fractionation | [64] |
Finland | 2022 | -pH: 7.79 -NO2−: 0.21 -NO3−: 0.75 | 6 of 2.5 m3 | Bead filter and moving bed biofilter filled with helicoidal floating biomedia | [65] |
Finland | 2023 | -T°: 12.8 -pH: 7.5 -NO2−: 0.105 ± 0.108 -NO3−: 44.2 ± 65.4 | 2 of 5 m3 | Drum filter | [66] |
Denmark | 2023 | -T°: 18 ± 1 -pH: 7.0–8.5 -OD: 6.68–10.88 -NTU: 33.8 ± 6.6 | 1 of 0.5 m3 | Cylindrical biofilter | [67] |
Denmark | 2023 | -T°: 16–17 -pH: 7.0–7.4 -NTU: 6.5–7.7 | 1 of 0.8 m3 | Biofilter | [68] |
Czech Republic | 2023 | -T°: 15.4 ± 1.0 -pH: 7.13 ± 0.38 -NH3: 0.95 ± 0.59 | 12 of 3.6 m3 | Biofilters | [69] |
Chile | 2024 | -T°: 8 ± 18 -NH3: 0.25 ± 0.65 | 4 of 10 m3 | Biofilters | [70] |
Denmark | 2024 | -T°: 18.3 ± 0.7 -pH: 7.0–7.4 | 12 of 5 m3 | Biofilters | [71] |
Greece | 2025 | -T°: 11.5–16.5 -NO2−: 0.3 ± 0.8 -NO3−: 9–15 -NH3: 0.50 ± 0.85 | 12 of 1181 m3 | Interconnected fixed-bed and floating-bed biofilters | [72] |
Sensor/Technology | T° | O2 | pH | NH4+ | CO2 | NO3− | Turbidity | Automation |
---|---|---|---|---|---|---|---|---|
LoRaWAN | 🔴 | 🟡 | 🟡 | 🟢 | 🟡 | 🔴 | 🟡 | High |
WiFi/Ethernet | 🟡 | 🟡 | 🟡 | 🟢 | 🔴 | 🟡 | 🟢 | Medium |
NB-IoT | 🟢 | 🟡 | 🔴 | 🟡 | 🟡 | 🟢 | 🔴 | Under |
Optical Sensors | 🟡 | 🟢 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | Under |
Multi-Parameter Sensors | 🔴 | 🔴 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | High |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grandez-Yoplac, D.E.; Pachas-Caycho, M.; Cristobal, J.; Chapa-Gonza, S.; Mori-Zabarburú, R.C.; Guadalupe, G.A. Recirculating Aquaculture Systems (RAS) for Cultivating Oncorhynchus mykiss and the Potential for IoT Integration: A Systematic Review and Bibliometric Analysis. Sustainability 2025, 17, 6729. https://doi.org/10.3390/su17156729
Grandez-Yoplac DE, Pachas-Caycho M, Cristobal J, Chapa-Gonza S, Mori-Zabarburú RC, Guadalupe GA. Recirculating Aquaculture Systems (RAS) for Cultivating Oncorhynchus mykiss and the Potential for IoT Integration: A Systematic Review and Bibliometric Analysis. Sustainability. 2025; 17(15):6729. https://doi.org/10.3390/su17156729
Chicago/Turabian StyleGrandez-Yoplac, Dorila E., Miguel Pachas-Caycho, Josseph Cristobal, Sandy Chapa-Gonza, Roberto Carlos Mori-Zabarburú, and Grobert A. Guadalupe. 2025. "Recirculating Aquaculture Systems (RAS) for Cultivating Oncorhynchus mykiss and the Potential for IoT Integration: A Systematic Review and Bibliometric Analysis" Sustainability 17, no. 15: 6729. https://doi.org/10.3390/su17156729
APA StyleGrandez-Yoplac, D. E., Pachas-Caycho, M., Cristobal, J., Chapa-Gonza, S., Mori-Zabarburú, R. C., & Guadalupe, G. A. (2025). Recirculating Aquaculture Systems (RAS) for Cultivating Oncorhynchus mykiss and the Potential for IoT Integration: A Systematic Review and Bibliometric Analysis. Sustainability, 17(15), 6729. https://doi.org/10.3390/su17156729