Production of Lanhouin—A Fermented Catfish (Clarias gariepinus) Using the Selected Lactiplantibacillus pentosus Probiotic Strain
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Animal Material
2.3. Media and Reagents
2.4. The Isolation of Lactic Acid Bacteria (LAB)
2.5. LAB Growth Kinetics and Lactic Acid Production
- VNaOH = volume of NaOH solution added in mL.
- N = normality of NaOH solution.
- V = volume of LAB suspension to be analyzed.
- DC = dilution coefficient.
- N = normality of NaOH solution.
2.6. LAB Stress Tolerance
2.7. Viability in the Simulated Gastrointestinal System (SGIS)
2.8. Antimicrobial Susceptibility Test (AST)
2.9. Antibiogram Analysis
2.10. Hemolytic Activity
2.11. Identification of the Isolated Strain
2.12. Molecular Identification
2.13. Biotechnological Design for Obtaining Lanhouin Using Lactiplantibacillus pentosus
2.14. Microbiological Analysis of the Products
2.15. Statistical Analysis
3. Results
3.1. LAB Strain Isolation and Identification
3.2. Characterization of the Biotechnological and Probiotic Potential of Lbp. pentosus by Strain
3.2.1. Lactic Acid Production and Evolution of pH and Optical Density
3.2.2. Tolerance of Lbp. pentosus by Strain in Acidic Environments
3.2.3. Salt Stress Tolerance of Lbp. pentosus by Strain
3.2.4. Bile Salt Tolerance of Lbp. pentosus by Strain
3.2.5. Lbp. pentosus by Strain Behavior in a Simulated Gastrointestinal System (SGIS)
3.2.6. Antimicrobial Properties of Lbp. pentosus by Strain
3.2.7. Antibiotic Susceptibility of the Strain
3.2.8. Hemolysis Test
3.3. Microbiological Analysis of Lanhouin Functional Product
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lopez-Garcia, E.; Benitez-Cabello, A.; Ramiro-Garcia, J.; Ladero, V.; Arroyo-Lopez, F.N. In Silico Evidence of the Multifunctional Features of Lactiplantibacillus pentosus LPG1, a Natural Fermenting Agent Isolated from Table Olive Biofilms. Foods 2023, 12, 938. [Google Scholar] [CrossRef]
- Ijong, F.G.; Ohta, Y. Amino acid composition of bakasang, a traditional fermented fish sauce from Indonisia. Food Sci. Technol. 1995, 28, 236–237. [Google Scholar] [CrossRef]
- Kopermsub, P.; Yunchalard, S. Identification of lactic acid bacteria associated with the production of plaa-som, a traditional fermented fish product of Thailand. Int. J. Food Microbiol. 2010, 138, 200–204. [Google Scholar] [CrossRef]
- Kouakou, A.C.; Kouadio, F.N.G.; Dadie, A.T.; Montet, D.; Dje, M.K. Production et commercialisation de l’adjuevan, poisson fermenté de Côte d’Ivoire. Cah. Agric. 2013, 22, 559–567. [Google Scholar] [CrossRef]
- Anihouvi, V.; Hounhouigan, J.; Ayernor, S. Production et commercialisation du «Lanhouin», un condiment à base de poisson fermenté du Golfe du Bénin. Cah. Agric. 2005, 14, 323–330. Available online: https://revues.cirad.fr/index.php/cahiers-agricultures/article/view/30525 (accessed on 15 November 2024).
- Dossou-Yovo, P.; Bokossa, I.; Ahouandjinou, H.; Zolotokopova, S.; Palaguina, I. Performance d’un dispositif amélioré de séchage de poisson fermenté appelé lanhouin au Bénin. Int. J. Biol. Chem. Sci. 2010, 4, 2272–2279. [Google Scholar] [CrossRef]
- Fall, N.G.; Tounkara, L.S.; Diop, M.B.; Mbasse, A.; Thiaw, O.T.; Thonart, P. Chemical Characteristics and Microbial Quality of Guedj a Traditional Fermented Fish from Senegal. Int. J. Sci. 2017, 6, 48–54. [Google Scholar]
- Sanni, A.; Asiedu, M.; Ayernor, G. Microflora and chemical composition of momoni, a Ghanaian fermented fish condiment. J. Food Compos. Anal. 2002, 15, 577–583. [Google Scholar] [CrossRef]
- Siregar, D.J.S.; Julianti, E.; Tafsin, M.; Suryanto, D. Antibacterial activity of lactic acid bacteria from black soldier fly (Hermetia illucens) larvae fed with empty fruit bunch and tofu waste. IOP Conf. Ser. Earth Environ. Sci. 2024, 1352, 012011. [Google Scholar] [CrossRef]
- Susmiati, S.; Melia, S.; Purwati, E.; Alazahra, H. Physicochemical and microbiological fermented buffalo milk produced by probiotic Lactiplantibacillus pentosus HBUAS53657 and sweet orange juice (Citrus nobilis). Biodivers. J. Biol. Divers. 2022, 23, 4329–4335. [Google Scholar] [CrossRef]
- Lopez-Garcia, E.; Benitez-Cabello, A.; Arenas-De Larriva, A.P.; Gutierrez-Mariscal, F.M.; Perez-Martinez, P.; Yubero-Serrano, E.M.; Garrido-Fernandez, A.; Arroyo-Lopez, F.N. Oral intake of Lactiplantibacillus pentosus LPG1 Produces a Beneficial Regulation of Gut Microbiota in Healthy Persons: A Randomised, Placebo-Controlled, Single-Blind Trial. Nutrients 2023, 15, 1931. [Google Scholar] [CrossRef] [PubMed]
- Alfonzo, A.; Naselli, V.; Gaglio, R.; Settanni, L.; Corona, O.; La Croce, F.; Vagnoli, P.; Krieger-Weber, S.; Francesca, N.; Moschetti, G. Use of Different Nutrients to Improve the Fermentation Performances of Lactiplantibacillus pentosus OM13 during the Production of Sevillian Style Green Table Olives. Microorganisms 2023, 11, 825. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wang, Z.; Xu, X.; Mu, X.; Fu, B.; Xu, J.; Ye, S.; Du, M. The Relationships between Flavor Substances and Microbial Communities during the Fermentation of Chinese Traditional Red Sour Soup. Food Biosci. 2024, 62, 105451. [Google Scholar] [CrossRef]
- Tzamourani, A.; Kalogri, G.; Kavvatha, M.; Kochila, A.; Manthou, E.; Liu, Y.; Panagou, E.Z. Inoculated fermentation of cv. Conservolea natural black olives with multifunctional starter cultures in reduced-sodium brines. Int. J. Food Sci. Technol. 2024, 59, 4093–4108. [Google Scholar] [CrossRef]
- Zhang, K.; Zhang, T.-T.; Guo, R.-R.; Ye, Q.; Zhao, H.-L.; Huang, X.-H. The regulation of key flavor of traditional fermented food by microbial metabolism: A review. Food Chem. X 2023, 19, 100871. [Google Scholar] [CrossRef]
- Zang, J.; Yu, D.; Li, T.; Xu, Y.; Regenstein, J.M.; Xia, W. Identification of characteristic flavor and microorganisms related to flavor formation in fermented common carp (Cyprinus carpio L.). Food Res. Int. 2022, 155, 111128. [Google Scholar] [CrossRef]
- Parvin, A.; Adhikary, R.; Guha, S.; Mitra, P.K.; Mandal, V. Antibiofilm and antimicrobial activity of biosurfactants from two Lactiplantibacillus pentosus strains against food and topical pathogens. J. Food Process. Preserv. 2022, 46, e16927. [Google Scholar] [CrossRef]
- Cai, H.; Tao, L.; Zhou, X.; Liu, Y.; Sun, D.; Ma, Q.; Yu, Z.; Jiang, W. Lactic acid bacteria in fermented fish: Enhancing flavor and ensuring safety. J. Agric. Food Res. 2024, 16, 101206. [Google Scholar] [CrossRef]
- An, Y.; Cai, X.; Cong, L.; Hu, Y.; Liu, R.; Xiong, S.; Hu, X. Quality improvement of Zhayu, a fermented fish product in China: Effects of inoculated fermentation with three kinds of lactic acid bacteria. Foods 2022, 11, 2756. [Google Scholar] [CrossRef]
- Fusco, V.; Chieffi, D.; Benomar, N.; Abriouel, H. Indigenous probiotic microorganisms in fermented foods. In Probiotics for Human Nutrition in Health and Disease; Academic Press: Cambridge, MA, USA, 2022; pp. 75–114. [Google Scholar] [CrossRef]
- Abriouel, H.; Pérez Montoro, B.; Casimiro-Soriguer, C.S.; Pérez Pulido, A.J.; Knapp, C.W.; Caballero Gómez, N.; Castillo-Gutiérrez, S.; Estudillo-Martínez, M.D.; Gálvez, A.; Benomar, N. Insight into potential probiotic markers predicted in Lactobacillus pentosus MP-10 genome sequence. Front. Microbiol. 2017, 8, 891. [Google Scholar] [CrossRef]
- Jiao, L.; Liang, S.; Chu, R.; Wang, W.; Mai, K.; Liu, M.; Wan, M. Identification, Characterization, and Probiotic Potentials of Lactobacillus pentosus SF-1. J. Ocean. Univ. China 2024, 23, 509–517. [Google Scholar] [CrossRef]
- Kingkaew, E.; Konno, H.; Hosaka, Y.; Phongsopitanun, W.; Tanasupawat, S. Characterization of Lactic Acid Bacteria from Fermented Fish (pla-paeng-daeng) and Their Cholesterol-lowering and Immunomodulatory Effects. Microbes Environ. 2023, 38, ME22044. [Google Scholar] [CrossRef] [PubMed]
- Liu, A.; Yan, X.; Shang, H.; Ji, C.; Zhang, S.; Liang, H.; Chen, Y.; Lin, X. Screening of Lactiplantibacillus plantarum with High Stress Tolerance and High Esterase Activity and Their Effect on Promoting Protein Metabolism and Flavor Formation in Suanzhayu, a Chinese Fermented Fish. Foods 2022, 11, 1932. [Google Scholar] [CrossRef]
- Yang, D.; Li, C.; Li, L.; Wang, Y.; Wu, Y.; Chen, S.; Zhao, Y.; Wei, Y.; Wang, D. Novel insight into the formation mechanism of umami peptides based on microbial metabolism in Chouguiyu, a traditional Chinese fermented fish. Food Res. Int. 2022, 157, 111211. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Xing, S.; He, L.; Li, C.; Wang, X.; Zeng, X.; Dai, Y. Characterization, High-Density Fermentation, and the Production of a Directed Vat Set Starter of Lactobacilli Used in the Food Industry: A Review. Foods 2022, 11, 3063. [Google Scholar] [CrossRef]
- Raethong, N.; Santivarangkna, C.; Visessanguan, W.; Santiyanont, P.; Mhuantong, W.; Chokesajjawatee, N. Whole-genome sequence analysis for evaluating the safety and probiotic potential of Lactiplantibacillus pentosus 9D3, a gamma-aminobutyric acid (GABA)-producing strain isolated from Thai pickled weed. Front. Microbiol. 2022, 13, 969548. [Google Scholar] [CrossRef]
- Tamura, Y.; Kumamaru, H.; Inami, T.; Matsubara, H.; Hirata, K.I.; Tsujino, I.; Suda, R.; Miyata, H.; Nishimura, S.; Sigel, B.; et al. Changes in the Characteristics Initial Treatments of Pulmonary Hypertension Between 2008, 2020 in Japan. JACC Asia 2022, 2, 273–284. [Google Scholar] [CrossRef]
- Abriouel, H.; Manetsberger, J.; Caballero Gómez, N.; Benomar, N. In silico genomic analysis of the potential probiotic Lactiplantibacillus pentosus CF2-10N reveals promising beneficial effects with health promoting properties. Front. Microbiol. 2022, 13, 989824. [Google Scholar] [CrossRef]
- Glatman, L.; Drabkin, V.; Gelman, A. Using lactic acide bacteria for developing novel fish food products. J. Sci. Food Agric. 2000, 80, 375–380. [Google Scholar] [CrossRef]
- Ringo, E.; Olsen, R.E.; Overli, O.; Lovik, F. Effect of dominance hierarchy formation on aerobic microbiota associated with the epithelial mucosa of subordinate and dominant individuals of Arctic char, Salvelinus alpinus (L.). Aquacult. Resour. 1997, 28, 901–904. [Google Scholar] [CrossRef]
- Dossou-Yovo, P.; Josse, G.R.; Bokossa, I.; Palaguina, I. Survey of the improvement of fish fermentation for lanhouin production in Benin. Afr. J. Food Sci. 2011, 5, 878–883. [Google Scholar] [CrossRef]
- Dossou-Yovo, P.; Bokossa, I.; Soprounova, O.; Eremeeva, S.; Yelouassi, C.A.R. Survey of the presence of Lactobacillus plantarum in the fermented maize dough hydrolysate used in the technology of the improvement of lanhouin. Afr. J. Microbiol. Res. 2012, 6, 5074–5076. [Google Scholar] [CrossRef]
- Adelakun, K.M.; Mustapha, M.K.; Amali, R.P.; Mohammed, N. Seasonal Variation in Nutritional Quality of Catfish (Clarias gariepinus) from Upper Jebba Basin, Nigeria. J. Nutr. Food Sci. 2017, 7, 622. [Google Scholar] [CrossRef]
- Adeosun, O.; Flora, E.O.; Akande, G.R. Chemical Composition, Microbial Content and Sensory Evaluation of Smoked Farmed Catfish Clarias gariepinus (Burchell, 1822) Raised Under Different Culture Systems in Ibadan, Nigeria. Food Sci. Qual. Manag. 2015, 46, 33–43. [Google Scholar]
- Oluwaniyi, O.; Dosumu, O.; Awolola, G. Effect of Cooking Method on the Proximate, Amino Acid, and Fatty Acid Compositions of Clarias gariepinus and Oreochromis niloticus. J. Turk. Chem. Soc. Sect. A Chem. 2017, 4, 115–132. [Google Scholar] [CrossRef]
- Lalèyè, P.; Chikou, A.; Philippart, J.-C.; Teugels, G.G.; Vandewalle, P. Étude de la diversité Ichtyologique du Bassin du Fleuve Ouémé (Afrique De l’Ouest). Cybium 2004, 28, 329–339. [Google Scholar]
- Lopetcharat, K.; Park, J.W. Characteristics of fish sauce made from Pacific whiting and surimi by-products during fermentation storage. Food Sci. 2002, 67, 511–516. [Google Scholar] [CrossRef]
- Nursyam, H.; Wijanarko, S.B.; Suko, S.O. The survival of Pediococcus acidilactici (0110 TAT-1), Lactobacillus casei (NRRL-B1922), Listeria monocytogenes (ATCC1194) on the curing types South Asian. J. Exp. Biol. 2016, 6, 34–38. [Google Scholar] [CrossRef]
- Nursyam, H.; Widjanarko, S.B.; Sukoso, S.; Yunianta, Y. Quality Evaluation of Clarias Catfish Fermented Sausage Manufactured by Pediococcus acidilactici 0110<TAT-1 Starter Culture at Different Levels of NaCl. J. Life Sci. Biomed. 2013, 3, 16–20. [Google Scholar]
- Thanonkaew, A.; Pecharat, S.; Chantachote, T. Effect of fermentation and drying on changes of lipid and protein in dry fermented catfish (Pla-duk-ra) produced from farmed catfish and wild catfish. Thaksin Univ. J. 2011, 12, 214–224. [Google Scholar]
- Thanonkaew, A.; Ritthichak, C.; Suriyapol, S. Chemical compositions and some properties of dry fermented catfish in Phatthalung. Thaksin Univ. J. 2009, 12, 1–12. [Google Scholar]
- Huda, N.; Deiri, R.S.; Ahmed, R. Proximate, color and amino acid profile of Indonesians traditional smoked catfish. J. Fish. Aquat. Sci. 2010, 5, 106–112. [Google Scholar] [CrossRef]
- Adewumi, A.A.; Ogunlade, I.; Coker, F.F. Effect of Processing on the Nutritive Value of Clarias gariepinus from Isinla Fish Pond, Ado Ekiti, Nigeria. Am. J. Biosci. 2015, 3, 262–266. [Google Scholar] [CrossRef]
- Aremu, M.O.; Namo, S.B.; Salau, R.B.; Agbo, C.O.; Ibrahim, H. Smoking Methods and Their Effects on Nutritional Value of African Catfish (Clarias gariepinus). Open Nutraceuticals J. 2013, 6, 105–112. [Google Scholar] [CrossRef]
- Olayemi, F.F.; Adedayo, M.R.; Bamishaiye, E.I.; Awagu, E.F. Proximate composition of catfish (Clarias gariepinus) smoked in Nigerian stored products research institute (NSPRI): Developed kiln. Int. J. Fish. Aquac. 2011, 3, 95–97. [Google Scholar] [CrossRef]
- Trabelsi, I.; Bejar, W.; Ayadi, D.; Chouayekh, D.; Kammoun, R.; Bejar, S.; Ben Salah, R. Encapsulation in alginate and alginate coated-chitosan improved the survival of newly probiotic in oxgall and gastric juice. Int. J. Biol. Macromol. 2013, 61, 36–42. [Google Scholar] [CrossRef]
- Fabro, M.D.; Milanesio, H.V.; Robert, M.L.; Speranza, J.L.; Murphy, M.; Rodríguez, G.; Castañeda, R. Technical note: Determination of acidity in whole raw milk: Comparison of results obtained by two different analytical methods. J. Dairy Sci. 2006, 89, 859–861, PMID: 16507678. [Google Scholar] [CrossRef]
- Tian, C.; Wang, L.; Liu, M.; Liu, J.; Qiu, M.; Chen, Y. Isolation and Identification of Chicken-Derived Lactic Acid Bacteria: In Vitro Probiotic Properties and Antagonistic Effects against Salmonella pullorum, Staphylococcus aureus, and Escherichia coli. Microorganisms 2024, 12, 795. [Google Scholar] [CrossRef]
- Khushboo Karnwal, A.; Malik, T. Characterization and selection of probiotic lactic acid bacteria from different dietary sources for development of functional foods. Front. Microbiol. 2023, 14, 1170725. [Google Scholar] [CrossRef]
- Sağlam, H.; Karahan, A.G. Plasmid stability of potential probiotic Lactobacillus plantarum strains in artificial gastric juice, at elevated temperature, and in the presence of novobiocin and acriflavine. Arch. Microbiol. 2021, 203, 183–191. [Google Scholar] [CrossRef]
- Ye, K.; Li, P.; Gu, Q. Complete genome sequence analysis of a strain Lactobacillus pentosus ZFM94 and its probiotic characteristics. Genomics 2020, 112, 3142–3149. [Google Scholar] [CrossRef]
- Kumar, A.; Ruhal, R.; Kataria, R. Bacteriocins of lactic acid bacteria as a potential antimicrobial peptide. In Biomimicry Materials and Applications; Inamuddin, Altalhi, T., Alrogi, A., Eds.; Scrivener Publishing LLC.: Beverly, MA, USA, 2023; pp. 83–104. [Google Scholar] [CrossRef]
- El Hammoudi Laaziz, A.; Bouseta, L.; Belkhou, R. Isolation of Lactic Acid Bacteria from Traditional Moroccan Products and Evaluation of their Antifungal Activity on Growth and Ochratoxin a Production by Aspergillus carbonarius and A. Nigeryousra. J. Microbiol. Biotechnol. Food Sci. 2021, 11, e3634. [Google Scholar] [CrossRef]
- Pereira, E.; Santos, A.; Reis, F.; Tavares, R.M.; Baptista, P.; Lino-Neto, T.; Almeida-Aguiar, C. A new effective assay to detect antimicrobial activity of filamentous fungi. Microbiol. Res. 2013, 168, 1–5. [Google Scholar] [CrossRef]
- Ryu, E.H.; Yang, E.J.; Woo, E.R.; Chang, H.C. Purification and characterization of antifungal compounds from Lactobacillus plantarum HD1 isolated from kimchi. Food Microbiol. 2014, 41, 19–26. [Google Scholar] [CrossRef]
- CLSI—Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Second Informational Supplement, CLSI Document M 100-S22; CLSI—Clinical and Laboratory Standards Institute: Wayne, IL, USA, 2012. [Google Scholar]
- Shakhatreh, M.A.; Al-Smadi, M.L.; Khabour, O.F.; Shuaibu, F.A.; Hussein, E.I.; Alzoubi, K.H. Study of the antibacterial and antifungal activities of synthetic benzyl bromides, ketones, and corresponding chalcone derivatives. Drug Des. Devel Ther. 2016, 10, 3653–3660. [Google Scholar] [CrossRef]
- Bulgasem, B.Y.; Lani, M.N.; Hassan, Z.; Wan Yusoff, W.M.; Fnaish, S.G. Antifungal Activity of Lactic Acid Bacteria Strains Isolated from Natural Honey against Pathogenic Candida Species. Mycobiology 2016, 44, 302–309. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dediu Botezatu, A.V.; Apetrei, R.-M.; Costea (Nour), I.F.; Barbu, V.; Grigore-Gurgu, L.; Botez, F.; Dinica, R.M.; Furdui, B.; Cârâc, G. Synthesis and characterization of novel chitosan derivatives (containing dipyridinium quaternary salts) with antimicrobial potential. Carbohydr. Res. 2023, 534, 108964. [Google Scholar] [CrossRef]
- CLSI—Clinical and Laboratory Standards Institute. Analysis and Presentation of Cumulative Antimicrobial Susceptibility Test Data, 5th ed.; CLSI Guideline M39; CLSI—Clinical and Laboratory Standards Institute: Wayne, IL, USA, 2022. [Google Scholar]
- Islam, S.; Biswas, S.; Jabin, T.; Moniruzzaman, M.; Biswas, J.; Uddin, S.; Ekram, A.E.; Elgorban, A.M.; Ghodake, G.; Syed, A.; et al. Probiotic potential of Lactobacillus plantarum DMR14 for preserving and extending shelf life of fruits and fruit juice. Heliyon 2023, 9, e17382. [Google Scholar] [CrossRef]
- Cotârleț, M.; Pihurov, M.; Păcularu-Burada, B.; Vasile, A.; Bahrim, G.; Grigore-Gurgu, L. Selection of New Lactobacilli Strains with Potentially Probiotic Properties. Ann. Univ. Dunarea Jos Galati Fascicle VI—Food Technol. 2023, 47, 27–50. [Google Scholar] [CrossRef]
- Yelouassi, C.A.R.; Dossou-Yovo, P.; Jacquet, N.; Richel, A. Influence of Salt on the Biochemical Characteristics of Fermented, Salty and Dried Catfish (Clarias gariepinus) in Benin. Sci. J. Chem. 2018, 6, 115–122. [Google Scholar] [CrossRef]
- Barbu, V. Microbiological analysis of a new non-lactic probiotic beverage–CatinoLact. Innov. Rom. Food Biotechnol. 2021, 20, 1–26. Available online: https://www.gup.ugal.ro/ugaljournals/index.php/IFRB/article/view/4310 (accessed on 15 November 2024).
- Commission Regulation (EC) No 2073/2005 of 15 November 2005 on Microbiological Criteria for Foodstuffs. Available online: http://data.europa.eu/eli/reg/2005/2073/2020-03-08 (accessed on 15 November 2024).
- Sheng, L.; Wang, L. The microbial safety of fish and fish products: Recent advances in understanding its significance, contamination sources, and control strategies. Compr. Rev. Food Sci. Food Saf. 2021, 20, 738–786. [Google Scholar] [CrossRef] [PubMed]
- Final Gazette Notification of Food Safety and Standards (Food Product Standards and Food Additives) Third Amendment Regulation, 2017 Related to Microbiological Standards for Fish and Fish Products. THE GAZETTE OF INDIA: EXTRAORDINARY [PART III—SEC. 4] Ministry of Health and Family Welfare (Food Safety and Standards Authority of India). Available online: https://www.fssai.gov.in/upload/uploadfiles/files/Gazette_Notification_Amendment_Micro_Fish_20_02_2017.pdf (accessed on 15 November 2024).
- Yelouassi, C.A.R. Assimilation of Amino Acids Generated by Fermentation of Catfish (Clarias gariepinus) in Cockerels and Guinea Fowls: Comparative Genetic Effects. Ph.D. Thesis, University of Abomey-Calavi, Abomey-Calavi, Benin, 2020. [Google Scholar]
- Kallner, A.; Debelius, J.; Schuppe-Koistinen, I.; Pereira, M.; Engstrand, L. Effects of Consuming Fermented Fish (Surströmming) on the Fecal Microflora in Healthy Individuals. J. Med. Food. 2023, 26, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Rodpai, R.; Sanpool, O.; Thanchomnang, T.; Wangwiwatsin, A.; Sadaow, L.; Phupiewkham, W.; Boonroumkaew, P.; Intapan, P.M.; Maleewong, W. Investigating the microbiota of fermented fish products (Pla-ra) from different communities of northeastern Thailand. PLoS ONE 2021, 16, e0245227. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Grainger, S. The Story of Garum: Roman Fish Sauce in a Modern Context. In Fermentology; Gannon, K., Ed.; NC State University Libraries: Raleigh, NC, USA, 2021. [Google Scholar] [CrossRef]
- Benitez-Cabello, A.; Torres-Maravilla, E.; Bermudez-Humaran, L.; Langella, P.; Martin, R.; Jimenez-Diaz, R.; Arroyo-Lopez, F.N. Probiotic Properties of Lactobacillus Strains Isolated from Table Olive Biofilms. Probiotics Antimicrob. Proteins 2020, 12, 1071–1082. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Gonzalez, N.; Battista, N.; Prete, R.; Corsetti, A. Health-promoting role of Lactiplantibacillus plantarum isolated from fermented foods. Microorganisms 2021, 9, 349. [Google Scholar] [CrossRef]
- Lashani, E.; Davoodabadi, A.; Soltan Dallal, M.M. Some probiotic properties of Lactobacillus species isolated from honey and their antimicrobial activity against foodborne pathogens. Vet. Res. 2020, 11, 121–126. [Google Scholar] [CrossRef]
- Amin, M.; Adams, M.B.; Burke, C.M.; Bolch, C.J.S. Screening and activity of potential gastrointestinal probiotic lactic acid bacteria against Yersinia ruckeri O1b. J. Fish Dis. 2023, 46, 369–379. [Google Scholar] [CrossRef]
- Wei, C.; Luo, K.; Wang, M.; Li, Y.; Pan, M.; Xie, Y.; Qin, G.; Liu, Y.; Li, L.; Liu, Q.; et al. Evaluation of potential probiotic properties of a strain of Lactobacillus plantarum for shrimp farming: From beneficial functions to safety assessment. Front. Microbiol. 2022, 13, 854131. [Google Scholar] [CrossRef]
- Le, Y.; Lou, X.; Yu, C.; Guo, C.; He, Y.; Lu, Y.; Yang, H. Integrated metabolomics analysis of Lactobacillus in fermented milk with fish gelatin hydrolysate in different degrees of hydrolysis. Food Chem. 2023, 408, 135232. [Google Scholar] [CrossRef]
- Khusro, A.; Arasu, M.V.; Sahibzada, M.U.K.; Salem, A.Z.M.; Al-Dhabi, N.A.; Rivas-Caceres, R.R.; Seidel, V.; Choi, K.C. Assessment on in vitro probiotic attributes of Lactobacillus plantarum isolated from horse feces. J. Equine Vet. Sci. 2021, 107, 103769. [Google Scholar] [CrossRef]
- Benitez-Cabello, A.; Calero-Delgado, B.; Rodriguez-Gomez, F.; Garrido-Fernandez, A.; Jimenez-Diaz, R.; Arroyo-Lopez, F.N. Biodiversity and Multifunctional Features of Lactic Acid Bacteria Isolated From Table Olive Biofilms. Front. Microbiol. 2019, 10, 836. [Google Scholar] [CrossRef]
- Wang, C.; Cui, Y.; Qu, X. Mechanisms and improvement of acid resistance in lactic acid bacteria. Arch. Microbiol. 2018, 200, 195–201. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Zhang, R.; Zhang, Q.; Tian, M.; Ren, X.; Wang, L.; Wang, X. Antifungal Activity of Cell-Free Supernatants from Lactobacillus pentosus 86 against Alternaria gaisen. Horticulturae 2023, 9, 911. [Google Scholar] [CrossRef]
- Lipińska, L.; Klewicki, R.; Sójka, M.; Bonikowski, R.; Żyżelewicz, D.; Kołodziejczyk, K.; Klewicka, E. Antifungal Activity of Lactobacillus pentosus ŁOCK 0979 in the Presence of Polyols and Galactosyl-Polyols. Probiotics Antimicrob. Proteins 2018, 10, 186–200. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Reshetnyak, V.I. Physiological and molecular biochemical mechanisms of bile formation. World J. Gastroenterol. 2013, 19, 7341–7360. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hai, D.; Lu, Z.; Huang, X.; Lv, F.; Bie, X. In vitro screening of chicken-derived lactobacillus strains that effectively inhibit salmonella colonization and adhesion. Foods 2021, 10, 569. [Google Scholar] [CrossRef]
- Ruiz, L.; Margolles, A.; Sánchez, B. Bile resistance mechanisms in Lactobacillus and Bifidobacterium. Front. Microbiol. 2013, 4, 396. [Google Scholar] [CrossRef]
- Abedi, E.; Pourmohamadi, K.; Mousavifard, M.; Sayadi, M. Comparison between surface hydrophobicity of heated and thermosonicated cells to detoxify aflatoxin B1 by co-culture Lactobacillus plantarum and Lactobacillus rhamnosus in sourdough: Modeling studies. Food Sci. Technol. 2022, 154, 112616. [Google Scholar] [CrossRef]
- Das, J.A.; Das, M.J.; Miyaji, T.; Deka, C.S. Growth and metabolic characterization of four lactic acid bacteria species isolated from rice beer prepared in Assam, India. Access Microbiol. 2019, 1, e000028. [Google Scholar] [CrossRef]
- Bazireh, H.; Shariati, P.; Azimzadeh Jamalkandi, S.; Ahmadi, A.; Boroumand, M.A. Isolation of novel probiotic Lactobacillus and Enterococcus strains from human salivary and fecal sources. Front. Microbiol. 2020, 11, 597946. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Pan, L.; Li, L.; Lu, J.; Kwok, L.; Menghe, B.; Zhang, H.; Zhang, W. Characterization of antibiotic resistance genes from Lactobacillus isolated from traditional dairy products. Food Sci. 2017, 82, 724–730. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Vishakha, K.; Banerjee, S.; Bera, T.; Mondal, S.; Ganguli, A. A novel probiotic strain of Lactobacillus fermentum TIU19 isolated from Haria beer shows both in vitro antibacterial and antibiofilm properties upon two multi-resistant uro-pathogen strains. Curr. Res. Microb. 2022, 3, 100150. [Google Scholar] [CrossRef]
- Asadi, A.; Lohrasbi, V.; Abdi, M.; Mirkalantari, S.; Esghaei, M.; Kashanian, M.; Oshaghi, M.; Talebi, M. The probiotic properties and potential of vaginal Lactobacillus spp. isolated from healthy women against some vaginal pathogens. Lett. Appl. Microbiol. 2022, 74, 752–764. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Hu, J.; Yu, H.; Li, W.; He, G.; Dong, J.; Liu, Y.; Shi, S. Lactobacillus fermentum 1.2133 has in vitro probiotic potential and protects against Salmonella pullorum in infected chickens. Lett. Appl. Microbiol. 2023, 76, ovac041. [Google Scholar] [CrossRef] [PubMed]
- Chino de la Cruz, C.M.; Cornejo-Granados, F.; Gallardo-Becerra, L.; Rodríguez-Alegría, M.E.; Ochoa-Leyva, A.; López Munguía, A. Complete genome sequence and characterization of a novel Enterococcus faecium with probiotic potential isolated from the gut of Litopenaeus vannamei. Microb. Genom. 2023, 9, mgen000938. [Google Scholar] [CrossRef]
- Xue, W.; Liu, C.; Liu, Y.; Ding, H.; An, C.; Zhang, S.; Ma, S.; Zhang, Q. Probiotic evaluation of Lactiplantibacillus pentosus 68-1, a rutin-converting strain isolated from Jiangshui, by genomic analysis and in vitro tests. Fermentation 2024, 10, 87. [Google Scholar] [CrossRef]
pH of MRS | ||||||
---|---|---|---|---|---|---|
6.2 | 3.5 | 3.0 | 2.5 | 2.0 | 1.5 | |
Colony count (log CFU/mL) | 9.00 ± 0.01 a | 8.00 ± 0.03 b | 8.15 ± 0.01 c | 5.00 ± 0.08 d | 5.60 ± 0.05 e | - |
Concentrations of NaCl, % | ||||||
---|---|---|---|---|---|---|
0 | 2 | 4 | 6 | 8 | 10 | |
Colony count (log CFU/mL) | 9.00 ± 0.01 a | 8.25 ± 0.01 b | 8.08 ± 0.01 c | 7.83 ± 0.03 d | 7.54 ± 0.02 e | 6.54 ± 0.02 f |
Concentrations of Bile Salt (%) | ||||||
---|---|---|---|---|---|---|
0 | 0.1 | 0.5 | 1.0 | 1.5 | 2.0 | |
Colony count (log CFU/mL) | 9.00 ± 0.01 a | 9.04 ± 0.02 a | 7.70 ± 0.01 b | 6.11 ± 0.05 c | 4.00 ± 0.03 d | 4.00 ± 0.01 d |
Simulated Digestion Time, h | |||||
---|---|---|---|---|---|
AGJ | AIJ | ||||
0 | 2 | 2 | 4 | 6 | |
Colony count (log CFU/mL) | 9.00 ± 0.01 a | 7.56 ± 0.05 b | 7.00 ± 0.01 b | 5.48 ± 0.04 c | 3.30 ± 0.06 d |
Bacteria | B. cereus | E. coli | L. monocytogenes | S. aureus |
---|---|---|---|---|
DIZ (mm) | 17.05 ± 0.05 | 18.05 ± 0.07 | 22.9 ± 0.14 | 17 ± 0.00 |
Yeasts and Molds | A. niger | Candida sp. | Fusarium sp. | Penicillium sp. | ||||
---|---|---|---|---|---|---|---|---|
C | S | C | S | C | S | C | S | |
Diameter (mm) | 62.08 ± 0.05 a | 67.12 ± 0.15 a | 11.22 ± 0.02 b | 12.18 ± 0.07 b | 60.17 ± 0.02 c | 48.15 ± 0.05 d | 15 ± 0.08 e | 13.15 ± 0.05 e |
Parameters | Aerobic Mesophilic Bacteria (105 CFU/g) | Yeasts and Molds (105 CFU/g) | Coliforms (102 CFU/g) | LAB (105 CFU/g) | Dry Matter (%) |
---|---|---|---|---|---|
Traditional lanhouin | 803 ± 10 a | 7016 ± 175 a | 2500 ± 0 a | 0.095 ± 0.02 d | 82.75 ± 0.01 |
Functional unsalted lanhouin | 0.06 ± 0.001 b | 0 b | 250 ± 0 b | 4030 ± 190 b | 66.44 ± 0.02 |
Functional lanhouin (10% salt) | 0.01 ± 0.001 c | 0 b | 0 c | 5003 ± 175 a | 79.02 ± 0.01 |
Functional lanhouin (15% salt) | 0.01 ± 0.001 c | 0 b | 0 c | 102 ± 6 c | 80.20 ± 0.1 |
Pathogen/Indicator | Fish Products Standard | Notes |
---|---|---|
Salmonella spp. | Absence in 25 g | For all types of fish products |
L. monocytogenes | Absence in 25 g (for RTE products) | Especially for ready-to-eat fish |
E. coli | <10 CFU/g | Indicator of fecal contamination |
Vibrio spp. | Absence in 25 g | Critical for raw fish products |
Total Plate Count | <105 CFU/g | Fresh fish products |
Staphylococcus aureus | <104 CFU/g | Indicator of poor handling |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barbu, V.; Yelouassi, C.A.R.; Cotârleț, M.; Grigore-Gurgu, L.; Tchekessi, C.K.C.; Dossou-Yovo, P. Production of Lanhouin—A Fermented Catfish (Clarias gariepinus) Using the Selected Lactiplantibacillus pentosus Probiotic Strain. Sustainability 2025, 17, 6387. https://doi.org/10.3390/su17146387
Barbu V, Yelouassi CAR, Cotârleț M, Grigore-Gurgu L, Tchekessi CKC, Dossou-Yovo P. Production of Lanhouin—A Fermented Catfish (Clarias gariepinus) Using the Selected Lactiplantibacillus pentosus Probiotic Strain. Sustainability. 2025; 17(14):6387. https://doi.org/10.3390/su17146387
Chicago/Turabian StyleBarbu, Vasilica, Chimène Agrippine Rodogune Yelouassi, Mihaela Cotârleț, Leontina Grigore-Gurgu, Comlan Kintomagnimessè Célestin Tchekessi, and Pierre Dossou-Yovo. 2025. "Production of Lanhouin—A Fermented Catfish (Clarias gariepinus) Using the Selected Lactiplantibacillus pentosus Probiotic Strain" Sustainability 17, no. 14: 6387. https://doi.org/10.3390/su17146387
APA StyleBarbu, V., Yelouassi, C. A. R., Cotârleț, M., Grigore-Gurgu, L., Tchekessi, C. K. C., & Dossou-Yovo, P. (2025). Production of Lanhouin—A Fermented Catfish (Clarias gariepinus) Using the Selected Lactiplantibacillus pentosus Probiotic Strain. Sustainability, 17(14), 6387. https://doi.org/10.3390/su17146387