Estimation of Groundwater Abstractions from Irrigation Wells in Mediterranean Agriculture: An Ensemble Approach Integrating Remote Sensing, Soil Water Balance, and Spatial Analysis
Abstract
:1. Introduction
- (a)
- Perform a spatial characterization of irrigated areas through the development of a GIS-based data structure;
- (b)
- Monitor crop development cycles using Sentinel-2 satellite imagery;
- (c)
- Simulate the soil water balance for a defined Homogeneous Unit of Analysis;
- (d)
- Generate an ensemble of estimated groundwater abstraction volumes to account for key sources’ uncertainties and enhance the robustness of the results;
- (e)
- Establish a workflow to spatially associate water abstraction points (i.e., irrigation wells) with corresponding application areas (i.e., irrigation systems);
- (f)
- Validate the ensemble-based estimates against observed abstraction volumes derived from flowmeter data provided by farmers.
2. Materials and Methods
2.1. Description of the Study Area
2.2. Methodological Framework for Estimating Groundwater Abstractions per Irrigation Well
2.2.1. Applied Datasets and Digital Layers and Their Sources
2.2.2. Crop Data Processing
Category | Datasets and Digital Layers | Source |
---|---|---|
Meteorology | Air temperature Relative humidity Wind speed Solar radiation Precipitation | National Water Resources Information System (SNIRH)—Portuguese Environment Agency, APA Portuguese Institute for Sea and Atmosphere, IPMA Agrometeorological System for Irrigation Management in Alentejo (SAGRA_COTR) |
Crops | Crop identification Phenological stages Crop coefficients Maximum rooting depths Water stress coefficient Readily available water fraction | Field Identification System (iSIP)—Institute for the Financing of Agriculture and Fisheries, IFAP High-resolution satellite imagery—Sentinel-2, Google Earth Engine (GEE) FAO-56 [41] [42,43] |
Irrigation | Type of irrigation system Irrigation system efficiency | Google Earth Pro (GEP)—Google [44] |
Soils | Soil families Field capacity Wilting point Layer thickness | National Soil Information System (SNIS) –Ag and Rural Development (DGADR) [45] INFOSOLO—National Institute for Agricultural and Veterinary Research (INIAV) |
Irrigation wells (validation) | Location Irrigated Area Volumes abstracted | Data provided by farmers |
2.2.3. Irrigation Requirement Estimates Derived from an Ensemble Approach
- (i)
- The timeline of crop growth stages is one of the primary sources of uncertainty when estimating crop evapotranspiration, and thus, when calculating irrigation requirements, as noted by [41]. To address this, satellite imagery with average revisit intervals of 5 days (TS5) and 16 days (TS16) was used to estimate crop cycles based on RS data acquired over different temporal resolutions. NDVI time series were generated in Google Earth Engine (GEE) for both aggregation intervals, enabling a complementary analysis of crop phenology. Minor discrepancies, typically a few days, between the two series may occur, leading to corresponding differences in the crop coefficient curves derived for each case.
- (ii)
- Soil water storage at the onset of the irrigation season is a key variable influencing the soil water balance and, consequently, irrigation scheduling. The extent of soil moisture depletion prior to sowing depends on the timing of the sowing period relative to the end of the antecedent rainy season. In this study, spring crops are typically sown during a period characterized by high rainfall variability and substantial water demand, making it challenging to assign a definitive value for soil water storage at sowing. To account for this uncertainty, two scenarios were considered in the ensemble: a conservative scenario assuming 30% of the available soil water (ASW) at sowing, reflecting drier initial conditions; and a scenario assuming 80% of ASW at sowing, representing more favorable initial conditions. For the deeper soil layers (>0.4 m deep), 70% of ASW was assumed in both scenarios.
- (iii)
- Irrigation system application efficiency is another parameter subject to considerable uncertainty, particularly in the absence of field-based performance assessments. This uncertainty arises from factors such as ageing infrastructure, suboptimal system design, and inadequate maintenance. Accordingly, two contrasting efficiency values were considered for each irrigation system, based on ranges reported in the literature: one representing poorly maintained or degraded systems with low efficiency, and the other representing well-maintained and properly designed systems operating close to their theoretical potential.
2.2.4. Estimation of Groundwater Abstraction per Irrigation Well
2.2.5. Assessment of Methodological Accuracy in a Real Irrigation Context
- (a)
- Coefficient of Determination (R2): This coefficient quantifies the proportion of variability in the dependent variable that is explained by the regression model. Its values range from 0 to 1, with R2 = 1 indicating that the model accounts for 100% of the variance in the observed data, and R2 = 0 indicating that it explains none. It is computed as follows [55]:
- (b)
- Root Mean Square Error (RMSE): This metric represents the average magnitude of the differences between estimated and observed values. A lower RMSE indicates better model performance, as it reflects smaller average prediction errors. It is calculated as follows [55]:
3. Results and Discussion
3.1. Spatial Distribution of Soils and Irrigation Systems
3.2. Crop Biophysical Parameters
3.2.1. NDVI
3.2.2. Crop Coefficient Curves
3.3. Homogeneous Units of Analysis
3.4. Irrigation Requirements
3.5. Groundwater Abstraction Volumes
3.6. Validation of the Methodology for the Case Study
3.7. Sources of Uncertainty in the Proposed Methodology
3.8. Applications and Transferability of the Methodology
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
APA | Agência Portuguesa do Ambiente |
ASW | Available Soil Water |
DGADR | Direcção-Geral de Agricultura e Desenvolvimento Rural |
DOI | Digital Object Identifier |
ESA | European Space Agency |
ET | Evapotranspiration (derived from remote sensing methods) |
GEE | Google Earth Engine |
GWO | Groundwater Observed (interpretação: observações de extração) |
HUA | Homogeneous Unit of Analysis |
IFAP | Instituto de Financiamento da Agricultura e Pescas |
INE | Instituto Nacional de Estatística |
IR | Irrigation Requirements |
ISAREG | Soil Water Balance Model (ISAREG) |
IW | Irrigation Well(s) |
NDVI | Normalized Difference Vegetation Index |
NIR | Net Irrigation Requirements |
RMSE | Root Mean Square Error |
SNIS | Sistema Nacional de Informação de Solos (interpretação provável) |
SWAT | Soil and Water Assessment Tool |
TVZ | Tagus Vulnerable Zone |
WRB | World Reference Base |
References
- Cameira, M.R.; Rolim, J.; Valente, F.; Mesquita, M.; Dragosits, U.; Cordovil, C.M. Translating the agricultural N surplus hazard into groundwater pollution risk: Implications for effectiveness of mitigation measures in nitrate vulnerable zones. Agric. Ecosyst. Environ. 2021, 306, 107204. [Google Scholar] [CrossRef]
- Gutiérrez, J.M.; Jones, R.G.; Narisma, G.T.; Alves, L.M.; Amjad, M.; Gorodetskaya, I.V.; Grose, M.; Klutse, N.A.B.; Krakovska, S.; Li, J.; et al. 2021: Atlas. In Climate Change 2021: The Physical Science Basis; Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V.P., Zhai, A., Pirani, S.L., Connors, C., Péan, S., Berger, N., Caud, Y., Chen, L., Goldfarb, M.I., Gomis, M., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2023; pp. 1927–2058. [Google Scholar] [CrossRef]
- Gleeson, T.; Cuthbert, M.; Ferguson, G.; Perrone, D. Global groundwater sustainability, resources, and systems in the Anthropocene. Annu. Rev. Earth Planet. Sci. 2020, 48, 431–463. [Google Scholar] [CrossRef]
- Siebert, S.; Burke, J.; Faures, J.M.; Frenken, K.; Hoogeveen, J.; Döll, P.; Portmann, F.T. Groundwater use for irrigation—A global inventory. Hydrol. Earth Syst. Sci. 2010, 14, 1863–1880. [Google Scholar] [CrossRef]
- García-Ruiz, J.M.; López-Moreno, I.I.; Vicente-Serrano, S.M.; Lasanta-Martínez, T.; Beguería, S. Mediterranean water resources in a global change scenario. Earth-Sci. Rev. 2011, 105, 121–139. [Google Scholar] [CrossRef]
- APA. Estado das Massas de Água Superficiais e Subterrâneas. 2024. Available online: https://rea.apambiente.pt/content/estado-das-massas-de-água-superficiais-e-subterrâneas (accessed on 30 October 2024).
- APRH. Glossário—Regadios Individuais. 2024. Available online: https://aprh.pt/en/publications/glossary/r-en/regadios-individuais/ (accessed on 10 September 2024).
- DGADR 2024a. Available online: https://www.dgadr.gov.pt/ (accessed on 2 February 2025).
- Foster, T.; Mieno, T.; Brozović, N. Satellite-based monitoring of irrigation water use: Assessing measurement errors and their implications for agricultural water management policy. Water Resour. Res. 2020, 56, e2020WR028378. [Google Scholar] [CrossRef]
- Brookfield, A.E.; Zipper, S.; Kendall, A.D.; Ajami, H.; Deines, J.M. Estimating Groundwater Pumping for Irrigation: A Method Comparison. Groundwater 2024, 62, 15–33. [Google Scholar] [CrossRef] [PubMed]
- Gemitzi, A.; Lakshmi, V. Estimating groundwater abstractions at the aquifer scale using GRACE observations. Geosciences 2018, 8, 419. [Google Scholar] [CrossRef]
- Yifru, B.A.; Lee, S.; Bak, S.; Bae, J.H.; Shin, H.; Lim, K.J. Estimating exploitable groundwater for agricultural use under environmental flow constraints using an integrated SWAT-MODFLOW model. Agric. Water Manag. 2024, 303, 109024. [Google Scholar] [CrossRef]
- Meza-Gastelum, M.A.; Campos-Gaytán, J.R.; Ramirez-Hernandez, J.; Herrera-Oliva, C.S.; Villegas-León, J.J.; Figueroa-Nunez, A. Review of groundwater abstraction estimation methods. Water 2022, 14, 2762. [Google Scholar] [CrossRef]
- Hunink, J.E.; Contreras, S.; Soto-García, M.; Martin-Gorriz, B.; Martinez-Álvarez, V.; Baille, A. Estimating groundwater use patterns of perennial and seasonal crops in a Mediterranean irrigation scheme, using remote sensing. Agric. Water Manag. 2015, 162, 47–56. [Google Scholar] [CrossRef]
- Spiliotopoulos, M.; Loukas, A. Hybrid Methodology for the Estimation of Crop Coefficients Based on Satellite Imagery and Ground-Based Measurements. Water 2019, 11, 1364. [Google Scholar] [CrossRef]
- Yu, H.; Wen, X.; Wu, M.; Sheng, D.; Wu, J.; Zhao, Y. Data-based groundwater quality estimation and uncertainty analysis for irrigation agriculture. Agric. Water Manag. 2022, 262, 107423. [Google Scholar] [CrossRef]
- Zamanirad, M.; Sarraf, A.; Sedghi, H.; Saremi, A.; Rezaee, P. Modeling the Influence of Groundwater Exploitation on Land Subsidence Susceptibility Using Machine Learning Algorithms. Nat. Resour. Res. 2020, 29, 1127–1141. [Google Scholar] [CrossRef]
- Zhu, F.; Han, M.; Sun, Y.; Zeng, Y.; Zhao, L.; Zhu, O.; Hou, T.; Zhong, P. A machine learning framework for multi-step-ahead prediction of groundwater levels in agricultural regions with high reliance on groundwater irrigation. Environ. Model. Softw. 2024, 180, 106146. [Google Scholar] [CrossRef]
- Gelati, E.; Zajac, Z.; Ceglar, A.; Bassu, S.; Bisselink, B.; Adamovic, M.; Bernhard, J.; Malagó, A.; Pastori, M.; Bouraoui, F.; et al. Assessing groundwater irrigation sustainability in the Euro-Mediterranean region with an integrated agro-hydrologic model. Adv. Sci. Res. 2020, 17, 227–253. [Google Scholar] [CrossRef]
- van Engelenburg, J.; Hueting, R.; Rijpkema, S.; Teuling, A.J.; Uijlenhoet, R.; Ludwig, F. Impact of Changes in Groundwater Extractions and Climate Change on Groundwater-Dependent Ecosystems in a Complex Hydrogeological Setting. Water Resour. Manag. 2018, 32, 259–272. [Google Scholar] [CrossRef]
- Martínez-Santos, P.; Martínez-Alfaro, P.E. Estimating groundwater abstractions in areas of intensive agricultural pumping in central Spain. Agric. Water Manag. 2010, 98, 172–181. [Google Scholar] [CrossRef]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologic modeling and assessment part I: Model development. J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Santhi, C.; Harmel, R.D.; van Griensven, A.; Van Liew, M.W.; et al. SWAT: Model use, calibration, and validation. Trans. ASABE 2012, 55, 1491–1508. [Google Scholar] [CrossRef]
- Delavar, M.; Eini, M.R.; Kuchak, V.S.; Zaghiyan, M.R.; Shahbazi, A.; Nourmohammadi, F.; Motamedi, A. Model-based water accounting for integrated assessment of water resources systems at the basin scale. Sci. Total Environ. 2022, 830, 154810. [Google Scholar] [CrossRef]
- Garrido-Rubio, J.; Sanz, D.; González-Piqueras, J.; Calera, A. Application of a remote sensing-based soil water balance for the accounting of groundwater abstractions in large irrigation areas. Irrig. Sci. 2019, 37, 709–724. [Google Scholar] [CrossRef]
- Li, H.; Miao, Q.; Shi, H.; Li, X.; Zhang, S.; Zhang, F.; Bu, H.; Wang, P.; Yang, L.; Wang, Y.; et al. Remote sensing monitoring of irrigated area in the non-growth season and of water consumption analysis in a large-scale irrigation district. Agric. Water Manag. 2024, 303, 109020. [Google Scholar] [CrossRef]
- Zipper, S.; Kastens, J.; Foster, T.; Wilson, B.B.; Melton, F.; Grinstead, A.; Deines, J.M.; Butler, J.J.; Marston, L.T. Estimating irrigation water use from remotely sensed evapotranspiration data: Accuracy and uncertainties at field, water right, and regional scales. Agric. Water Manag. 2024, 303, 109036. [Google Scholar] [CrossRef]
- Melton, F.S.; Johnson, L.F.; Lund, C.P.; Pierce, L.L.; Michaelis, A.R.; Hiatt, S.H.; Guzman, A.; Adhikari, D.D.; Purdy, A.J.; Rosevelt, C.; et al. Satellite irrigation management support with the terrestrial observation and prediction system: A framework for integration of satellite and surface observations to support improvements in agricultural water resource management. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 1709–1721. [Google Scholar] [CrossRef]
- French, A.N.; Sanchez, C.A.; Wirth, T.; Scott, A.; Shields, J.W.; Bautista, E.; Saber, M.N.; Wisniewski, E.; Gohardoust, M.R. Remote sensing of evapotranspiration for irrigated crops at Yuma, Arizona, USA. Agric. Water Manag. 2023, 290, 108582. [Google Scholar] [CrossRef]
- Dhungel, R.; Aiken, R.; Lin, X.; Kenyon, S.; Colaizzi, P.D.; Luhman, R.; Baumhardt, R.L.; O’Brien, D.; Kutikoff, S.; Brauer, D.K. Restricted water allocations: Landscape-scale energy balance simulations and adjustments in agricultural water applications. Agric. Water Manag. 2020, 227, 105854. [Google Scholar] [CrossRef]
- Zaussinger, F.; Dorigo, W.; Gruber, A.; Tarpanelli, A.; Filippucci, P.; Brocca, L. Estimating irrigation water use over the contiguous United States by combining satellite and reanalysis soil moisture data. Hydrol. Earth Syst. Sci. 2019, 23, 897–923. [Google Scholar] [CrossRef]
- Majumdar, S.; Smith, R.; Butler, J.J., Jr.; Lakshmi, V. Groundwater withdrawal prediction using integrated multitemporal remote sensing data sets and machine learning. Water Resour. Res. 2020, 56, e2020WR028059. [Google Scholar] [CrossRef]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef]
- INE. 2025. Available online: https://www.ine.pt/xportal/xmain?xpgid=ine_main&xpid=INE (accessed on 5 January 2025).
- DGADR. Sistema Nacional de Informação do Solo (SNIS). 2024. Available online: https://snisolos.dgadr.gov.pt/ (accessed on 20 September 2024).
- Almeida, C.; Mendonça, J.J.L.; Jesus, M.R.; Gomes, A.J. Sistemas Aquíferos de Portugal Continental: Aluviões do Tejo (T7); Centro de Geologia da Faculdade de Ciências da Universidade de Lisboa, Instituto da Água: Lisbon, Portugal, 2000. [Google Scholar]
- APA. Relatório Ambiental Final—Plano De Gestão De Região Hidrográfica—Região Hidrográfica Do Tejo E Ribeiras Do Oeste (RH5). 2023. Available online: https://apambiente.pt/agua/3o-ciclo-de-planeamento-2022-2027 (accessed on 5 January 2025).
- Rouse, J.W., Jr.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the great plains with ERTS. In Proceedings of the Third ERTS Symposium, Washington, DC, USA, 10–14 December 1973; NASA: Washington, DC, USA, 1973; Volume 1, pp. 309–317. Available online: https://cir.nii.ac.jp/crid/1573105975083785728 (accessed on 3 June 2024).
- European Space Agency (ESA). Sentinel-2: S2 Mission. 2024. Available online: https://sentiwiki.copernicus.eu/web/s2-mission (accessed on 3 June 2024).
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thua, D.; Moore, R. Remote Sensing of Environment Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. FAO Irrigation and Drainage Paper No. 56—Crop Evapotranspiration. 1998. Volume 300. Available online: https://www.fao.org/4/x0490e/x0490e00.htm (accessed on 2 May 2024).
- Pereira, L.S.; Paredes, P.; Hunsaker, D.J.; López-Urrea, R.; Mohammadi Shad, Z. Standard single and basal crop coefficients for field crops. Updates and advances to the FAO56 crop water requirements method. Agric. Water Manag. 2021, 243, 106466. [Google Scholar] [CrossRef]
- Pereira, L.S.; Paredes, P.; López-Urrea, R.; Hunsaker, D.J.; Mota, M.; Mohammadi Shad, Z. Standard single and basal crop coefficients for vegetable crops, an update of FAO56 crop water requirements approach. Agric. Water Manag. 2021, 243, 106196. [Google Scholar] [CrossRef]
- Pereira, L.S. Necessidades de Água e Métodos de Rega; Publicações Europa-América Lda: Algueirão–Mem Martins, Portugal, 2024. [Google Scholar]
- Cardoso, J.V.J.C. Os Solos de Portugal: Sua Classificação, Caracterização e Génese; 1-A sul do rio Tejo, Secretaria de Estado da Agricultura, Direcção-General dos Serviços Agricolas: Lisbon, Portugal, 1965. [Google Scholar]
- D’Urso, G.; Belmonte, A.C. Operative approaches to determine crop water requirements from earth observation data: Methodologies and applications. AIP Conf. Proc. 2016, 852, 14–25. [Google Scholar] [CrossRef]
- Mateos, L.; González-Dugo, M.P.; Testi, L.; Villalobos, F.J. Monitoring evapotranspiration of irrigated crops using crop coefficients derived from time series of satellite images. I. Method validation. Agric. Water Manag. 2013, 125, 81–91. [Google Scholar] [CrossRef]
- Rolim, J.; Navarro, A.; Vilar, P.; Saraiva, C.; Catalao, J. Crop data retrieval using earth observation data to support agricultural water management. Eng. Agric. 2019, 39, 381–390. [Google Scholar] [CrossRef]
- Alves, I.; Cameira, M. Evapotranspiration estimation performance of root zone water quality model: Evaluation and improvement. Agric. Water Manag. 2002, 57, 61–73. [Google Scholar] [CrossRef]
- Ferreira, A.; Rolim, J.; Paredes, P.; Cameira, M.R. Assessing Spatio-Temporal Dynamics of Deep Percolation Using Crop Evapotranspiration Derived from Earth Observations through Google Earth Engine. Water 2022, 14, 2324. [Google Scholar] [CrossRef]
- Teixeira, J.L.; Pereira, L.S. ISAREG, an irrigation scheduling model. ICID Bull. 1992, 41, 29–48. [Google Scholar]
- Martín de Santa Olalla, F.; Calera, A.; Domínguez, A. Monitoring irrigation water use by combining Irrigation Advisory Service, and remotely sensed data with a geographic information system. Agric. Water Manag. 2003, 61, 111–124. [Google Scholar] [CrossRef]
- Deines, J.M.; Kendall, A.D.; Butler, J.J.; Basso, B.; Hyndman, D.W. Combining Remote Sensing and Crop Models to Assess the Sustainability of Stakeholder-Driven Groundwater Management in the US High Plains Aquifer. Water Resour. Res. 2021, 57, e2020WR027756. [Google Scholar] [CrossRef]
- Ott, T.J.; Majumdar, S.; Huntington, J.L.; Pearson, C.; Bromley, M.; Minor, B.A.; ReVelle, P.; Morton, C.G.; Sueki, S.; Beamer, J.P.; et al. Toward field-scale groundwater pumping and improved groundwater management using remote sensing and climate data. Agric. Water Manag. 2024, 302, 109000. [Google Scholar] [CrossRef]
- Kutner, M.; Nachtsheim, C.; Neter, J.; Li, W. Applied Linear Statistical Models; McGraw-Hill/Irwin: New York, NY, USA, 2005. [Google Scholar]
- Vilar, P. Utilização de Imagens de Deteção Remota Para Monitorização das Culturas e Estimação das Necessidades de Rega. Master’s Thesis, University of Lisbon, Lisbon, Portugal, 2015. [Google Scholar]
- Zhao, H.; Yang, Z.; Di, L.; Pei, Z. Evaluation of Temporal Resolution Effect in Remote Sensing Based Crop Phenology Detection Studies. In Computer and Computing Technologies in Agriculture V; CCTA 2011. IFIP Advances in Information and Communication Technology; Li, D., Chen, Y., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; Volume 369. [Google Scholar] [CrossRef]
- Zeng, L.; Wardlow, B.D.; Hu, S.; Zhang, X.; Zhou, G.; Peng, G.; Xiang, D.; Wang, R.; Meng, R.; Wu, W. A novel strategy to reconstruct NDVI time-series with high temporal resolution from MODIS multi-temporal composite products. Remote Sens. 2021, 13, 1397. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, X.; Yu, Y.; Gao, F.; Yang, Z. Real-time monitoring of crop phenology in the Midwestern United States using VIIRS observations. Remote Sens. 2018, 10, 1540. [Google Scholar] [CrossRef]
- Alvino, A.; Marino, S. Remote Sensing for Irrigation of Horticultural Crops. Horticulturae 2017, 3, 40. [Google Scholar] [CrossRef]
- Lacerda, L.N.; Snider, J.; Cohen, Y.; Liakos, V.; Levi, M.R.; Vellidis, G. Correlation of UAV and satellite-derived vegetation indices with cotton physiological parameters and their use as a tool for scheduling variable rate irrigation in cotton. Precis. Agric. 2022, 23, 2089–2114. [Google Scholar] [CrossRef]
- Serra, J.; Paredes, P.; Cordovil, C.; Cruz, S.; Hutchings, N.J.; Cameira, M.R. Is irrigation water an overlooked source of nitrogen in agriculture? Agric. Water Manag. 2023, 278, 108147. [Google Scholar] [CrossRef]
- Serra, J.; Cordovil, C.M.; Cruz, S.; Cameira, M.R.; Hutchings, N.J. Challenges and solutions in identifying agricultural pollution hotspots using gross nitrogen balances. Agric. Ecosyst. Environ. 2019, 283, 106568. [Google Scholar] [CrossRef]
- Garnier, J.; Billen, G.; Aguilera, E.; Lassaletta, L.; Einarsson, R.; Serra, J.; Cameira, M.R.; Marques-dos-Santos, C.; Sanz-Cobena, A. How much can changes in the agro-food system reduce agricultural nitrogen losses to the environment? Example of a temperate-Mediterranean gradient. J. Environ. Manag. 2023, 337, 117732. [Google Scholar] [CrossRef]
HUA | Crop | Soil * | IS | NIR | HUA | Crop | Soil * | IS | NIR | ||
---|---|---|---|---|---|---|---|---|---|---|---|
30% | 80% | 30% | 80% | ||||||||
1 | M3 | RG | SS8 | 435 | 429 | 21 | M3 | FL | P1 | 433 | 428 |
2 | M3 | RG | SS8 | 432 | 425 | 22 | M9 | FL | SS 4 | 390 | 381 |
3 | M3 | RG | SS6 | 435 | 429 | 23 | M9 | FL | SS4 | 397 | 391 |
4 | M8 | FL | SS3 | 481 | 476 | 24 | M8 | FL | P3 | 481 | 476 |
5 | M2 | FL | SS12 | 452 | 445 | 25 | M8 | LV | P3 | 480 | 472 |
6 | M6 | FL | P8 | 455 | 445 | 26 | M4 | FL | P2 | 440 | 434 |
7 | M6 | FL | P8 | 461 | 455 | 27 | M4 | FL | SS1 | 440 | 434 |
8 | M9 | FL | P9 | 390 | 381 | 28 | M4 | LV | P2 | 438 | 431 |
9 | M9 | FL | P9 | 390 | 382 | 29 | M4 | FL | DI2 | 440 | 434 |
10 | M9 | FL | P9 | 397 | 391 | 30 | M4 | LV | DI2 | 438 | 431 |
11 | M1 | FL | SS10 | 446 | 438 | 31 | M7 | FL | P6 | 484 | 479 |
12 | M2 | FL | SS11 | 452 | 445 | 32 | M7 | FL | P5 | 484 | 479 |
13 | M1 | FL | SS9 | 446 | 438 | 33 | M8 | FL | SS13 | 481 | 476 |
14 | M1 | RG | SS9 | 454 | 448 | 34 | M8 | LV | SS13 | 480 | 472 |
15 | M4 | FL | SS5 | 433 | 425 | 35 | M8 | FL | SS2 | 481 | 476 |
16 | M4 | RG | SS5 | 441 | 435 | 36 | M8 | FL | P4 | 481 | 476 |
17 | M9 | FL | P7 | 390 | 381 | 37 | M8 | LV | SS2 | 480 | 472 |
18 | M9 | FL | P7 | 397 | 391 | 38 | M8 | FL | DI1 | 475 | 465 |
19 | M5 | FL | SS7 | 424 | 417 | 39 | M8 | FL | DI1 | 481 | 476 |
20 | M5 | RG | SS7 | 430 | 422 | 40 | M8 | LV | P 4 | 480 | 472 |
HUA | Crop | Soil * | IS | NIR | HUA | Crop | Soil * | IS | NIR | ||
---|---|---|---|---|---|---|---|---|---|---|---|
30% | 80% | 30% | 80% | ||||||||
1 | M1 | RG | SS8 | 423 | 417 | 21 | M1 | FL | P1 | 422 | 416 |
2 | M1 | RG | SS8 | 419 | 413 | 22 | M7 | FL | SS4 | 401 | 392 |
3 | M1 | RG | SS6 | 423 | 417 | 23 | M7 | FL | SS4 | 407 | 402 |
4 | M5 | FL | SS3 | 463 | 457 | 24 | M5 | FL | P3 | 463 | 457 |
5 | M2 | FL | SS12 | 437 | 429 | 25 | M5 | LV | P3 | 461 | 454 |
6 | M4 | FL | P8 | 432 | 423 | 26 | M2 | FL | P2 | 444 | 439 |
7 | M4 | FL | P8 | 438 | 433 | 27 | M2 | LV | P2 | 442 | 435 |
8 | M7 | FL | P9 | 401 | 392 | 28 | M2 | FL | DI2 | 444 | 439 |
9 | M7 | FL | P9 | 400 | 393 | 29 | M2 | LV | DI2 | 442 | 435 |
10 | M7 | FL | P9 | 407 | 402 | 30 | M 2 | FL | SS1 | 444 | 439 |
11 | M1 | FL | SS10 | 415 | 407 | 31 | M5 | FL | P6 | 463 | 457 |
12 | M2 | FL | SS11 | 437 | 429 | 32 | M5 | FL | P5 | 463 | 457 |
13 | M1 | FL | SS9 | 415 | 407 | 33 | M5 | FL | SS13 | 463 | 457 |
14 | M1 | RG | SS9 | 423 | 417 | 34 | M5 | LV | SS13 | 461 | 454 |
15 | M2 | FL | SS5 | 437 | 429 | 35 | M6 | FL | SS2 | 537 | 457 |
16 | M2 | RG | SS5 | 445 | 439 | 36 | M6 | LV | SS2 | 535 | 454 |
17 | M7 | FL | P7 | 401 | 392 | 37 | M5 | FL | DI1 | 456 | 447 |
18 | M7 | FL | P7 | 407 | 402 | 38 | M5 | FL | DI1 | 463 | 457 |
19 | M3 | FL | SS7 | 428 | 421 | 39 | M5 | FL | P4 | 463 | 457 |
20 | M3 | RG | SS7 | 434 | 427 | 40 | M5 | LV | P4 | 461 | 454 |
IW | IS | Ae (ha) | IW | IS | Ae (ha) | ||
---|---|---|---|---|---|---|---|
IW1 | P3 | DI1 | 12.4 | IW11 | P9 | SS4 | 13.6 |
IW2 | P3 | DI1 | 12.4 | IW12 | SS7 | 9.4 | |
IW3 | P4 SS3 | SS13 | 11.8 | IW13 | SS7 | 9.4 | |
IW4 | SS2 | 10.0 | IW14 | SS8 | 9.8 | ||
IW5 | P2 SS1 | DI2 | 11.3 | IW15 | P6 | 17.9 | |
IW6 | P1 | 7.9 | IW16 | SS9 SS10 SS11 | SS12 SS6 | 6.3 | |
IW7 | P1 | 7.9 | IW17 | P8 | 9.7 | ||
IW8 | P1 | 7.9 | IW18 | SS5 | 8.1 | ||
IW9 | P7 | 18.8 | IW19 | SS9 SS10 SS11 | SS12 SS6 | 6.3 | |
IW10 | P5 | 11.4 | IW20 | SS9 SS10 SS11 | SS12 SS6 | 6.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Catarino, L.; Rolim, J.; Paredes, P.; Cameira, M.d.R. Estimation of Groundwater Abstractions from Irrigation Wells in Mediterranean Agriculture: An Ensemble Approach Integrating Remote Sensing, Soil Water Balance, and Spatial Analysis. Sustainability 2025, 17, 5618. https://doi.org/10.3390/su17125618
Catarino L, Rolim J, Paredes P, Cameira MdR. Estimation of Groundwater Abstractions from Irrigation Wells in Mediterranean Agriculture: An Ensemble Approach Integrating Remote Sensing, Soil Water Balance, and Spatial Analysis. Sustainability. 2025; 17(12):5618. https://doi.org/10.3390/su17125618
Chicago/Turabian StyleCatarino, Luís, João Rolim, Paula Paredes, and Maria do Rosário Cameira. 2025. "Estimation of Groundwater Abstractions from Irrigation Wells in Mediterranean Agriculture: An Ensemble Approach Integrating Remote Sensing, Soil Water Balance, and Spatial Analysis" Sustainability 17, no. 12: 5618. https://doi.org/10.3390/su17125618
APA StyleCatarino, L., Rolim, J., Paredes, P., & Cameira, M. d. R. (2025). Estimation of Groundwater Abstractions from Irrigation Wells in Mediterranean Agriculture: An Ensemble Approach Integrating Remote Sensing, Soil Water Balance, and Spatial Analysis. Sustainability, 17(12), 5618. https://doi.org/10.3390/su17125618