Exploring the Impact of Government Subsidies on R&D Cost Behavior in the Chinese New Energy Vehicles Industry
Abstract
:1. Introduction
1.1. Cost Stickiness and Managerial Discretion
1.2. R&D Cost Behavior and Its Unique Dynamics
1.3. Government Subsidies: Conflicting Views and New Questions
1.4. Theoretical Contribution: Signaling and Agency Perspectives
1.5. Empirical Context: China’s NEV Industry
1.6. Key Findings
1.7. Contributions
2. Related Literature and Hypotheses Development
2.1. Asymmetric Cost Behavior
2.2. Government Subsidies and R&D Expenditures
2.3. The Signaling Effect of Subsidies on R&D Cost Behavior
2.4. The Moderating Role of Green Innovation
3. Research Design
3.1. New Energy Vehicle Sector
3.2. Data and Sample Selection
3.3. Variable Measurement
3.3.1. Independent Variable
3.3.2. Dependent Variable
3.3.3. Moderator Variable
3.3.4. Control Variables
3.4. Empirical Model
- Model A
- Mode B
3.5. Descriptive Statistics
4. Empirical Results
4.1. Regression Results
4.2. Additional Analyses
4.2.1. Firm Size
4.2.2. Ownership Structure (SOEs vs. Non-SOEs)
4.2.3. Managerial Ownership
4.3. Robustness Test
4.3.1. Alternative R&D Costs and Subsidies Components
4.3.2. Accounting for Endogeneity
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Anderson, M.C.; Banker, R.D.; Janakiraman, S.N. Are selling, general, and administrative costs “sticky”? J. Account. Res. 2003, 41, 47–63. [Google Scholar] [CrossRef]
- Jang, Y.; Yehuda, N. Resource adjustment costs, cost stickiness, and value creation in mergers and acquisitions. Contemp. Account. Res. 2021, 38, 2264–2301. [Google Scholar] [CrossRef]
- Golden, J.; Mashruwala, R.; Pevzner, M. Labor adjustment costs and asymmetric cost behavior: An extension. Manag. Account. Res. 2020, 46, 100647. [Google Scholar] [CrossRef]
- Chang, H.; Dai, X.; Lohwasser, E.; Qiu, Y. Organized labor effects on SG&A cost behavior. Contemp. Account. Res. 2022, 39, 404–427. [Google Scholar]
- Banker, R.D.; Byzalov, D.; Ciftci, M.; Mashruwala, R. The moderating effect of prior sales changes on asymmetric cost behavior. J. Manag. Account. Res. 2014, 26, 221–242. [Google Scholar] [CrossRef]
- Ciftci, M.; Zoubi, T.A. The magnitude of sales change and asymmetric cost behavior. J. Manag. Account. Res. 2019, 31, 65–81. [Google Scholar] [CrossRef]
- Chen, J.V.; Kama, I.; Lehavy, R. A contextual analysis of the impact of managerial expectations on asymmetric cost behavior. Rev. Account. Stud. 2019, 24, 665–693. [Google Scholar] [CrossRef]
- Banker, R.D.; Huang, R.; Natarajan, R. Equity incentives and long-term value created by SG&A expenditure. Contemp. Account. Res. 2011, 28, 794–830. [Google Scholar]
- Chen, C.X.; Lu, H.; Sougiannis, T. The agency problem, corporate governance, and the asymmetrical behavior of selling, general, and administrative costs. Contemp. Account. Res. 2012, 29, 252–282. [Google Scholar] [CrossRef]
- Kama, I.; Weiss, D. Do earnings targets and managerial incentives affect sticky costs? J. Account. Res. 2013, 51, 201–224. [Google Scholar] [CrossRef]
- Dierynck, B.; Landsman, W.R.; Renders, A. Do managerial incentives drive cost behavior? Evidence about the role of the zero earnings benchmark for labor cost behavior in private Belgian firms. Account. Rev. 2012, 87, 1219–1246. [Google Scholar] [CrossRef]
- Holzhacker, M.; Krishnan, R.; Mahlendorf, M.D. The impact of changes in regulation on cost behavior. Contemp. Account. Res. 2015, 32, 534–566. [Google Scholar] [CrossRef]
- Li, W.L.; Zheng, K. Rollover risk and managerial cost adjustment decisions. Account. Financ. 2020, 60, 2843–2878. [Google Scholar] [CrossRef]
- Costa, M.D.; Habib, A. Trade credit and cost stickiness. Account. Financ. 2021, 61, 1139–1179. [Google Scholar] [CrossRef]
- Costa, M.D.; Habib, A. Cost stickiness and firm value. J. Manag. Control 2023, 34, 235–273. [Google Scholar] [CrossRef]
- Kim, J.B.; Lee, J.J.; Park, J.C. Internal control weakness and the asymmetrical behavior of selling, general, and administrative costs. J. Account. Audit. Financ. 2022, 37, 259–292. [Google Scholar] [CrossRef]
- Griliches, Z. Issues in assessing the contribution of research and development to productivity growth. Bell J. Econ. 1979, 10, 92–116. [Google Scholar] [CrossRef]
- Hall, B.H.; Griliches, Z.; Hausman, J.A. Patents and R&D: Is there a lag? (No. w1454). Natl. Bur. Econ. Res. 1984, 27, 265–284. [Google Scholar]
- Banker, R.D.; Fang, S.; Mehta, M.N. Anomalous operating performance during economic slowdowns. J. Manag. Account. Res. 2020, 32, 57–83. [Google Scholar] [CrossRef]
- Lee, W.J.; Pittman, J.; Saffar, W. Political uncertainty and cost stickiness: Evidence from national elections around the world. Contemp. Account. Res. 2020, 37, 1107–1139. [Google Scholar] [CrossRef]
- Griliches, Z. Productivity, R&D, and basic research at the firm level in the 1970s (No. w1547). Natl. Bur. Econ. Res. 1985, 76, 41–154. [Google Scholar]
- Lerner, J. The government as venture capitalist: The long-run impact of the SBIR program. J. Priv. Equity 2000, 3, 55–78. [Google Scholar] [CrossRef]
- Kleer, R. Government R&D subsidies as a signal for private investors. Res. Policy 2010, 39, 1361–1374. [Google Scholar]
- David, P.A.; Hall, B.H.; Toole, A.A. Is public R&D a complement or substitute for private R&D? A review of the econometric evidence. Res. Policy 2000, 29, 497–529. [Google Scholar]
- Mamuneas, T.P.; Nadiri, M.I. Public R&D policies and cost behavior of the US manufacturing industries. J. Public Econ. 1996, 63, 57–81. [Google Scholar]
- Gao, Y.; Zhang, S.; Liu, X. Too much of a good thing: The dual effect of R&D subsidy on firms’ exploratory innovation. IEEE Trans. Eng. Manag. 2021, 70, 1639–1651. [Google Scholar]
- Spence, M. Job Market Signaling. Q. J. Econ. 1973, 87, 355–374. [Google Scholar] [CrossRef]
- Jensen, M.C. Agency costs of free cash flow, corporate finance, and takeovers. Am. Econ. Rev. 1986, 76, 323–329. [Google Scholar]
- Messner, S. Endogenized technological learning in an energy systems model. J. Evol. Econ. 1997, 7, 291–313. [Google Scholar] [CrossRef]
- Grübler, A.; Nakićenović, N.; Victor, D.G. Dynamics of energy technologies and global change. Energy Policy 1999, 27, 247–280. [Google Scholar] [CrossRef]
- Anderson, S.W.; Lanen, W.N. Understanding cost management: What can we learn from the evidence on ‘sticky costs’? 2007. [Google Scholar] [CrossRef]
- Banker, R.D.; Ciftci, M.; Mashruwala, R. Managerial optimism, prior period sales changes, and sticky cost behavior. SSRN Electron. J. 2008. [Google Scholar] [CrossRef]
- Weiss, D. Cost behavior and analysts’ earnings forecasts. Account. Rev. 2010, 85, 1441–1471. [Google Scholar] [CrossRef]
- Zhu, G.; Hu, W.; Peng, T.; Xue, C. The influence of corporate financialization on asymmetric cost behavior: Weakening or worsening. J. Bus. Econ. Manag. 2021, 22, 21–41. [Google Scholar] [CrossRef]
- Xu, J.; Wang, X.; Liu, F. Government subsidies, R&D investment and innovation performance: Analysis from pharmaceutical sector in China. Technol. Anal. Strateg. Manag. 2021, 33, 535–553. [Google Scholar]
- Chung, B.; Ryu, Y.; Ahn, S. The effect of government R&D subsidies on corporate R&D investment in South Korea: Verification using meta-analysis. Asian J. Technol. Innov. 2023, 31, 72–93. [Google Scholar]
- Jin, H.; Lee, H. Effectiveness of R&D subsidies depending on firm financial risks: Evidence from Chinese listed firms. Asian J. Technol. Innov. 2024, 32, 672–699. [Google Scholar]
- Bointner, R. Innovation in the energy sector: Lessons learnt from R&D expenditures and patents in selected IEA countries. Energy Policy 2014, 73, 733–747. [Google Scholar]
- Khezri, M.; Heshmati, A.; Khodaei, M. The role of R&D in the effectiveness of renewable energy determinants: A spatial econometric analysis. Energy Econ. 2021, 99, 105287. [Google Scholar]
- Chang, K.; Wan, Q.; Lou, Q.; Chen, Y.; Wang, W. Green fiscal policy and firms’ investment efficiency: New insights into firm-level panel data from the renewable energy industry in China. Renew. Energy 2020, 151, 589–597. [Google Scholar] [CrossRef]
- Shrestha, A.; Mustafa, A.A.; Htike, M.M.; You, V.; Kakinaka, M. Evolution of energy mix in emerging countries: Modern renewable energy, traditional renewable energy, and non-renewable energy. Renew. Energy 2022, 199, 419–432. [Google Scholar] [CrossRef]
- Brüggen, A.; Zehnder, J.O. SG&A cost stickiness and equity-based executive compensation: Does empire building matter? J. Manag. Control. 2014, 25, 169–192. [Google Scholar]
- Wu, A. The signal effect of government R&D subsidies in China: Does ownership matter? Technol. Forecast. Soc. Change 2017, 117, 339–345. [Google Scholar]
- Narayanan, V.K.; Pinches, G.E.; Kelm, K.M.; Lander, D.M. The influence of voluntarily disclosed qualitative information. Strateg. Manag. J. 2000, 21, 707–722. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, L.; Ren, H.; Wang, L.; Zhang, S.; Aamir, M. Influence of financial subsidies on innovation efficiency of start-up enterprises. Front. Environ. Sci. 2022, 10, 1060334. [Google Scholar] [CrossRef]
- Wu, W.S.; Zhao, K. Government R&D subsidies and enterprise R&D activities: Theory and evidence. Econ. Res.-Ekon. Istraz. 2022, 35, 391–408. [Google Scholar]
- Wang, H.; Xue, C.; Li, Y.; Zhao, P. The impact of government subsidies on the human resources and innovation output of makerspaces according to signal theory. Int. J. Technol. Manag. 2023, 92, 139–158. [Google Scholar] [CrossRef]
- Akhtaruzzaman, M.; Banerjee, A.K.; Boubaker, S. Government intervention and green innovation in renewable energy. Energy Econ. 2025, 145, 108185. [Google Scholar] [CrossRef]
- Banker, R.D.; Byzalov, D.; Fang, S.; Liang, Y. Cost management research. J. Manag. Account. Res. 2018, 30, 187–209. [Google Scholar] [CrossRef]
- Adams, R.; Bessant, J.; Phelps, R. Innovation management measurement: A review. Int. J. Manag. Rev. 2006, 8, 21–47. [Google Scholar] [CrossRef]
- Wang, Q.; Wu, Q. Evaluation on innovation efficiency of successor of Chinese listed family business based on DEA. Int. J. Innov. Sci. 2019, 11, 454–470. [Google Scholar] [CrossRef]
- Erdin, C.; Çağlar, M. National innovation efficiency: A DEA-based measurement of OECD countries. Int. J. Innov. Sci. 2023, 15, 427–456. [Google Scholar] [CrossRef]
- Cao, H.; Chen, Z. The driving effect of internal and external environment on green innovation strategy-The moderating role of top management’s environmental awareness. Nankai Bus. Rev. Int. 2019, 10, 342–361. [Google Scholar] [CrossRef]
- Zhang, D.; Jin, Y. R&D and environmentally induced innovation: Does financial constraint play a facilitating role? Int. Rev. Financ. Anal. 2021, 78, 101918. [Google Scholar]
- Sun, X.; Yu, R.; Wang, Y.; Colombage, S.R. Do government subsidies stimulate firms’ R&D efforts? Empirical evidence from China. Asian J. Technol. Innov. 2020, 28, 163–180. [Google Scholar]
- Xiang, X.; Liu, C.; Yang, M. Who is financing corporate green innovation? Int. Rev. Econ. Financ. 2022, 78, 321–337. [Google Scholar] [CrossRef]
- Jiang, Z.; Xu, C. Policy incentives, government subsidies, and technological innovation in new energy vehicle enterprises: Evidence from China. Energy Policy 2023, 177, 113527. [Google Scholar] [CrossRef]
- Ren, H.; Liu, Z. The impact of government subsidies on R&D investment of listed companies in China’s new energy vehicle industry-based on the perspective of industrial chain. Asian J. Technol. Innov. 2024, 32, 364–390. [Google Scholar]
- Baysinger, B.D.; Kosnik, R.D.; Turk, T.A. Effects of board and ownership structure on corporate R&D strategy. Acad. Manag. J. 1991, 34, 205–214. [Google Scholar]
- Ibhagui, O. Do large firms benefit more from R&D investment? Eur. J. Appl. Econ. 2019, 16, 155–173. [Google Scholar]
- Muhammad, H.; Migliori, S.; Consorti, A. Corporate governance and R&D investment: Does firm size matter? Technol. Anal. Strateg. Manag. 2024, 36, 518–532. [Google Scholar]
- González, X.; Pazó, C. Do public subsidies stimulate private R&D spending? Res. Policy. 2008, 37, 371–389. [Google Scholar]
- Yu, F.; Guo, Y.; Le-Nguyen, K.; Barnes, S.J.; Zhang, W. The impact of government subsidies and enterprises’ R&D investment: A panel data study from renewable energy in China. Energy Policy 2016, 89, 106–113. [Google Scholar]
- Jin, Z.; Shang, Y.; Xu, J. The impact of government subsidies on private R&D and firm performance: Does ownership matter in China’s manufacturing industry? Sustainability 2018, 10, 2205. [Google Scholar]
- Sun, W.; Zhang, X.; Hazarika, N. Dilemmas of R&D investment risks and sustainability in the clean-tech economy: Evidence from Nasdaq clean edge index components. Int. J. Green. Energy 2023, 20, 139–152. [Google Scholar]
- Baber, W.R.; Fairfield, P.M.; Haggard, J.A. The effect of concern about reported income on discretionary spending decisions: The case of research and development. Account. Rev. 1991, 66, 818–829. [Google Scholar]
Variable | N | Mean | SD | Min | Max | Median |
---|---|---|---|---|---|---|
ΔRD | 3829 | 0.203 | 0.382 | −0.915 | 1.811 | 0.139 |
R&D/Sales | 3825 | 0.042 | 0.035 | 0 | 0.475 | 0.039 |
R&D/Employee | 3825 | 41,231 | 46,389 | 0 | 860,172 | 30,675 |
ΔSales | 3829 | 0.138 | 0.274 | −0.678 | 1.211 | 0.121 |
Sub | 2914 | 0.007 | 0.011 | 0 | 0.217 | 0.005 |
Sdec | 3825 | 0.11 | 0.313 | 0 | 1 | 0 |
Dec | 3825 | 0.257 | 0.437 | 0 | 1 | 0 |
AI | 3825 | 0.552 | 0.538 | −0.738 | 2.336 | 0.533 |
EI | 3825 | 0.142 | 0.097 | 0.009 | 0.551 | 0.123 |
GDP | 3825 | 0.098 | 0.04 | 0.027 | 0.184 | 0.101 |
Lev | 3825 | 0.442 | 0.19 | 0.069 | 0.956 | 0.438 |
SOE | 3825 | 0.266 | 0.442 | 0 | 1 | 0 |
Size | 3825 | 22.12 | 1.221 | 19.52 | 25.68 | 21.96 |
GI1 | 3430 | 0.527 | 0.918 | 0 | 5.958 | 0 |
GI2 | 3430 | 0.513 | 1.007 | 0 | 6.339 | 0 |
ΔRD | ΔSales | Dec | Sub | Sdec | AI | EI | GDP | Lev | |
---|---|---|---|---|---|---|---|---|---|
ΔRD | 1 | ||||||||
ΔSales | 0.357 *** | 1 | |||||||
Dec | −0.241 *** | −0.657 *** | 1 | ||||||
Sub | 0.048 *** | 0.028 * | −0.02 | 1 | |||||
Sdec | −0.145 *** | −0.417 *** | 0.598 *** | −0.006 | 1 | ||||
AI | −0.062 *** | −0.152 *** | 0.183 *** | 0.034 ** | 0.151 *** | 1 | |||
EI | 0.012 | −0.098 *** | 0.051 *** | 0.123 *** | 0.056 *** | 0.258 *** | 1 | ||
GDP | 0.110 *** | 0.160 *** | −0.130 *** | −0.014 | −0.070 *** | −0.095 *** | 0.085 *** | 1 | |
Lev | −0.088 *** | −0.014 | 0.075 *** | −0.041 ** | 0.032 ** | −0.144 *** | −0.144 *** | 0.027 * | 1 |
Variable | VIF | 1/VIF |
---|---|---|
Dec | 2.31 | 0.433 |
ΔSales | 1.8 | 0.555 |
Sdec | 1.57 | 0.639 |
AI | 1.14 | 0.879 |
EI | 1.13 | 0.888 |
GDP | 1.05 | 0.951 |
Lev | 1.05 | 0.953 |
Sub | 1.02 | 0.981 |
Mean VIF | 1.38 |
ΔRD | Pred. | Model A | |||
---|---|---|---|---|---|
(1) | (2) | (3) | (4) | ||
ΔSales (λ0) | + | 0.524 *** | 0.885 *** | 0.789 *** | 0.789 *** |
(11.394) | (6.162) | (5.211) | (5.189) | ||
Dec×ΔSales (α0) | − | −0.193 ** | −0.654 ** | −0.493 * | −0.493 * |
(−2.133) | (−2.431) | (−1.720) | (−1.712) | ||
ΔSales×Sub (λ1) | + | 0.048 | 0.039 | 0.039 | |
(1.421) | (0.94) | (0.936) | |||
Dec×ΔSales×Sub (α1) | − | −0.222 *** | −0.229 *** | −0.229 *** | |
(−3.059) | (−2.732) | (−2.720) | |||
Dec×ΔSales×AI | 0.267 ** | 0.092 | 0.092 | ||
(2.541) | (0.723) | (0.719) | |||
Dec×ΔSales×EI | −1.393 ** | −0.526 | −0.526 | ||
(−2.518) | (−0.802) | (−0.798) | |||
Dec×ΔSales×Sdec | 0.088 | 0.122 | 0.122 | ||
(0.886) | (1.175) | (1.17) | |||
Dec×ΔSales×GDP | −0.918 | −0.722 | −0.722 | ||
(−0.477) | (−0.379) | (−0.377) | |||
Dec×ΔSales×Lev | 1.035 *** | 0.652 ** | 0.652 ** | ||
(4.101) | (2.096) | (2.087) | |||
ΔSales×AI | −0.221 *** | −0.159 ** | −0.159 ** | ||
(−4.086) | (−2.478) | (−2.467) | |||
ΔSales×EI | 1.187 *** | 0.797 * | 0.797 * | ||
(3.61) | (1.947) | (1.938) | |||
ΔSales×GDP | −0.024 ** | −0.025 ** | −0.025 ** | ||
(−2.557) | (−2.356) | (−2.345) | |||
ΔSales×Lev | −0.287 * | −0.119 | −0.119 | ||
(−1.680) | (−0.622) | (−0.620) | |||
Intercept | 0.161 *** | −0.186 *** | 0.081 | 0.112 *** | |
(3.424) | (−3.139) | (1.64) | (11.564) | ||
N | 3825 | 3825 | 3829 | 3761 | |
Adjusted R2 | 0.162 | 0.186 | 0.158 | 0.273 | |
Industry | No | Yes | No | Yes | |
Year | Yes | Yes | Yes | Yes | |
Firm | Yes | No | Yes | Yes |
(1) | (2) | (3) | ||||
---|---|---|---|---|---|---|
ΔRD | Sub = 0 | Sub = 1 | Sub = 0 | Sub = 1 | Sub = 0 | Sub = 1 |
ΔSales (λ0) | 0.463 * | 1.053 *** | 0.618 *** | 0.989 *** | 0.470 * | 0.989 *** |
(1.96) | (5.977) | (3.364) | (5.035) | (1.899) | (5.008) | |
Dec×ΔSales (α0) | −0.047 | −0.940 ** | 0.049 | −0.866 * | 0.226 | −0.866 * |
(−0.116) | (−2.330) | (0.129) | (−1.927) | (0.539) | (−1.917) | |
Intercept | −0.132 | −0.199 *** | 0.082 | 0.114 ** | 0.079 *** | 0.116 *** |
(−1.294) | (−2.646) | (0.643) | (2.018) | (3.911) | (9.878) | |
Controls and their interaction terms | Included | |||||
N | 717 | 3108 | 718 | 3111 | 617 | 3047 |
Adjusted R2 | 0.331 | 0.168 | 0.262 | 0.135 | 0.531 | 0.275 |
Industry | Yes | No | Yes | |||
Year | Yes | Yes | Yes | |||
Firm | No | Yes | Yes |
ΔRD | Pred. | Model B |
---|---|---|
I×ΔSales (α1) | 0.464 *** | |
(3.266) | ||
I×ΔSales×Des (α2) | − | −0.448 ** |
(−1.994) | ||
I×ΔSales×Sub (α3) | −0.001 | |
(−0.028) | ||
I×ΔSales×Sub×Des (α4) | − | −0.273 * |
(−1.954) | ||
D×ΔSales (λ1) | 0.495 *** | |
(2.708) | ||
D×Des×ΔSales (λ2) | + | 0.006 |
(0.022) | ||
D×ΔSales×Sub (λ3) | 0.008 | |
(0.112) | ||
D×Des×ΔSales×Sub (λ4) | ? | −0.215 ** |
(−2.292) | ||
−4.338 | ||
Intercept | 0.049 | |
(1.118) | ||
Controls and their interaction terms | Included | |
Adjusted R2 | 0.154 | |
Year | Yes |
Green Innovation | ||||
---|---|---|---|---|
ΔRD | High | Low | High | Low |
ΔSales (λ0) | 0.821 *** | 0.922 *** | 0.881 *** | 0.912 *** |
(3.858) | (5.264) | (3.908) | (5.264) | |
Dec×ΔSales (α0) | −1.258 ** | −0.461 | −1.058 ** | −0.531 * |
(−2.352) | (−1.418) | (−2.050) | (−1.671) | |
ΔSales×Sub (λ1) | 0.064 | 0.029 | 0.125 *** | −0.020 |
(1.315) | (0.687) | (4.141) | (−0.473) | |
Dec×ΔSales×Sub (α1) | −0.441 *** | −0.150 * | −0.524 *** | −0.089 |
(−2.770) | (−1.882) | (−3.535) | (−1.205) | |
Intercept | −0.294 | −0.177 *** | −0.458 * | −0.185 *** |
(−1.220) | (−2.872) | (−1.731) | (−2.898) | |
Controls and their interaction terms | Included | Included | ||
Ho: b0 (Dec×ΔSales×Sub) = b1 (Dec×ΔSales×Sub) Empirical p-value = 0.015 | Empirical p-value = 0.010 | |||
N | 1403 | 2422 | 1531 | 2294 |
Adjusted R2 | 0.193 | 0.16 | 0.240 | 0.190 |
Industry | Yes | Yes | Yes | Yes |
Year | Yes | Yes | Yes | Yes |
ΔR&D | Large | Small |
---|---|---|
ΔSales (λ0) | 0.691 *** | 0.919 *** |
(3.073) | (4.535) | |
Dec×ΔSales (α0) | −0.624 | −0.485 |
(−1.435) | (−1.374) | |
ΔSales×Sub (λ1) | 0.032 | 0.023 |
(0.631) | (0.32) | |
DecΔSales×Sub (α1) | −0.350 ** | −0.097 |
(−2.405) | (−0.889) | |
Intercept | −0.000 | 0.234 *** |
(−0.001) | (3.588) | |
Controls and their interaction terms | Included | |
N | 1917 | 1912 |
Adjusted R2 | 0.211 | 0.137 |
Firm | Yes | Yes |
Year | Yes | Yes |
ΔR&D | SOE = 1 | SOE = 0 |
---|---|---|
ΔSales (λ0) | 0.587 * | 0.873 *** |
(1.928) | (4.594) | |
Dec×ΔSales (α0) | −0.247 | −0.503 |
(−0.392) | (−1.492) | |
ΔSales×Sub (λ1) | 0.023 | 0.048 |
(0.323) | (0.988) | |
Dec×ΔSales×Sub (α1) | −0.147 | −0.290 ** |
(−1.312) | (−2.580) | |
Intercept | −0.025 | 0.189 ** |
(−0.414) | (2.222) | |
Controls and their interaction terms | Included | |
N | 1019 | 2806 |
Adjusted R2 | 0.126 | 0.18 |
firm | Yes | Yes |
year | Yes | Yes |
Management Stockholding | ||
---|---|---|
ΔRD | HIGH | LOW |
ΔSales (λ0) | 0.753 *** | 0.800 *** |
−3.458 | −4.084 | |
Dec×ΔSales (α0) | −0.073 | −0.494 |
(−0.136) | (−1.320) | |
ΔSales×Sub (λ1) | −0.017 | 0.049 |
(−0.322) | (0.968) | |
Dec×ΔSales×Sub (α1) | −0.348 ** | −0.199 ** |
(−2.285) | (−2.325) | |
Intercept | 0.09 | 0.044 |
−0.666 | −0.887 | |
Controls and their interaction terms | Included | |
Ho: b0 (Dec×ΔSales×Sub) = b1 (Dec×ΔSales×Sub) Empirical p-value = 0.077 | ||
N | 1933 | 1896 |
Adjusted R2 | 0.193 | 0.16 |
Firm | Yes | Yes |
Year | Yes | Yes |
Δln (R&D/Employee) | |||
---|---|---|---|
ΔSales (λ0) | 0.551 ** | 0.383 * | 0.452 ** |
(2.07) | (1.709) | (2.001) | |
Dec×ΔSales (α0) | −0.594 | −0.324 | −0.399 |
(−0.923) | (−0.611) | (−0.737) | |
ΔSales×Sub (λ1) | 0.017 | −0.011 | −0.012 |
(0.209) | (−0.153) | (−0.172) | |
Dec×ΔSales×Sub (α1) | −0.543 *** | −0.453 *** | −0.459 *** |
(−2.881) | (−2.958) | (−3.013) | |
Intercept | −0.049 | 0.039 | 0.887 *** |
(−0.213) | (0.234) | (5.548) | |
Controls and their interaction terms | Included | ||
N | 2915 | 2915 | 2915 |
R2 | 0.046 | 0.038 | 0.052 |
Industry | No | Yes | Yes |
Firm | Yes | Yes | Yes |
Year | Yes | No | Yes |
ΔR&D | (1) | (2) | (3) |
---|---|---|---|
ΔSales | 0.808 *** | 0.846 *** | 0.720 *** |
(5.136) | (5.777) | (4.598) | |
Dec×ΔSales | −0.496 * | −0.556 * | −0.363 |
(−1.683) | (−1.957) | (−1.144) | |
ΔSales×lnSub | 0.008 * | 0.007 * | 0.010 ** |
(1.925) | (1.8) | (2.055) | |
Dec×ΔSales×lnSub | −0.017 ** | −0.015 * | −0.018 ** |
(−2.189) | (−1.895) | (−1.988) | |
Intercept | 0.022 | −0.198 *** | 0.082 * |
−0.462 | (−3.400) | (1.676) | |
Controls and their interaction terms | Included | ||
N | 3825 | 3825 | 3825 |
Adjusted R2 | 0.171 | 0.185 | 0.157 |
Industry | No | Yes | Yes |
Firm | Yes | No | Yes |
Year | Yes | Yes | Yes |
Variable | Match Status | Treated Mean | Control Mean | % Bias | t | p-Value |
---|---|---|---|---|---|---|
ΔSales | Unmatched | 0.1374 | 0.1420 | −1.6 | −0.40 | 0.686 |
Matched | 0.1364 | 0.1300 | 2.2 | 0.87 | 0.382 | |
Size | Unmatched | 22.101 | 22.201 | −7.9 | −1.98 | 0.048 |
Matched | 22.099 | 22.074 | 2.0 | 0.81 | 0.417 | |
ΔSGA | Unmatched | 0.1446 | 0.1409 | 1.0 | 0.27 | 0.785 |
Matched | 0.1410 | 0.1457 | −1.3 | −0.56 | 0.574 | |
Top10 | Unmatched | 57.607 | 57.041 | 3.9 | 0.93 | 0.355 |
Matched | 57.587 | 58.558 | −6.7 | −2.65 | 0.008 | |
AI | Unmatched | 0.5395 | 0.6040 | −11.7 | −2.90 | 0.004 |
Matched | 0.5406 | 0.5446 | −0.7 | −0.29 | 0.771 | |
Soe | Unmatched | 0.2770 | 0.2204 | 13.1 | 3.10 | 0.002 |
Matched | 0.2763 | 0.2554 | 4.9 | 1.87 | 0.062 |
ΔRD | Model A |
---|---|
ΔSales (λ0) | 0.779 *** |
(3.01) | |
Dec×ΔSales (α0) | −0.382 |
(−0.86) | |
ΔSales×Sub (λ1) | 0.089 |
(1.31) | |
Dec×ΔSales×Sub (α1) | −0.237 ** |
(−2.47) | |
Dec×ΔSales×AI | 0.134 |
(0.77) | |
Dec×ΔSales×EI | −0.466 |
(−0.40) | |
Dec×ΔSales×Sdec | 0.261 * |
(1.84) | |
Dec×ΔSales×GDP | 1.375 |
(0.43) | |
Dec×ΔSales×Lev | −0.186 |
(−0.40) | |
ΔSales×AI | −0.256 *** |
(−3.05) | |
ΔSales×EI | 0.837 |
(0.91) | |
ΔSales×GDP | −0.041 ** |
(−2.01) | |
ΔSales×Lev | 0.349 |
(1.08) | |
−0.066 | |
Intercept | 0.013 |
(1.83) | |
Observations | 1265 |
Number of id | 438 |
R-squared | 0.233 |
Year | Yes |
Firm | Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Q.; Kim, D.-I. Exploring the Impact of Government Subsidies on R&D Cost Behavior in the Chinese New Energy Vehicles Industry. Sustainability 2025, 17, 4510. https://doi.org/10.3390/su17104510
Zhang Q, Kim D-I. Exploring the Impact of Government Subsidies on R&D Cost Behavior in the Chinese New Energy Vehicles Industry. Sustainability. 2025; 17(10):4510. https://doi.org/10.3390/su17104510
Chicago/Turabian StyleZhang, Qianqian, and Dong-Il Kim. 2025. "Exploring the Impact of Government Subsidies on R&D Cost Behavior in the Chinese New Energy Vehicles Industry" Sustainability 17, no. 10: 4510. https://doi.org/10.3390/su17104510
APA StyleZhang, Q., & Kim, D.-I. (2025). Exploring the Impact of Government Subsidies on R&D Cost Behavior in the Chinese New Energy Vehicles Industry. Sustainability, 17(10), 4510. https://doi.org/10.3390/su17104510