Evaluation of Ecological Function Restoration Effect for Degraded Natural Forests in Xiaoxinganling, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of Study Area
2.2. Plot Description
2.3. Deadfall Collection and Measurement
2.4. Determination of Soil Physical and Chemical Properties
2.5. Biodiversity Analysis
2.6. Determination of the Canopy Structure Parameters
2.7. Evaluation of the Ecological Restoration Effect
2.8. Standardized Raw Matrices
2.9. Determining the Principal Components
2.10. Determination of Weights
2.11. Evaluation Function for the Ecological Restoration
2.12. Hypothesis Checking
3. Results
3.1. Ecological Factor Analysis
3.2. Principal Component Analysis
3.3. Hypothesis Checking Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, H.; Qi, J.; Liu, D.; Yang, J.; Chen, M.; Li, S.; Li, C.; Li, C. Effects of Different Forest Types on Stoichiometric Characteristics of Carbon, Nitrogen, and Phosphorus in Tropical Soils, China. Sustainability 2024, 16, 480. [Google Scholar] [CrossRef]
- Wei, X.; Song, W.; Shao, Y.; Cai, X.W. Progress of Ecological Restoration Research Based on Bibliometric Analysis. Int. J. Environ. Res. Public Health 2023, 20, 520. [Google Scholar] [CrossRef]
- Meng, Y.B.; Zhang, Y.Y.; Li, C.X.; Wang, Z.C.; Li, Y.X. The Effect of Thinning Management on the Carbon Density of the Tree Layers in Larch–Birch Mixed Natural Secondary Forests of the Greater Khingan Range, Northeastern China. Forests 2022, 13, 1035. [Google Scholar] [CrossRef]
- Liu, H.; Dong, X.; Meng, Y.; Gao, T.; Mao, L.L.; Gao, R. A novel model to evaluate spatial structure in thinned conifer-broadleaved mixed natural forests. J. For. Res. 2023, 34, 1881–1898. [Google Scholar] [CrossRef]
- Cai, Z.; Yang, X. Research on Restoration of Heavy Metal Contaminated Farmland Based on Restoration Ecological Compensation Mechanism. Sustainability 2023, 15, 5210. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Z.; Chen, X. The Dominant Driving Force of Forest Change in the Yangtze River Basin, China: Climate Variation or Anthropogenic Activities? Forests 2022, 13, 82. [Google Scholar] [CrossRef]
- Mansourian, S.; Stanturf, J.A.; Derkyi, M.A.A.; Engel, V.L. Forest Landscape Restoration: Increasing the positive impacts of forest restoration or simply the area under tree cover? Restor. Ecol. 2017, 25, 178–183. [Google Scholar] [CrossRef]
- Jacobs, D.F.; Oliet, J.A.; Aronson, J.; Bolte, A.; Bullock, J.M.; Donoso, P.J.; Landhäusser, S.M.; Madsen, P.; Peng, S.L.; Rey-Benayas, J.M.; et al. Restoring forests: What constitutes success in the twenty-first century? New For. 2015, 46, 601–614. [Google Scholar] [CrossRef]
- Bhattarai, S.; Pant, B.; Laudari, H.K.; Rai, R.K.; Mukul, S.A. Strategic Pathways to Scale up Forest and Landscape Restoration: Insights from Nepal’s Tarai. Sustainability 2021, 13, 5237. [Google Scholar] [CrossRef]
- Zhang, B.S.; Dong, X.B.; Qu, H.F.; Gao, R.; Mao, L.L. Effects of thinning on ecosystem carbon storage and tree-shrub-herb diversity of a low-quality secondary forest in NE China. J. For. Res. 2023, 34, 977–991. [Google Scholar] [CrossRef]
- Gao, T.; Song, X.Y.; Ren, Y.Z.; Liu, H.; Qu, H.F.; Dong, X.B. Thinning intensity affects carbon sequestration and release in seasonal freeze–thaw areas. J. For. Res. 2023, 34, 993–1006. [Google Scholar] [CrossRef]
- Alayan, R.; Rotich, B.; Lakner, Z. A Comprehensive Framework for Forest Restoration after Forest Fires in Theory and Practice: A Systematic Review. Forests 2022, 13, 1354. [Google Scholar] [CrossRef]
- Noreika, N.; Pärtel, M.; Öckinger, E. Community completeness as a measure of restoration success: Multiple-study comparisons across ecosystems and ecological groups. Biodivers. Conserv. 2020, 29, 3807–3827. [Google Scholar] [CrossRef]
- Zhao, B.H.; Han, J.C.; Li, P.; Li, H.T.; Feng, Y.F.; Hu, B.Z.; Zhang, G.J.; Li, J. Evidence for Urbanization Effects on Eco-Environmental Quality: A Case Study of Guyuan City, China. Sustainability 2023, 15, 8629. [Google Scholar] [CrossRef]
- Hammond, M.E.; Pokorny, R.; Okae-Anti, D.; Gyedu, A.; Obeng, I.O. The composition and diversity of natural regeneration of tree species in gaps under different intensities of forest disturbance. J. For. Res. 2021, 32, 1843–1853. [Google Scholar] [CrossRef]
- Noulèkoun, F.; Mensah, S.; Birhane, E.; Son, Y.; Khamzina, A. Forest Landscape Restoration under Global Environmental Change: Challenges and a Future Roadmap. Forests 2021, 12, 276. [Google Scholar] [CrossRef]
- Peng, L.; Zhou, S.; Chen, T. Mapping Forest Restoration Probability and Driving Archetypes Using a Bayesian Belief Network and SOM: Towards Karst Ecological Restoration in Guizhou, China. Remote Sens. 2022, 14, 780. [Google Scholar] [CrossRef]
- Zhang, X.R.; Tan, X.F.; Wang, R.Q.; Xu, N.N.; Guo, W.H. Effects of soil moisture and light intensity on ecophysiological characteristics of Amorpha fruticosa seedlings. J. For. Res. 2013, 24, 293–300. [Google Scholar] [CrossRef]
- Liu, J.; Gao, W.; Liu, T.; Dai, L.; Wu, L.; Miao, H.; Yang, C. A Bibliometric Analysis of the Impact of Ecological Restoration on Carbon Sequestration in Ecosystems. Forests 2023, 14, 1442. [Google Scholar] [CrossRef]
- Bateman, H.L.; Merritt, D.M.; Johnson, J.B. Riparian Forest Restoration: Conflicting Goals, Trade-Offs, and Measures of Success. Sustainability 2012, 4, 2334–2347. [Google Scholar] [CrossRef]
- Xu, W.; Yao, W.; Bai, Z.; Yang, J.; Li, L. Ecological Risk Evaluation and Ecological Restoration Model of Mining in the Source Area of the Yellow River Basin. Land 2023, 12, 933. [Google Scholar] [CrossRef]
- Gatica-Saavedra, P.; Echeverría, C.; Nelson, C.R. Ecological indicators for assessing ecological success of forest restoration: A world review. Restor. Ecol. 2017, 25, 850–857. [Google Scholar] [CrossRef]
- Yu, E.X.; Zhang, M.F.; Xu, Y.L.; Zhang, S.; Meng, Z.Z.; Hou, Y.P. The Development and Application of a GIS-Based Tool to Assess Forest Landscape Restoration Effects on Water Conservation Capacity. Forests 2021, 12, 1291. [Google Scholar] [CrossRef]
- Xu, C.H.; Xiang, W.H.; Gou, M.M.; Chen, L.; Lei, P.F.; Fang, X.; Deng, X.W.; Ouyang, S.; Gou, M.; Chen, L.; et al. Effects of Forest Restoration on Soil Carbon, Nitrogen, Phosphorus, and Their Stoichiometry in Hunan, Southern China. Sustainability 2018, 10, 1874. [Google Scholar] [CrossRef]
- Gasparinetti, P.; Brandão, D.O.; Maningo, E.V.; Khan, A.; Cabanillas, F.; Farfan, J.; Román-Dañobeytia, F.; Bahri, A.D.; Ponlork, D.; Lentini, M.; et al. Economic Feasibility of Tropical Forest Restoration Models Based on Non-Timber Forest Products in Brazil, Cambodia, Indonesia, and Peru. Forests 2022, 13, 1878. [Google Scholar] [CrossRef]
- Muler, A.E.; Prieto, P.V.; Richards, R.C.; Brancalion, P.H.S.; Braga, J.M.A. Ecological outcomes and popular perceptions of urban restored forests in rio de janeiro, brazil. Environ. Conserv. 2018, 45, 155–162. [Google Scholar] [CrossRef]
- Weber, M.; Hauer, G.; Farr, D. Economic-ecological evaluation of temporary biodiversity offsets in Alberta’s boreal forest. Environ. Conserv. 2015, 42, 315–324. [Google Scholar] [CrossRef]
- Muthumperumal, C.; Parthasarathy, N. Diversity, distribution and resource values of woody climbers in tropical forests of southern Eastern Ghats, India. J. For. Res. 2013, 24, 365–374. [Google Scholar] [CrossRef]
- Li, C.; Zhao, J.; Li, Y.; Meng, Y.; Zhang, Z. Modeling and Prediction of Soil Organic Matter Content Based on Visible-Near-Infrared Spectroscopy. Forests 2021, 12, 1809. [Google Scholar] [CrossRef]
- Gao, T.; Song, X.Y.; Ren, Y.Z.; Liu, H.; Meng, Y.; Dong, X.B. Effects of seasonal changes on the carbon dynamics in mixed coniferous forests. PLoS ONE 2023, 18, e0267365. [Google Scholar] [CrossRef]
- Christmann, T.; Menor, I.O. A synthesis and future research directions for tropical mountain ecosystem restoration. Sci. Rep. Nat. Publ. Group 2021, 11, 23948. [Google Scholar] [CrossRef]
- DeLucia, E.H.; Hamilton, J.G.; Naidu, S.L.; Thomas, R.B.; Andrews, J.A.; Finzi, A.; Lavine, M.; Matamala, R.; Mohan, J.E.; Hendrey, G.R.; et al. Net primary production of a forest ecosystem with experimental co2 enrichment. Science 1999, 284, 1177–1179. [Google Scholar] [CrossRef]
- Li, P.S.; Li, D.; Sun, X.Q.; Chu, Z.S.; Xia, T.; Zheng, B.H. Application of ecological restoration technologies for the improvement of biodiversity and ecosystem in the river. Water 2022, 14, 1402. [Google Scholar] [CrossRef]
- Jia, H.B.; Zhang, Y.; Zhang, G.C.; Zou, L.; Zhang, B.W. The effects of electrical heating and additives on the microbial remediation of petroleum-contaminated soils. J. For. Res. 2021, 32, 2609–2618. [Google Scholar] [CrossRef]
- Hasui, E.; Silva, V.X.; Cunha, R.G.T.; Ramos, F.N.; Ribeiro, M.C.; Sacramento, M.; Coelho, M.T.P.; Pereira, D.G.S.; Ribeiro, B.R. Additions of landscape metrics improve predictions of occurrence of species distribution models. J. For. Res. 2017, 28, 963–974. [Google Scholar] [CrossRef]
- Li, J.; Huang, L.; Zhu, K. Ecological Health Assessment of an Urban River: The Case Study of Zhengzhou City, China. Sustainability 2023, 15, 8288. [Google Scholar] [CrossRef]
- Mitchard, E.T.A.; Flintrop, C.M. Woody encroachment and forest degradation in sub⁃Saharan Africa′ s woodlands and savannas 1982–2006. Philos. Trans. R. Soc. B Biol. Sci. 2013, 368, 20120406. [Google Scholar] [CrossRef]
- Wang, S.Q.; Zhong, R.; Liu, L.; Zhang, J.J. Ecological Effect of Ecological Engineering Projects on Low-Temperature Forest Cover in Great Khingan Mountain, China. Int. J. Environ. Res. Public Health 2021, 18, 10625. [Google Scholar] [CrossRef] [PubMed]
- Pinto, S.R.; Melo, F.; Tabarelli, M.; Padovesi, A.; Mesquita, C.A.; Scaramuzza, C.A.D.; Castro, P.; Carrascosa, H.; Calmon, M.; Rodrigues, R.; et al. Governing and Delivering a Biome-Wide Restoration Initiative: The Case of Atlantic Forest Restoration Pact in Brazil. Forests 2014, 5, 2212–2229. [Google Scholar] [CrossRef]
- Huang, J.D.; Wang, Y.C.; Zhang, L. Identifying Spatial Priority of Ecological Restoration Dependent on Landscape Quality Trends in Metropolitan Areas. Land 2022, 11, 27. [Google Scholar] [CrossRef]
- Löf, M.; Madsen, P.; Metslaid, M.; Witzell, J.; Jacobs, D.F. Restoring forests: Regeneration and ecosystem function for the future. New For. 2019, 50, 139–151. [Google Scholar] [CrossRef]
- Waroux, Y.L.; Lambin, E.F. Monitoring degradation in arid and semi-arid forests and woodlands: The case of the argan woodlands (Morocco). Appl. Geogr. 2012, 32, 777–786. [Google Scholar] [CrossRef]
- Vijulie, I.; Preda, M.; Lequeux-Dinca, A.I.; Cuculici, R.; Matei, E.; Mareci, A.; Manea, G.; Tudoricu, A. Economic Productivity vs. Ecological Protection in Danube Floodplain. Case Study: Danube’s Sector between Olt and Vedea. Sustainability 2019, 11, 6391. [Google Scholar] [CrossRef]
- Morales-Barquero, L.; Borrego, A.; Skutsch, M.; Kleinn, C.; Healey, J.R. Identification and quantification of drivers of forest degradation in tropical dry forests: A case study in Western Mexico. Land Use Policy 2015, 49, 296–309. [Google Scholar] [CrossRef]
- Guan, H.W.; Dong, X.B.; Yan, G.H.; Searls, T.; Bourque, C.P.A.; Meng, F.R. Conditional inference trees in the assessment of tree mortality rates in the transitional mixed forests of atlantic canada. PLoS ONE 2021, 16, e0250991. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Kim, T.; Moon, M.; Cho, S.; Ryu, D.; Kim, H. Effects of thinning intensities on tree water use, growth, and resultant water use efficiency of 50-year-old Pinus koraiensis forest over four years. For. Ecol. Manag. 2018, 408, 121–128. [Google Scholar] [CrossRef]
- Bahamondez, C.; Thompson, I.D. Determining forest degradation, ecosystem state and resilience using a standard stand stocking measurement diagram: Theory into practice. Forestry 2016, 89, 290–300. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Wang, H.H.; Duan, W. Household Willingness to Pay for Forest Ecological Restoration in Giant Panda Habitats: A Discrete Choice Experiment. Forests 2021, 12, 1735. [Google Scholar] [CrossRef]
- Liu, X.F.; Garcia-Ulloa, J.; Cornioley, T.; Liu, X.H.; Wang, Z.H.; Garcia, C. Main ecological drivers of woody plant species richness recovery in secondary forests in china. Sci. Rep. 2019, 9, 250. [Google Scholar] [CrossRef] [PubMed]
- Agbeshie, A.A.; Abugre, S.; Atta-Darkwa, T.; Awuah, R. A review of the effects of forest fire on soil properties. J. For. Res. 2022, 33, 1419–1441. [Google Scholar] [CrossRef]
- Xiao, C.; You, R.; Zhu, N.H.; Mi, X.Q.; Gao, L.; Zhou, X.S.; Zhou, G.Y.G. Variation of soil physicochemical properties of different vegetation restoration types on subtropical karst area in southern china. PLoS ONE 2023, 18, e0282620. [Google Scholar] [CrossRef] [PubMed]
- Asner, G.P.; Knapp, D.E.; Broadbent, E.N.; Oliveira, P.J.C.; Keller, M.; Silva, J.N. Selective logging in the Brazilian Amazon. Science 2005, 310, 480–482. [Google Scholar] [CrossRef] [PubMed]
- Riva, M.J.; Daliakopoulos, I.N.; Eckert, S.; Hodel, E.; Liniger, H. Assessment of land degradation in Mediterranean forests and grazing lands using a andscape unit approach and the normalized difference vegetation index. Appl. Geogr. 2017, 86, 8–21. [Google Scholar] [CrossRef]
- Tanner, K.; Strong, A.L. Assessing the Impact of Future Sea Level Rise on Blue Carbon Ecosystem Services on Long Island, New York. Sustainability 2023, 15, 4733. [Google Scholar] [CrossRef]
- Liu, P.L.; Liu, X.D.; Dai, Y.H.; Feng, Y.J.; Zhang, Q.M.; Chu, G.W. Influence of Vegetation Restoration on Soil Hydraulic Properties in South China. Forests 2020, 11, 1111. [Google Scholar] [CrossRef]
- Glatthorn, J.; Pichler, V.; Hauck, M.; Leuschner, C. Effects of forest management on stand leaf area: Comparing beech production and primeval forests in Slovakia. For. Ecol. Manag. 2017, 389, 76–85. [Google Scholar] [CrossRef]
- Zhang, T.; Dong, X.; Guan, H.; Meng, Y.; Ruan, J.; Wang, Z. Effect of Thinning on the Spatial Structure of a Larix gmelinii Rupr. Secondary Forest in the Greater Khingan Mountains. Forests 2018, 9, 720. [Google Scholar] [CrossRef]
- Ferrara, C.; Moretti, V.; Serra, P.; Salvati, L. Towards a sustainable agro⁃forest landscape? Assessing land degradation (1950–2010) and soil quality in C astelporziano forest and peri-urban Rome, Italy. Rend. Lincei 2015, 26, 597–604. [Google Scholar] [CrossRef]
- Wang, Z.C.; Li, Y.X.; Meng, Y.B.; Li, C.X.; Zhang, Z.Y. Thinning Effects on Stand Structure and Carbon Content of Secondary Forests. Forests 2022, 13, 512. [Google Scholar] [CrossRef]
- Zambon, I.; Colantoni, A.; Carlucci, M.; Morrow, N.; Sateriano, A.; Salvati, L. Land quality, sustainable development and environmental degradation in agricultural districts: A computational approach based on entropy indexes. Environ. Impact Assess. Rev. 2017, 64, 37–46. [Google Scholar] [CrossRef]
- Wang, B.; Mu, C.; Lu, H.; Li, N.; Zhang, Y.; Ma, L. Ecosystem car- bon storage and sink/source of temperate forested wetlands in Xiaoxing’anling, northeast China. J. For. Res. 2022, 33, 839–849. [Google Scholar] [CrossRef]
- Ai, Y.-J.; Li, F.-P.; Yang, J.-Q.; Lu, S.; Gu, H.-H. Research Progress and Potential Functions of AMF and GRSP in the Ecological Remediation of Metal Tailings. Sustainability 2022, 14, 9611. [Google Scholar] [CrossRef]
Stand Type | Forest Age | Average Diameter at Breast Height/cm | Average Tree Height/cm | Constriction (i.e., Degree of Depression) | Geolocation/E | Geolocation/N |
---|---|---|---|---|---|---|
Mixed red pine broadleaf forest | Young forest | 13.40 ± 0.62 | 13.00 ± 1.67 | 0.35 | 129°33′44.236″ | 48°16′34.909″ |
Middle-aged forest | 15.30 ± 1.08 | 13.00 ± 1.65 | 0.34 | 129°33′44.789″ | 48°16′46.154″ | |
Nearly mature forest | 21.20 ± 0.96 | 16.50 ± 1.25 | 0.34 | 129°33′47.774″ | 48°16′55.091″ | |
Mature forest | 34.20 ± 1.23 | 18.20 ± 2.19 | 0.65 | 129°36′28.884″ | 48°15′41.210″ | |
Mixed coniferous forests of cloud fir | Young forest | 13.40 ± 1.05 | 13.00 ± 2.46 | 0.53 | 129°37′16.225″ | 48°15′38.105″ |
Middle-aged forest | 15.20 ± 0.62 | 13.10 ± 2.10 | 0.44 | 129°35′01.273″ | 48°19′39.782″ | |
Nearly mature forest | 21.20 ± 1.48 | 18.20 ± 1.56 | 0.61 | 129°40′48.014″ | 48°14′35.158″ | |
Mature forest | 23.10 ± 1.57 | 19.00 ± 1.70 | 0.75 | 129°41′09.190″ | 48°14′14.858″ | |
Mixed larch conifer forest | Young forest | 9.50 ± 0.56 | 7.50 ± 1.28 | 0.53 | 129°43′01.308″ | 48°12′15.848″ |
Middle-aged forest | 9.00 ± 0.82 | 8.00 ± 1.51 | 0.65 | 129°43′16.806″ | 48°09′18.865″ | |
Nearly mature forest | 21.70 ± 1.10 | 19.80 ± 1.74 | 0.65 | 129°44′29.236″ | 48°08′08.398″ | |
Mixed broad-leaved forest | Young forest | 10.80 ± 0.36 | 10.30 ± 1.31 | 0.43 | 129°48′43.380″ | 48°07′41.136″ |
Middle-aged forest | 18.10 ± 1.25 | 15.00 ± 1.65 | 0.71 | 129°45′25.378″ | 48°06′26.496″ | |
Nearly mature forest | 22.30 ± 1.71 | 15.80 ± 1.41 | 0.72 | 129°45′25.134″ | 48°06′45.467″ | |
Mature forest | 18.60 ± 0.72 | 11.80 ± 1.35 | 0.56 | 129°54′02.134″ | 48°04′23.720″ | |
Over-mature forest | 14.50 ± 0.87 | 14.10 ± 1.67 | 0.44 | 129°55′40.626″ | 48°04′43.576″ | |
Mixed coniferous broadleaf forest | Young forest | 11.00 ± 2.21 | 9.00 ± 2.00 | 0.53 | 129°55′33.596″ | 48°05′01.976″ |
Middle-aged forest | 16.00 ± 1.82 | 16.00 ± 1.66 | 0.71 | 130°05′55.343″ | 48°08′06.152″ | |
Nearly mature forest | 22.00 ± 1.64 | 15.30 ± 1.57 | 0.78 | 130°00′14.043″ | 48°15′27.757″ | |
Mature forest | 21.20 ± 3.49 | 17.30 ± 0.82 | 0.85 | 129°59′57.340″ | 48°15′19.465″ | |
Mixed coniferous forest | Young forest | 13.20 ± 1.70 | 13.10 ± 2.31 | 0.62 | 129°58′53.337″ | 48°15′29.958″ |
Middle-aged forest | 17.30 ± 1.44 | 15.60 ± 1.31 | 0.62 | 129°52′51.223″ | 48°18′41.037″ | |
Nearly mature forest | 21.20 ± 1.28 | 16.50 ± 1.14 | 0.75 | 129°48′43.404″ | 48°17′48.245″ | |
Mature forest | 36.00 ± 2.35 | 22.00 ± 2.44 | 0.81 | 129°32′12.818″ | 48°22′52.991″ | |
Over-mature forest | 22.50 ± 2.08 | 19.00 ± 1.57 | 0.62 | 129°32′23.211″ | 48°22′53.217″ | |
Birch pure forest | Middle-aged forest | 16.50 ± 1.06 | 18.20 ± 2.16 | 0.71 | 129°32′40.027″ | 48°21′47.800″ |
Larch pure forest | Middle-aged forest | 9.20 ± 1.25 | 8.10 ± 1.31 | 0.62 | 129°34′11.422″ | 48°21′38.616″ |
Low-quality coniferous broadleaf mixed forest | Middle-aged forest | 12.70 ± 1.37 | 12.50 ± 2.00 | 0.44 | 129°34′10.009″ | 48°17′00.327″ |
Low-quality broad-leaved mixed forest | Middle-aged forest | 11.90 ± 1.47 | 11.70 ± 1.90 | 0.34 | 129°34′53.609″ | 48°16′43.461″ |
Low-quality mixed coniferous forest | Middle-aged forest | 13.70 ± 1.42 | 13.40 ± 2.08 | 0.33 | 129°38′21.977″ | 48°15′29.699″ |
Property | Measurement Method(s) | Equipment/Medium |
---|---|---|
Organic matter mass fraction | Oil-bath potassium dichromate oxidation method | Oil bath |
pH value | Water immersion method | Acidimeter |
Total nitrogen mass fraction | Automatic Kjeldahl method | Automatic nitrogen determination instrument |
Total phosphorus mass fraction | Acid-soluble molybdenum antimony colorimetric method | Atomic absorption spectroscopy analyzer |
Total potassium mass fraction | Acid dissolution flame-photometric method | Flame photometer |
Ammonium nitrogen mass fraction | Alkaline diffusion method | Diffusion dishes, thermostats |
Effective phosphorus mass fraction | Sodium hydroxide leaching molybdenum antimony colorimetric method | Atomic absorption spectroscopy analyzer |
Potassium fast-acting mass fraction | Ammonium acetate leaching flame-photometric method | Flame photometer |
Factors | Indicators | Principal Components | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1.00 | 2.00 | 3.00 | 4.00 | 5.00 | 6.00 | 7.00 | 8.00 | 9.00 | 10.00 | 11.00 | ||
Soil chemical properties | All N | 0.92 | 0.30 | −0.02 | −0.06 | −0.01 | 0.13 | −0.08 | −0.03 | −0.01 | 0.09 | 0.04 |
Full P | 0.91 | 0.26 | 0.00 | −0.08 | 0.00 | 0.15 | −0.10 | −0.04 | −0.03 | 0.11 | 0.05 | |
All K (music) | 0.91 | 0.27 | −0.01 | −0.07 | 0.00 | 0.15 | −0.10 | −0.04 | −0.02 | 0.10 | 0.04 | |
Quick-impact N | 0.91 | 0.31 | −0.02 | −0.04 | −0.01 | 0.12 | −0.08 | −0.03 | −0.01 | 0.09 | 0.05 | |
Quick-impact P | 0.76 | 0.55 | −0.09 | 0.14 | −0.07 | −0.10 | 0.10 | 0.17 | 0.11 | −0.06 | 0.06 | |
Quick-acting K | 0.76 | 0.55 | −0.10 | 0.12 | −0.06 | −0.09 | 0.12 | 0.17 | 0.10 | −0.07 | 0.05 | |
Organic matter | 0.69 | −0.54 | −0.35 | 0.05 | 0.17 | −0.05 | −0.06 | 0.03 | −0.04 | −0.03 | 0.11 | |
PH | 0.66 | −0.59 | −0.05 | −0.16 | 0.07 | 0.20 | −0.13 | 0.01 | 0.20 | 0.08 | 0.09 | |
Soil physical properties | Soil bearing capacity | 0.65 | −0.43 | −0.40 | 0.16 | 0.23 | −0.09 | −0.06 | 0.04 | −0.12 | −0.08 | 0.08 |
Maximum water-holding capacity | 0.63 | −0.23 | −0.32 | −0.22 | 0.19 | −0.08 | −0.38 | −0.18 | 0.22 | −0.01 | −0.25 | |
Water-holding capacity of the capillary | 0.61 | 0.56 | −0.04 | 0.00 | −0.33 | −0.14 | 0.23 | 0.28 | −0.03 | −0.03 | 0.14 | |
Non-capillary porosity | 0.57 | 0.54 | −0.03 | −0.02 | −0.37 | −0.14 | 0.24 | 0.29 | −0.04 | −0.03 | 0.15 | |
Capillary porosity | 0.54 | 0.19 | −0.22 | 0.15 | 0.51 | 0.03 | −0.04 | −0.35 | 0.13 | 0.03 | −0.03 | |
Total porosity | 0.46 | −0.17 | 0.43 | 0.41 | −0.44 | 0.19 | 0.09 | −0.11 | −0.04 | 0.16 | −0.04 | |
Undecomposed layer of litter | Storage capacity | −0.52 | 0.65 | 0.07 | 0.06 | 0.03 | 0.20 | −0.10 | −0.22 | 0.12 | 0.05 | 0.17 |
Natural water-holding capacity | 0.57 | −0.63 | −0.30 | −0.02 | 0.20 | −0.13 | 0.16 | 0.01 | −0.07 | 0.09 | 0.07 | |
Maximum water-holding capacity | 0.29 | −0.62 | 0.05 | 0.20 | 0.33 | 0.24 | 0.29 | 0.08 | −0.19 | −0.11 | −0.07 | |
Maximum water-holding capacity | −0.34 | −0.61 | 0.13 | 0.20 | 0.25 | 0.27 | 0.00 | 0.18 | −0.02 | 0.33 | −0.02 | |
Effective storage capacity | 0.03 | 0.60 | 0.18 | −0.21 | −0.13 | 0.18 | 0.17 | 0.01 | −0.39 | 0.00 | −0.40 | |
Semi-decomposed layer of litter | Storage capacity | 0.16 | −0.59 | −0.25 | −0.57 | −0.09 | −0.19 | 0.10 | 0.10 | 0.17 | −0.04 | 0.03 |
Natural water-holding capacity | −0.14 | 0.59 | −0.05 | 0.48 | 0.43 | 0.21 | 0.05 | −0.25 | 0.13 | −0.08 | −0.09 | |
Maximum water-holding capacity | 0.08 | −0.58 | 0.21 | 0.38 | −0.16 | −0.20 | −0.12 | 0.09 | 0.12 | 0.19 | 0.10 | |
Maximum water-holding capacity | 0.43 | −0.52 | 0.35 | 0.40 | −0.18 | 0.20 | 0.22 | −0.07 | −0.08 | 0.05 | −0.05 | |
Effective storage capacity | −0.43 | 0.43 | −0.18 | 0.26 | 0.47 | 0.16 | 0.16 | −0.11 | 0.18 | 0.07 | 0.29 | |
Stand canopy structure | Forest gap fraction | 0.38 | −0.49 | 0.29 | 0.45 | −0.14 | 0.33 | 0.28 | −0.15 | −0.05 | −0.19 | −0.07 |
Kilowatt-hour | 0.17 | 0.22 | 0.70 | 0.08 | 0.12 | −0.45 | −0.15 | −0.05 | −0.02 | 0.09 | −0.11 | |
Divergence angle | 0.12 | −0.06 | 0.68 | −0.19 | 0.41 | −0.32 | 0.11 | 0.11 | 0.18 | −0.16 | 0.05 | |
Leaf area index (TAI) | 0.33 | 0.17 | 0.68 | −0.17 | 0.23 | −0.24 | 0.05 | 0.03 | −0.03 | −0.21 | −0.04 | |
Direct fixed-point factor | 0.07 | 0.08 | 0.68 | 0.23 | 0.29 | 0.26 | −0.25 | −0.02 | −0.16 | 0.01 | 0.07 | |
Indirect fixed-point factor | −0.20 | 0.26 | −0.66 | 0.10 | −0.29 | 0.26 | 0.19 | −0.17 | 0.02 | 0.14 | 0.18 | |
Total fixation factor | −0.09 | −0.26 | 0.44 | −0.36 | −0.02 | 0.24 | 0.29 | 0.07 | 0.42 | −0.31 | 0.16 | |
Direct radiation flux under the canopy | −0.13 | 0.09 | 0.34 | −0.67 | 0.22 | 0.26 | −0.05 | −0.05 | 0.13 | 0.38 | 0.31 | |
Scattered radiation flux under the canopy | 0.21 | 0.11 | 0.11 | −0.64 | 0.20 | 0.26 | 0.32 | 0.08 | −0.20 | −0.04 | 0.11 | |
Total subcanopy radiant flux | −0.22 | 0.44 | −0.21 | 0.49 | 0.46 | −0.19 | 0.37 | 0.05 | −0.03 | 0.07 | 0.07 | |
Tree layer | Richness index | 0.07 | −0.01 | 0.42 | 0.30 | −0.57 | 0.05 | 0.32 | −0.06 | 0.32 | 0.28 | 0.00 |
Diversity index | 0.36 | 0.10 | 0.20 | −0.34 | 0.44 | 0.16 | 0.40 | −0.10 | 0.23 | 0.17 | −0.22 | |
Uniformity index | −0.22 | 0.10 | −0.12 | −0.56 | −0.29 | 0.63 | −0.05 | 0.04 | −0.09 | −0.18 | −0.14 | |
Shrub layer | Richness index | 0.14 | −0.22 | −0.09 | −0.16 | 0.25 | −0.08 | 0.53 | −0.45 | −0.36 | 0.07 | 0.02 |
Diversity index | 0.48 | 0.27 | 0.14 | 0.22 | 0.03 | 0.39 | −0.49 | −0.14 | 0.13 | −0.21 | −0.09 | |
Uniformity index | −0.02 | 0.16 | −0.13 | 0.21 | 0.45 | 0.19 | 0.01 | 0.68 | −0.04 | −0.22 | −0.08 | |
Herbaceous layer | Richness index | −0.21 | −0.21 | −0.01 | 0.30 | 0.17 | 0.39 | −0.06 | 0.64 | 0.05 | 0.12 | 0.06 |
Diversity index | 0.10 | 0.23 | 0.23 | −0.20 | 0.20 | −0.08 | −0.28 | 0.22 | −0.39 | 0.47 | 0.06 | |
Uniformity index | 0.04 | −0.17 | 0.30 | 0.08 | −0.08 | 0.04 | −0.22 | −0.25 | −0.36 | −0.38 | 0.57 |
Factors | Indicators | Principal Components | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1.00 | 2.00 | 3.00 | 4.00 | 5.00 | 6.00 | 7.00 | 8.00 | 9.00 | 10.00 | 11.00 | ||
Soil chemical properties | All N | 0.00 | −0.03 | 0.07 | 0.02 | −0.03 | 0.02 | −0.11 | −0.13 | −0.27 | −0.30 | 0.54 |
Full P | 0.01 | −0.08 | 0.05 | 0.10 | −0.05 | −0.09 | −0.06 | 0.05 | 0.09 | 0.15 | 0.10 | |
All K (music) | 0.02 | 0.02 | 0.03 | −0.17 | 0.06 | 0.11 | 0.16 | 0.04 | −0.15 | −0.03 | 0.11 | |
Quick-impact N | −0.01 | −0.04 | 0.10 | −0.10 | −0.01 | 0.11 | 0.14 | 0.04 | 0.31 | −0.24 | 0.15 | |
Quick-impact P | −0.02 | 0.01 | −0.03 | −0.15 | −0.09 | 0.28 | −0.03 | 0.02 | −0.07 | −0.14 | −0.13 | |
Quick-acting K | −0.01 | 0.01 | 0.08 | −0.18 | 0.07 | 0.12 | −0.02 | −0.02 | 0.09 | 0.30 | 0.30 | |
Organic matter | 0.04 | 0.02 | 0.05 | −0.09 | 0.14 | 0.07 | 0.20 | −0.06 | 0.17 | 0.13 | −0.21 | |
PH | 0.00 | 0.09 | 0.04 | −0.06 | −0.04 | 0.08 | 0.08 | 0.01 | −0.29 | 0.00 | −0.38 | |
Soil physical properties | Soil bearing capacity | 0.03 | −0.09 | 0.01 | 0.06 | 0.10 | 0.11 | 0.14 | 0.04 | −0.14 | −0.09 | −0.07 |
Maximum water-holding capacity | 0.05 | −0.03 | 0.10 | 0.11 | −0.14 | 0.09 | 0.04 | −0.06 | −0.03 | 0.12 | −0.04 | |
Water-holding capacity of the capillary | 0.01 | 0.00 | 0.10 | 0.08 | −0.18 | 0.02 | 0.15 | −0.03 | 0.23 | 0.23 | 0.00 | |
Non-capillary porosity | 0.01 | −0.03 | −0.02 | −0.04 | 0.08 | −0.04 | 0.26 | −0.24 | −0.27 | 0.05 | 0.02 | |
Capillary porosity | 0.05 | −0.08 | 0.08 | 0.11 | −0.06 | 0.09 | 0.11 | −0.04 | −0.06 | 0.04 | −0.05 | |
Total porosity | 0.04 | −0.07 | 0.07 | 0.12 | −0.04 | 0.15 | 0.14 | −0.08 | −0.04 | −0.15 | −0.06 | |
Undecomposed layer of litter | Storage capacity | 0.06 | −0.09 | −0.07 | −0.01 | 0.06 | −0.06 | 0.08 | 0.00 | −0.05 | 0.07 | 0.07 |
Natural water-holding capacity | 0.07 | −0.09 | −0.01 | −0.04 | 0.02 | 0.09 | −0.06 | 0.00 | 0.15 | 0.07 | 0.09 | |
Maximum water-holding capacity | 0.05 | 0.04 | 0.03 | 0.06 | 0.01 | 0.17 | −0.24 | −0.07 | 0.10 | −0.16 | −0.09 | |
Maximum water-holding capacity | 0.07 | −0.08 | −0.08 | 0.01 | 0.05 | −0.02 | −0.03 | 0.02 | −0.03 | −0.02 | 0.10 | |
Effective storage capacity | 0.07 | −0.06 | −0.10 | 0.04 | 0.07 | −0.04 | −0.03 | 0.02 | −0.09 | −0.06 | 0.08 | |
Semi-decomposed layer of litter | Storage capacity | −0.01 | 0.09 | −0.01 | 0.13 | 0.13 | 0.10 | 0.02 | −0.13 | 0.10 | −0.07 | −0.09 |
Natural water-holding capacity | −0.05 | 0.09 | 0.02 | 0.02 | 0.01 | 0.09 | −0.05 | −0.12 | 0.09 | 0.04 | 0.16 | |
Maximum water-holding capacity | 0.07 | −0.03 | −0.08 | −0.06 | 0.06 | −0.03 | −0.19 | −0.10 | 0.17 | −0.01 | −0.24 | |
Maximum water-holding capacity | −0.05 | 0.07 | −0.04 | 0.07 | 0.15 | 0.07 | 0.08 | −0.06 | 0.13 | 0.06 | 0.27 | |
Effective storage capacity | −0.02 | 0.06 | −0.05 | 0.13 | 0.15 | −0.09 | 0.18 | 0.03 | −0.02 | 0.06 | 0.07 | |
Stand canopy structure | Forest gap fraction | 0.06 | 0.08 | −0.01 | 0.00 | −0.12 | −0.06 | 0.12 | 0.16 | −0.03 | −0.02 | 0.14 |
Kilowatt-hour | 0.06 | 0.08 | −0.01 | 0.00 | −0.10 | −0.06 | 0.11 | 0.15 | −0.02 | −0.03 | 0.13 | |
Divergence angle | 0.06 | 0.03 | −0.05 | 0.04 | 0.16 | 0.01 | −0.02 | −0.19 | 0.10 | 0.02 | −0.03 | |
Leaf area index (TAI) | −0.04 | −0.09 | 0.03 | 0.05 | 0.08 | 0.12 | 0.00 | 0.10 | −0.02 | 0.27 | −0.02 | |
Direct fixed-point factor | 0.10 | 0.04 | 0.00 | −0.02 | 0.00 | 0.07 | −0.05 | −0.02 | −0.02 | 0.09 | 0.05 | |
Indirect fixed-point factor | 0.08 | 0.08 | −0.02 | 0.04 | −0.02 | −0.05 | 0.05 | 0.09 | 0.08 | −0.05 | 0.05 | |
Total fixation factor | 0.10 | 0.05 | 0.00 | −0.01 | 0.00 | 0.06 | −0.04 | −0.02 | −0.01 | 0.07 | 0.04 | |
Direct radiation flux under the canopy | 0.10 | 0.04 | 0.00 | −0.02 | 0.00 | 0.07 | −0.05 | −0.02 | −0.01 | 0.08 | 0.03 | |
Scattered radiation flux under the canopy | 0.08 | 0.08 | −0.03 | 0.03 | −0.02 | −0.04 | 0.06 | 0.09 | 0.08 | −0.05 | 0.04 | |
Total subcanopy radiant flux | 0.10 | 0.04 | 0.00 | −0.02 | 0.00 | 0.06 | −0.04 | −0.01 | 0.00 | 0.07 | 0.04 | |
Tree layer | Richness index | 0.00 | 0.02 | −0.03 | 0.06 | 0.14 | 0.09 | 0.00 | 0.36 | −0.03 | −0.18 | −0.08 |
Diversity index | 0.04 | 0.02 | 0.16 | −0.05 | 0.07 | −0.11 | 0.03 | 0.02 | −0.02 | −0.16 | −0.04 | |
Uniformity index | 0.01 | −0.01 | 0.16 | −0.05 | 0.13 | −0.14 | 0.05 | 0.06 | 0.13 | −0.13 | 0.05 | |
Shrub layer | Richness index | −0.02 | −0.03 | 0.00 | 0.08 | 0.05 | 0.17 | −0.03 | 0.34 | 0.04 | 0.10 | 0.06 |
Diversity index | 0.02 | 0.03 | 0.17 | 0.02 | 0.04 | −0.20 | −0.07 | −0.03 | −0.01 | 0.07 | −0.11 | |
Uniformity index | 0.01 | 0.01 | 0.16 | 0.06 | 0.09 | 0.12 | −0.12 | −0.01 | −0.12 | 0.01 | 0.07 | |
Herbaceous layer | Richness index | 0.01 | 0.03 | 0.05 | −0.05 | 0.06 | −0.04 | −0.14 | 0.12 | −0.29 | 0.38 | 0.05 |
Diversity index | −0.02 | 0.04 | −0.16 | 0.03 | −0.09 | 0.12 | 0.09 | −0.09 | 0.01 | 0.11 | 0.17 | |
Uniformity index | 0.02 | −0.09 | −0.06 | −0.15 | −0.03 | −0.09 | 0.05 | 0.05 | 0.13 | −0.03 | 0.03 |
Forest Type | Forest Age | F1 | F2 | F3 | F4 | F5 | F6 | F7 | F8 | F9 | F10 | F11 | Aggregate Score | Rankings |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mixed red pine broadleaf forest | Young forest | 1.45 | −0.95 | −0.04 | −0.19 | −0.89 | −1.58 | −0.30 | −1.48 | 1.14 | −0.21 | 0.29 | 0.05 | 25 |
Middle-aged forest | 1.08 | −1.51 | 0.21 | −0.72 | −0.95 | 1.34 | 0.34 | 0.04 | −0.31 | 0.67 | 0.96 | 0.01 | 30 | |
Nearly mature forests | 0.45 | −1.30 | −1.62 | −1.25 | −0.84 | −1.24 | 0.08 | 1.78 | 0.42 | 1.14 | −0.85 | 0.46 | 9 | |
Mature forest | 0.27 | −1.35 | 0.73 | −0.92 | 1.13 | −0.06 | 0.27 | −0.85 | 0.67 | 0.13 | 1.78 | 0.04 | 26 | |
Mixed coniferous forest of spruce (Pinus sylvestris) | Young forest | −0.12 | −0.30 | −0.39 | −2.61 | 1.52 | 0.02 | 0.43 | −0.94 | −0.25 | −0.82 | −0.67 | 0.34 | 11 |
Middle-aged forest | −0.24 | −1.44 | −1.70 | −0.37 | −0.81 | −0.12 | 0.60 | 1.24 | −0.49 | −0.82 | 0.17 | 0.58 | 5 | |
Nearly mature forests | −0.82 | −0.64 | −0.82 | −0.84 | −0.18 | −0.67 | −0.51 | −1.00 | 0.95 | 0.08 | −1.49 | 0.64 | 3 | |
Mature forest | 0.71 | −1.25 | 1.11 | 0.70 | −0.06 | 0.81 | −0.03 | −1.04 | 0.53 | −1.79 | −0.17 | 0.09 | 24 | |
Mixed larch- conifer forest | Young forest | 0.30 | −0.72 | 0.79 | 0.81 | −0.43 | 1.76 | −0.95 | −0.76 | −1.69 | 0.83 | −0.54 | 0.03 | 27 |
Middle-aged forest | 0.25 | −0.56 | −0.26 | −0.17 | −1.57 | 1.62 | −0.82 | −0.64 | 0.38 | 0.40 | −0.43 | 0.19 | 19 | |
Nearly mature forests | −1.38 | −0.31 | 1.27 | −0.47 | −0.65 | −0.33 | −1.27 | 0.78 | −1.56 | −1.16 | 1.16 | 0.48 | 7 | |
Mixed broad- leaved forest | Young forest | 0.55 | 0.43 | −0.08 | −0.16 | 1.96 | 0.61 | −1.14 | 0.69 | −1.02 | −1.37 | 1.15 | 0.33 | 12 |
Middle-aged forest | −0.04 | 0.31 | −1.68 | 1.24 | 1.13 | 2.44 | 0.10 | 0.03 | 1.21 | 0.14 | 0.18 | 0.29 | 14 | |
Nearly mature forests | −0.32 | 0.60 | −0.52 | 0.03 | 0.91 | −0.51 | −2.30 | 0.29 | 1.14 | 1.07 | 1.63 | 0.03 | 29 | |
Mature forest | 0.39 | −0.88 | 1.30 | 2.28 | 0.21 | −0.97 | −0.13 | 0.80 | 0.03 | −0.16 | −0.94 | 0.27 | 15 | |
Over-mature forest | 0.48 | −0.71 | −0.04 | 1.65 | 0.06 | −0.64 | 0.63 | 1.24 | −0.62 | 0.76 | −0.03 | 0.21 | 18 | |
Mixed coniferous broadleaf forest | Young forest | 1.89 | 1.28 | −1.80 | 1.71 | 0.05 | −0.72 | 0.06 | −1.17 | 0.47 | 0.00 | 0.69 | 0.63 | 4 |
Middle-aged forest | −1.55 | 0.43 | 0.80 | −0.18 | 0.36 | −0.16 | 1.02 | 0.11 | 2.28 | 0.33 | 1.18 | 0.03 | 28 | |
Nearly mature forest | 1.07 | 0.39 | 1.30 | −1.11 | 1.72 | 1.02 | 1.37 | 1.58 | −0.17 | 1.89 | −0.47 | 0.79 | 1 | |
Mature forest | −1.78 | −0.10 | −1.47 | 0.81 | 0.12 | −0.05 | 1.56 | 0.67 | −1.07 | −0.18 | −0.06 | 0.48 | 8 | |
Mixed coniferous forest | Young forest | −1.29 | −0.06 | −0.36 | 0.90 | 1.22 | −1.12 | 0.51 | −0.94 | −1.16 | 1.29 | 0.44 | 0.26 | 16 |
Middle-aged forest | −1.82 | −0.70 | 1.59 | 0.87 | −0.09 | −0.64 | 0.69 | −1.11 | 0.40 | 0.49 | −0.32 | 0.37 | 10 | |
Nearly mature forest | 0.79 | 2.09 | 1.04 | −0.79 | −2.10 | −0.44 | 1.25 | −0.51 | −0.71 | 1.46 | 1.13 | 0.52 | 6 | |
Mature forest | −0.87 | 1.41 | −0.82 | −0.27 | −0.87 | 0.77 | 1.83 | −1.16 | −0.56 | −1.54 | 0.32 | 0.13 | 23 | |
Over-mature forest | 1.90 | 0.98 | 0.49 | −0.03 | 0.27 | −1.20 | 0.76 | 0.89 | −0.52 | −1.70 | 0.13 | 0.68 | 2 | |
Birch pure forest (Betula alba var. vulgaris) | Middle-aged forest | 0.21 | 0.61 | −0.26 | −0.57 | 1.06 | −1.06 | −1.05 | −1.46 | −1.78 | 0.29 | −1.85 | 0.13 | 22 |
Larch pure forest | Middle-aged forest | −0.98 | 0.88 | −0.32 | −0.26 | −1.38 | −0.12 | −1.91 | 1.11 | −0.27 | −0.29 | 1.00 | 0.32 | 13 |
Low-quality mixed coniferous broadleaf forest | Middle-aged forest | −0.24 | 1.56 | 0.04 | −0.08 | −0.32 | 0.83 | −1.00 | −0.11 | 0.15 | 1.19 | −1.52 | 0.18 | 20 |
Low-quality mixed broad-leaved forest | Middle-aged forest | −0.28 | 1.29 | 0.99 | −0.13 | −0.04 | −0.45 | −0.45 | 1.09 | 1.70 | −0.97 | −1.43 | 0.25 | 17 |
Low-quality mixed coniferous forest | Middle-aged forest | −0.05 | 0.46 | 0.52 | 0.12 | −0.46 | 0.87 | 0.37 | 0.83 | 0.72 | −1.14 | −1.36 | 0.17 | 21 |
Factors | Forest Type | N | Rank Mean | Kruskal–Wallis H | p |
---|---|---|---|---|---|
All N/g·kg3 | Mixed forests | 75 | 51.47 | 23.61 | 0.00 |
Pure forest | 6 | 13.83 | |||
Low-quality forest | 9 | 16.83 | |||
Full P/g·kg3 | Mixed forests | 75 | 52.65 | 33.83 | 0.00 |
Pure forest | 6 | 8 | |||
Low-quality forest | 9 | 10.89 | |||
All K (music)/g·kg3 | Mixed forests | 75 | 52.33 | 30.81 | 0.00 |
Pure forest | 6 | 10.67 | |||
Low-quality forest | 9 | 11.83 | |||
Quick-impact N/mg·kg3 | Mixed forests | 75 | 49.27 | 11.71 | 0.00 |
Pure forest | 6 | 39.33 | |||
Low-quality forest | 9 | 18.22 | |||
Quick-impact P/mg·kg3 | Mixed forests | 75 | 52.24 | 30.01 | 0.00 |
Pure forest | 6 | 10.83 | |||
Low-quality forest | 9 | 12.44 | |||
Quick-acting K/mg·kg3 | Mixed forests | 75 | 52.79 | 35.35 | 0.00 |
Pure forest | 6 | 12.83 | |||
Low-quality forest | 9 | 6.5 | |||
Organic matter/g·kg3 | Mixed forests | 75 | 50.75 | 19.90 | 0.00 |
Pure forest | 6 | 8.33 | |||
Low-quality forest | 9 | 26.56 | |||
PH | Mixed forests | 75 | 49.55 | 12.15 | 0.00 |
Pure forest | 6 | 34.75 | |||
Low-quality forest | 9 | 18.94 | |||
Soil bearing capacity/g ·cm3 | Mixed forests | 75 | 52.65 | 33.92 | 0.00 |
Pure forest | 6 | 6.92 | |||
Low-quality forest | 9 | 11.67 | |||
Maximum water-holding capacity/% | Mixed forests | 75 | 51.48 | 23.61 | 0.00 |
Pure forest | 6 | 14.67 | |||
Low-quality forest | 9 | 16.22 | |||
Water-holding capacity of the capillary/% | Mixed forests | 75 | 51.85 | 26.83 | 0.00 |
Pure forest | 6 | 17.25 | |||
Low-quality forest | 9 | 11.39 | |||
Non-capillary porosity/% | Mixed forests | 75 | 51.72 | 26.05 | 0.00 |
Pure forest | 6 | 15.67 | |||
Low-quality forest | 9 | 13.56 | |||
Capillary porosity/% | Mixed forests | 75 | 52.04 | 28.46 | 0.00 |
Pure forest | 6 | 9.25 | |||
Low-quality forest | 9 | 15.17 | |||
Total porosity/% | Mixed forests | 75 | 50.77 | 19.10 | 0.00 |
Pure forest | 6 | 26.33 | |||
Low-quality forest | 9 | 14.39 | |||
Storage capacity/t·hm−2 | Mixed forests | 75 | 52.54 | 32.71 | 0.00 |
Pure forest | 6 | 11.17 | |||
Low-quality forest | 9 | 9.72 | |||
Natural water-holding capacity/% | Mixed forests | 75 | 49.36 | 9.99 | 0.01 |
Pure forest | 6 | 22.83 | |||
Low-quality forest | 9 | 28.44 | |||
Maximum water-holding capacity/% | Mixed forests | 75 | 50.63 | 18.15 | 0.00 |
Pure forest | 6 | 27.17 | |||
Low-quality forest | 9 | 15 | |||
Maximum water-holding capacity/t·hm−2 | Mixed forests | 75 | 52.91 | 36.24 | 0.00 |
Pure forest | 6 | 9.83 | |||
Low-quality forest | 9 | 7.56 | |||
Effective storage capacity/t·hm−2 | Mixed forests | 75 | 52 | 29.26 | 0.00 |
Pure forest | 6 | 22.67 | |||
Low-quality forest | 9 | 6.56 | |||
Storage capacity/t·hm−2 | Mixed forests | 75 | 48.23 | 7.40 | 0.03 |
Pure forest | 6 | 18.83 | |||
Low-quality forest | 9 | 40.56 | |||
Natural water-holding capacity/% | Mixed forests | 75 | 50.89 | 19.26 | 0.00 |
Pure forest | 6 | 19.17 | |||
Low-quality forest | 9 | 18.11 | |||
Maximum water-holding capacity/t·hm−2 | Mixed forests | 75 | 48.73 | 6.99 | 0.03 |
Pure forest | 6 | 31.83 | |||
Low-quality forest | 9 | 27.67 | |||
Maximum water-holding capacity/t·hm−2 | Mixed forests | 75 | 52.33 | 30.96 | 0.00 |
Pure forest | 6 | 14.08 | |||
Low-quality forest | 9 | 9.5 | |||
Effective storage capacity/t·hm−2 | Mixed forests | 75 | 48.65 | 6.61 | 0.04 |
Pure forest | 6 | 27.92 | |||
Low-quality forest | 9 | 30.94 | |||
Forest gap fraction/% | Mixed forests | 75 | 48.86 | 7.54 | 0.02 |
Pure forest | 6 | 26.17 | |||
Low-quality forest | 9 | 30.39 | |||
Kilowatt-hour/% | Mixed forests | 75 | 50.17 | 14.84 | 0.00 |
Pure forest | 6 | 27.92 | |||
Low-quality forest | 9 | 18.33 | |||
Divergence angle/% | Mixed forests | 75 | 48.05 | 4.88 | 0.02 |
Pure forest | 6 | 38.92 | |||
Low-quality forest | 9 | 28.61 | |||
Leaf area index (TAI) | Mixed forests | 75 | 49.25 | 10.27 | 0.01 |
Pure forest | 6 | 34.92 | |||
Low-quality forest | 9 | 21.28 | |||
Direct fixed-point factor | Mixed forests | 75 | 49.04 | 8.33 | 0.02 |
Pure forest | 6 | 25.83 | |||
Low-quality forest | 9 | 29.11 | |||
Indirect fixed-point factor | Mixed forests | 75 | 49.53 | 10.99 | 0.00 |
Pure forest | 6 | 21.17 | |||
Low-quality forest | 9 | 28.11 | |||
Total fixation factor | Mixed forests | 75 | 48.69 | 7.13 | 0.03 |
Pure forest | 6 | 24.33 | |||
Low-quality forest | 9 | 33 | |||
Direct radiation flux under the canopy/mol·m−2·d−1 | Mixed forests | 75 | 48.49 | 6.65 | 0.04 |
Pure forest | 6 | 23.42 | |||
Low-quality forest | 9 | 35.28 | |||
Scattered radiation flux under the canopy/mol·m−2·d−1 | Mixed forests | 75 | 50.13 | 14.64 | 0.00 |
Pure forest | 6 | 28.08 | |||
Low-quality forest | 9 | 18.5 | |||
Total subcanopy radiant flux/mol·m−2·d−1 | Mixed forests | 75 | 48.19 | 5.75 | 0.03 |
Pure forest | 6 | 23.83 | |||
Low-quality forest | 9 | 37.56 | |||
Richness index | Mixed forests | 75 | 48.55 | 7.44 | 0.02 |
Pure forest | 6 | 22.67 | |||
Low-quality forest | 9 | 35.28 | |||
Diversity index | Mixed forests | 75 | 49.48 | 10.78 | 0.01 |
Pure forest | 6 | 30.33 | |||
Low-quality forest | 9 | 22.44 | |||
Uniformity index | Mixed forests | 75 | 52.69 | 34.18 | 0.00 |
Pure forest | 6 | 10.67 | |||
Low-quality forest | 9 | 8.78 | |||
Richness index | Mixed forests | 75 | 51.45 | 25.03 | 0.00 |
Pure forest | 6 | 10 | |||
Low-quality forest | 9 | 19.56 | |||
Mixed forests | 75 | 51.47 | 23.71 | 0.00 | |
Pure forest | 6 | 19.33 | |||
Low-quality forest | 9 | 13.22 | |||
Uniformity index | Mixed forests | 75 | 52.44 | 31.92 | 0.00 |
Pure forest | 6 | 10 | |||
Low-quality forest | 9 | 11.33 | |||
Richness index | Mixed forests | 75 | 51 | 21.25 | 0.00 |
Pure forest | 6 | 22.92 | |||
Low-quality forest | 9 | 14.72 | |||
Diversity index | Mixed forests | 75 | 50.45 | 16.27 | 0.00 |
Pure forest | 6 | 22.5 | |||
Low-quality forest | 9 | 19.56 | |||
Uniformity index | Mixed forests | 75 | 51.81 | 27.66 | 0.00 |
Pure forest | 6 | 23.42 | |||
Low-quality forest | 9 | 7.61 |
Factors | Forest Age | N | Rank Mean | Kruskal-Wallis H | p |
---|---|---|---|---|---|
All N/g·kg3 | Young forest | 18 | 15.86 | 20.19 | 0.00 |
Nearly mature forest | 18 | 38.61 | |||
Mature forest | 15 | 35.33 | |||
Over-mature forest | 6 | 23.75 | |||
Full P/g·kg3 | Young forest | 18 | 23.08 | 16.27 | 0.00 |
Nearly mature forest | 18 | 30.31 | |||
Mature forest | 15 | 41.1 | |||
Over-mature forest | 6 | 12.58 | |||
All K (music)/g·kg3 | Young forest | 18 | 21.78 | 11.91 | 0.01 |
Nearly mature forest | 18 | 30.89 | |||
Mature forest | 15 | 39.47 | |||
Over-mature forest | 6 | 18.83 | |||
Quick-impact N/mg·kg3 | Young forest | 18 | 23.89 | 22.54 | 0.00 |
Nearly mature forest | 18 | 35.72 | |||
Mature forest | 15 | 37.27 | |||
Over-mature forest | 6 | 3.5 | |||
Quick-impact P/mg·kg3 | Young forest | 18 | 25.92 | 9.85 | 0.02 |
Nearly mature forest | 18 | 30.25 | |||
Mature forest | 15 | 37.4 | |||
Over-mature forest | 6 | 13.5 | |||
Quick-acting K/mg·kg3 | Young forest | 18 | 23.94 | 7.11 | 0.04 |
Nearly mature forest | 18 | 32.25 | |||
Mature forest | 15 | 35.43 | |||
Over-mature forest | 6 | 18.33 | |||
Organic matter/g·kg3 | Young forest | 18 | 26.31 | 2.04 | 0.01 |
Nearly mature forest | 18 | 32.5 | |||
Mature forest | 15 | 30.27 | |||
Over-mature forest | 6 | 23.42 | |||
PH | Young forest | 18 | 22 | 5.78 | 0.02 |
Nearly mature forest | 18 | 31.94 | |||
Mature forest | 15 | 34.83 | |||
Over-mature forest | 6 | 26.58 | |||
Soil bearing capacity/g ·cm3 | Young forest | 18 | 18.78 | 16.51 | 0.00 |
Nearly mature forest | 18 | 37.28 | |||
Mature forest | 15 | 35.7 | |||
Over-mature forest | 6 | 18.08 | |||
Maximum water-holding capacity/% | Young forest | 18 | 25.64 | 2.57 | 0.00 |
Nearly mature forest | 18 | 28.42 | |||
Mature forest | 15 | 34.6 | |||
Over-mature forest | 6 | 26.83 | |||
Water-holding capacity of the capillary/% | Young forest | 18 | 19.44 | 20.06 | 0.00 |
Nearly mature forest | 18 | 32.39 | |||
Mature forest | 15 | 41.93 | |||
Over-mature forest | 6 | 15.17 | |||
Non-capillary porosity/% | Young forest | 18 | 20.06 | 14.62 | 0.00 |
Nearly mature forest | 18 | 38 | |||
Mature forest | 15 | 33 | |||
Over-mature forest | 6 | 18.83 | |||
Capillary porosity/% | Young forest | 18 | 21.83 | 5.13 | 0.00 |
Nearly mature forest | 18 | 33.5 | |||
Mature forest | 15 | 31.47 | |||
Over-mature forest | 6 | 20.83 | |||
Total porosity/% | Young forest | 18 | 17.94 | 13.21 | 0.00 |
Nearly mature forest | 18 | 35.78 | |||
Mature forest | 15 | 35 | |||
Over-mature forest | 6 | 26.83 | |||
Storage capacity/t·hm−2 | Young forest | 18 | 14.61 | 28.40 | 0.00 |
Nearly mature forest | 18 | 36.14 | |||
Mature forest | 15 | 41.9 | |||
Over-mature forest | 6 | 18.5 | |||
Natural water-holding capacity/% | Young forest | 18 | 27.83 | 2.60 | 0.02 |
Nearly mature forest | 18 | 32.44 | |||
Mature forest | 15 | 29.8 | |||
Over-mature forest | 6 | 20.17 | |||
Maximum water-holding capacity/% | Young forest | 18 | 22.89 | 10.60 | 0.01 |
Nearly mature forest | 18 | 39 | |||
Mature forest | 15 | 27.63 | |||
Over-mature forest | 6 | 20.75 | |||
Maximum water-holding capacity/t·hm−2 | Young forest | 18 | 16 | 18.86 | 0.00 |
Nearly mature forest | 18 | 38.03 | |||
Mature forest | 15 | 35.3 | |||
Over-mature forest | 6 | 25.17 | |||
Effective storage capacity/t·hm−2 | Young forest | 18 | 14.22 | 24.77 | 0.00 |
Nearly mature forest | 18 | 39.94 | |||
Mature forest | 15 | 35.4 | |||
Over-mature forest | 6 | 24.5 | |||
Storage capacity/t·hm−2 | Young forest | 18 | 20.5 | 8.95 | 0.03 |
Nearly mature forest | 18 | 31.31 | |||
Mature forest | 15 | 37.3 | |||
Over-mature forest | 6 | 26.83 | |||
Natural water-holding capacity/% | Young forest | 18 | 26.39 | 1.23 | 0.05 |
Nearly mature forest | 18 | 32.64 | |||
Mature forest | 15 | 32.73 | |||
Over-mature forest | 6 | 28.58 | |||
Maximum water-holding capacity/t·hm−2 | Young forest | 18 | 26.06 | 5.77 | 0.02 |
Nearly mature forest | 18 | 35.78 | |||
Mature forest | 15 | 28.4 | |||
Over-mature forest | 6 | 19 | |||
Maximum water-holding capacity/t·hm−2 | Young forest | 18 | 22.17 | 8.32 | 0.04 |
Nearly mature forest | 18 | 35.36 | |||
Mature forest | 15 | 33.1 | |||
Over-mature forest | 6 | 20.17 | |||
Effective storage capacity/t·hm−2 | Young forest | 18 | 19.75 | 10.65 | 0.01 |
Nearly mature forest | 18 | 31.69 | |||
Mature forest | 15 | 38 | |||
Over-mature forest | 6 | 26.17 | |||
Forest gap fraction/% | Young forest | 18 | 17.58 | 2.31 | 0.01 |
Nearly mature forest | 18 | 28.06 | |||
Mature forest | 15 | 34.1 | |||
Over-mature forest | 6 | 23.33 | |||
Kilowatt-hour/% | Young forest | 18 | 20 | 1.04 | 0.00 |
Nearly mature forest | 18 | 29.17 | |||
Mature forest | 15 | 31.93 | |||
Over-mature forest | 6 | 24.17 | |||
Divergence angle/% | Young forest | 18 | 27.11 | 2.58 | 0.04 |
Nearly mature forest | 18 | 33.22 | |||
Mature forest | 15 | 29.13 | |||
Over-mature forest | 6 | 21.67 | |||
Leaf area index (TAI) | Young forest | 18 | 25.83 | 1.44 | 0.01 |
Nearly mature forest | 18 | 32.33 | |||
Mature forest | 15 | 29.4 | |||
Over-mature forest | 6 | 27.5 | |||
Direct fixed-point factor | Young forest | 18 | 28.08 | 3.56 | 0.01 |
Nearly mature forest | 18 | 33.58 | |||
Mature forest | 15 | 28.53 | |||
Over-mature forest | 6 | 19.17 | |||
Indirect fixed-point factor | Young forest | 18 | 21.31 | 4.00 | 0.00 |
Nearly mature forest | 18 | 34.19 | |||
Mature forest | 15 | 27.5 | |||
Over-mature forest | 6 | 19.25 | |||
Total fixation factor | Young forest | 18 | 27.28 | 3.65 | 0.00 |
Nearly mature forest | 18 | 33.75 | |||
Mature forest | 15 | 29.17 | |||
Over-mature forest | 6 | 19.5 | |||
Direct radiation flux under the canopy/mol·m−2·d−1 | Young forest | 18 | 18.03 | 3.57 | 0.01 |
Nearly mature forest | 18 | 33.61 | |||
Mature forest | 15 | 28.57 | |||
Over-mature forest | 6 | 19.17 | |||
Scattered radiation flux under the canopy/mol·m−2·d−1 | Young forest | 18 | 21.47 | 3.19 | 0.00 |
Nearly mature forest | 18 | 31.72 | |||
Mature forest | 15 | 33.03 | |||
Over-mature forest | 6 | 20.33 | |||
Total subcanopy radiant flux/mol·m−2·d−1 | Young forest | 18 | 24.67 | 5.31 | 0.00 |
Nearly mature forest | 18 | 34.67 | |||
Mature forest | 15 | 31 | |||
Over-mature forest | 6 | 20 | |||
Richness index | Young forest | 18 | 21.61 | 9.54 | 0.02 |
Nearly mature forest | 18 | 37.31 | |||
Mature forest | 15 | 30.27 | |||
Over-mature forest | 6 | 23.08 | |||
Diversity index | Young forest | 18 | 21.31 | 2.16 | 0.04 |
Nearly mature forest | 18 | 30.47 | |||
Mature forest | 15 | 31.53 | |||
Over-mature forest | 6 | 20.33 | |||
Uniformity index | Young forest | 18 | 22.92 | 3.32 | 0.05 |
Nearly mature forest | 18 | 34.42 | |||
Mature forest | 15 | 28.9 | |||
Over-mature forest | 6 | 21.25 | |||
Diversity index | Young forest | 18 | 16.94 | 27.97 | 0.00 |
Nearly mature forest | 18 | 39.28 | |||
Mature forest | 15 | 37.6 | |||
Over-mature forest | 6 | 12.83 | |||
Young forest | 18 | 20.61 | 28.77 | 0.00 | |
Nearly mature forest | 18 | 32.81 | |||
Mature forest | 15 | 48.63 | |||
Over-mature forest | 6 | 23.67 | |||
Uniformity index | Young forest | 18 | 12.44 | 41.59 | 0.00 |
Nearly mature forest | 18 | 39.44 | |||
Mature forest | 15 | 42.87 | |||
Over-mature forest | 6 | 12.67 | |||
Richness index | Young forest | 18 | 20.61 | 12.27 | 0.01 |
Nearly mature forest | 18 | 38.58 | |||
Mature forest | 15 | 29.97 | |||
Over-mature forest | 6 | 23 | |||
Diversity index | Young forest | 18 | 24.56 | 4.58 | 0.01 |
Nearly mature forest | 18 | 35.14 | |||
Mature forest | 15 | 29.37 | |||
Over-mature forest | 6 | 23 | |||
Uniformity index | Young forest | 18 | 18.69 | 20.73 | 0.00 |
Nearly mature forest | 18 | 35.81 | |||
Mature forest | 15 | 39.23 | |||
Over-mature forest | 6 | 13.92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qu, H.; Dong, X.; Zhang, B.; Liu, H.; Gao, T.; Meng, Y.; Ren, Y.; Zhang, Y. Evaluation of Ecological Function Restoration Effect for Degraded Natural Forests in Xiaoxinganling, China. Sustainability 2024, 16, 1793. https://doi.org/10.3390/su16051793
Qu H, Dong X, Zhang B, Liu H, Gao T, Meng Y, Ren Y, Zhang Y. Evaluation of Ecological Function Restoration Effect for Degraded Natural Forests in Xiaoxinganling, China. Sustainability. 2024; 16(5):1793. https://doi.org/10.3390/su16051793
Chicago/Turabian StyleQu, Hangfeng, Xibin Dong, Baoshan Zhang, Hui Liu, Tong Gao, Yuan Meng, Yunze Ren, and Ying Zhang. 2024. "Evaluation of Ecological Function Restoration Effect for Degraded Natural Forests in Xiaoxinganling, China" Sustainability 16, no. 5: 1793. https://doi.org/10.3390/su16051793
APA StyleQu, H., Dong, X., Zhang, B., Liu, H., Gao, T., Meng, Y., Ren, Y., & Zhang, Y. (2024). Evaluation of Ecological Function Restoration Effect for Degraded Natural Forests in Xiaoxinganling, China. Sustainability, 16(5), 1793. https://doi.org/10.3390/su16051793