# Techno-Economic Sustainability Potential of Large-Scale Systems: Forecasting Intermodal Freight Transportation Volumes

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Literature Review

## 3. Materials and Methods

#### 3.1. Empirical Analysis

- -
- Shanghai;
- -
- Ningbo-Zhoushan;
- -
- Shenzhen;
- -
- Hong Kong;
- -
- Guangzhou;
- -
- Qingdao;
- -
- Tianjin;
- -
- Dalian;
- -
- Qinhuangdao;
- -
- Xiamen.

#### 3.2. Research Questions and Methods

## 4. Results and Discussion

## 5. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Wang, J.; Shao, Y.; He, J.; An, Y. A multi-variable hybrid system for port container throughput deterministic and uncertain forecasting. Expert Syst. Appl.
**2024**, 237, 121546. [Google Scholar] [CrossRef] - Weikl, M.C.; Peschel, A. Industrial view on hydrogen carriers for intercontinental transport. Curr. Opin. Green Sustain. Chem.
**2023**, 44, 100843. [Google Scholar] [CrossRef] - Venkadavarahan, M.; Marisamynathan, S. Development of freight trip generation model using observed and unobserved information of supply chain characteristics for a sustainable urban transformation. J. Clean. Prod.
**2023**, 421, 138500. [Google Scholar] [CrossRef] - Baştuğ, S.; Haralambides, H.; Akan, E.; Kiraci, K. Risk mitigation in service industries: A research agenda on container shipping. Transp. Policy
**2023**, 141, 232–244. [Google Scholar] [CrossRef] - de Almeida Rodrigues, T.; de Miranda Mota, C.M.; Ojiako, U.; Chipulu, M.; Marshall, A.; Dweiri, F. A flexible cost model for seaport-hinterland decisions in container shipping. Res. Transp. Bus. Manag.
**2023**, 49, 101016. [Google Scholar] [CrossRef] - Luhayb, A. The bootstrap method for Monte Carlo integration inference. J. King Saud Univ.-Sci.
**2023**, 35, 102768. [Google Scholar] [CrossRef] - Soltani, H.; Al-E-Hashem, S.M.J.M. Robust maritime disruption management with a combination of speedup, skip, and port swap strategies. Transp. Res. Part C Emerg. Technol.
**2023**, 153, 104146. [Google Scholar] [CrossRef] - Dominioni, G. Towards an equitable transition in the decarbonization of international maritime transport: Exemptions or carbon revenues? Mar. Policy
**2023**, 154, 105669. [Google Scholar] [CrossRef] - Sciomachen, A.; Stecca, G. Forwarding containers to dry ports in congested logistic networks. Transp. Res. Interdiscip. Perspect.
**2023**, 20, 100846. [Google Scholar] [CrossRef] - Yang, D.; Liao, S.; Lun, V.; Bai, X. Towards sustainable port management: Data-driven global container ports turnover rate assessment. Transp. Res. Part E Logist. Transp. Rev.
**2023**, 175, 103169. [Google Scholar] [CrossRef] - Shen, X.; Chen, J.; Zhu, S.; Yan, R. A decentralized federated learning-based spatial–temporal model for freight traffic speed forecasting. Expert Syst. Appl.
**2024**, 238, 122302. [Google Scholar] [CrossRef] - Khajeh, E.; Ramouz, A.; Aminizadeh, E.; Sabetkish, N.; Golriz, M.; Mehrabi, A.; Fonouni, H. Comparison of the modified piggyback with standard piggyback and conventional orthotopic liver transplantation techniques: A network meta-analysis. HPB
**2023**, 25, 732–746. [Google Scholar] [CrossRef] - Díaz-Ramírez, J.; Sebastián Zazueta-Nassif Galarza-Tamez, R.; Prato-Sánchez, D.; Huertas, J.I. Characterization of urban distribution networks with light electric freight vehicles. Transp. Res. Part D Transp. Environ.
**2023**, 119, 103719. [Google Scholar] [CrossRef] - Xu, B.; Liu, W.-T.; Li, J.; Yang, Y.; Wen, F.; Song, H. Resilience measurement and dynamic optimization of container logistics supply chain under adverse events. Comput. Ind. Eng.
**2023**, 180, 109202. [Google Scholar] [CrossRef] - Bock, C.H.; Cottrell, T.E.; Hotchkiss, M.W. Spray coverage profiles from pecan air-blast sprayers, with a radial air-flow and a volute-generated focused air-flow, as affected by forward speed and application volume. Crop Prot.
**2023**, 168, 106234. [Google Scholar] [CrossRef] - Saeed, N.; Nguyen, S.; Cullinane, K.; Gekara, V.; Chhetri, P. Forecasting container freight rates using the Prophet forecasting method. Transp. Policy
**2023**, 133, 86–107. [Google Scholar] [CrossRef] - Feng, X.; Song, R.; Yin, W.; Yin, X.; Zhang, R. Multimodal transportation network with cargo containerization technology: Advantages and challenges. Transp. Policy
**2023**, 132, 128–143. [Google Scholar] [CrossRef] - Lu, C.; Ye, Y.; Fang, Y.; Fang, J. An optimal control theory approach for freight structure path evolution post-COVID-19 pandemic. Socio-Econ. Plan. Sci.
**2022**, 85, 101430. [Google Scholar] [CrossRef] [PubMed] - Bozhdaraj, D.; Lucke, D.; Jooste, J.L. Smart Maintenance Architecture for Automated Guided Vehicles. Procedia CIRP
**2023**, 118, 110–115. [Google Scholar] [CrossRef] - Gandhi, N.; Kant, R. Evaluation of sustainability performance of the rail freight transportation: An index-based analysis. Mater. Today Proc.
**2023**. [Google Scholar] [CrossRef] - Guo, X.; Ji, M.; Zhang, W. Research on a new two-level scheduling approach for unmanned surface vehicles transportation containers in automated terminals. Comput. Ind. Eng.
**2023**, 175, 108901. [Google Scholar] [CrossRef] - Li, L.; Wang, J.; Wang, H.; Jin, X.; Du, L. Intermodal transportation hub location optimization with governments subsidies under the Belt and Road Initiative. Ocean Coast. Manag.
**2023**, 231, 106414. [Google Scholar] [CrossRef] - Steinbach, S. Port congestion, container shortages, and U.S. foreign trade. Econ. Lett.
**2022**, 213, 110392. [Google Scholar] [CrossRef] - Baygin, M.; Yaman, O.; Baygin, N.; Karakose, M. A blockchain-based approach to smart cargo transportation using UHF RFID. Expert Syst. Appl.
**2022**, 188, 116030. [Google Scholar] [CrossRef] - Ulitskaya, N.; Ivanova, N.; Telushkina, E.; Dreitsen, M.; Sokolova, N. Transport Support for the Development of the Far Eastern Region of Russia. Transp. Res. Procedia
**2023**, 68, 40–49. [Google Scholar] [CrossRef] - Vukić, L.; del Mar Cerbán, M. Economic and environmental competitiveness of container shipping on alternative maritime routes in the Asia-Europe trade flow. Marit. Transp. Res.
**2022**, 3, 100070. [Google Scholar] [CrossRef] - Mingaleva, Z.; Postnikov, V.; Kamenskikh, M. Research of cargo seaports development in the Russian federation in the context of port basins. Transp. Res. Procedia
**2022**, 63, 303–315. [Google Scholar] [CrossRef] - Schramm, H.-J.; Munim, Z.H. Container freight rate forecasting with improved accuracy by integrating soft facts from practitioners. Res. Transp. Bus. Manag.
**2021**, 41, 100662. [Google Scholar] [CrossRef] - Liu, C.-Y.; Fan, H.-M.; Dang, X.; Zhang, X. The Arctic policy and port development along the Northern Sea Route: Evidence from Russia’s Arctic strategy. Ocean Coast. Manag.
**2021**, 201, 105422. [Google Scholar] [CrossRef] - Konoplev, V.; Melnikov, Z.; Sarbaev, V.; Khlopkov, S. Improvement of the layout and design of cargo vehicles of serial production aimed at implementing the Transport Strategy of the Russian Federation up to 2030. Transp. Res. Procedia
**2021**, 57, 317–324. [Google Scholar] [CrossRef] - Kuzmicz, K.A.; Pesch, E. Approaches to empty container repositioning problems in the context of Eurasian intermodal transportation. Omega
**2019**, 85, 194–213. [Google Scholar] [CrossRef] - García, J.; Florez, J.E.; Torralba, Á.; Borrajo, D.; López, C.L.; García-Olaya, Á.; Sáenz, J. Combining linear programming and automated planning to solve intermodal transportation problems. Eur. J. Oper. Res.
**2013**, 227, 216–226. [Google Scholar] [CrossRef] - Kraiem, Z.M.; Dagli, D.P.; Diekmann, J.E. DISCON: An expert system for the analysis of differing site conditions claims. Knowl.-Based Syst.
**1989**, 2, 158–164. [Google Scholar] [CrossRef]

Name of Distributions | Distribution Function | Mathematical Expectation | Dispersion |
---|---|---|---|

Pareto | $\mathrm{F}\left(\mathrm{x}\right)=1-{\left(\frac{{x}_{m}}{x}\right)}^{k}$ | $\mu =\frac{a\times b}{a-1},$ at $a<1$ mathematical expectation does not exist | ${\sigma}^{2}=\frac{a\times {b}^{2}}{(a-1)(a-2)}$ $a<2$ variance does not exist |

Weibull | $\mathrm{F}\left(\mathrm{x}\right)=1-{e}^{{-\left(\frac{x}{b}\right)}^{a}}$ | $\mu =\frac{b}{a}G\frac{1}{a}$ | ${\sigma}^{2}=\frac{{b}^{2}}{a}\left\{2G\frac{2}{a}-\frac{1}{a}{\left[G\frac{1}{a}\right]}^{2}\right\}$ |

Lognormal | $\mathrm{F}\left(\mathrm{x}\right)=\frac{1}{2}+\frac{1}{2}Erf\left[\frac{\mathrm{ln}\left(x\right)-\mu}{\sigma \sqrt{2}}\right]$ | $\mu ={e}^{\mu +\frac{{\sigma}^{2}}{2}}$ | ${\sigma}^{2}={e}^{{\sigma}^{2}+2\mu}({e}^{{\sigma}^{2}}-1)$ |

Gamma distribution | $F\left(\mathrm{x}\right)=\left(\frac{\gamma (k,x)/\mathsf{\theta}}{G\left(k\right)}\right)$ | $\mu =ab$ | ${\sigma}^{2}={ab}^{2}$ |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Chupin, A.; Morkovkin, D.; Bolsunovskaya, M.; Boyko, A.; Leksashov, A.
Techno-Economic Sustainability Potential of Large-Scale Systems: Forecasting Intermodal Freight Transportation Volumes. *Sustainability* **2024**, *16*, 1265.
https://doi.org/10.3390/su16031265

**AMA Style**

Chupin A, Morkovkin D, Bolsunovskaya M, Boyko A, Leksashov A.
Techno-Economic Sustainability Potential of Large-Scale Systems: Forecasting Intermodal Freight Transportation Volumes. *Sustainability*. 2024; 16(3):1265.
https://doi.org/10.3390/su16031265

**Chicago/Turabian Style**

Chupin, Alexander, Dmitry Morkovkin, Marina Bolsunovskaya, Anna Boyko, and Alexander Leksashov.
2024. "Techno-Economic Sustainability Potential of Large-Scale Systems: Forecasting Intermodal Freight Transportation Volumes" *Sustainability* 16, no. 3: 1265.
https://doi.org/10.3390/su16031265