The Impact of City Anti-Contagion Policies (CAPs) on Air Quality Evidence from a Natural Experiment in China
Abstract
1. Introduction
2. Materials and Methods
2.1. Methodology
2.1.1. Generalized DiD Model
2.1.2. Event Study
2.1.3. Heterogeneity Analysis
2.2. Data
2.2.1. Air Pollution
2.2.2. City Anti-Contagion Policy (CAP) Data
2.2.3. Meteorological Variables
2.2.4. Socio-Economic Status
3. Results
3.1. The Short-Term Impact of CAPs
3.2. The Medium-Term Impacts of CAPs
3.3. Heterogeneity
3.4. Robustness Check
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
City | Province | CAPs | City | Province | CAPs |
---|---|---|---|---|---|
Fuzhou | Fujian | 6 February 2020 | Fuzhou | Jiangxi | 4 February 2020 |
Anshun | Guizhou | 5 February 2020 | Jingdezhen | Jiangxi | 4 February 2020 |
Qinhuangdao | Hebei | 25 January 2020 | Ganzhou | Jiangxi | 6 February 2020 |
Tangshan | Hebei | 28 January 2020 | Jiujiang | Jiangxi | 6 February 2020 |
Zhengzhou | Henan | 4 February 2020 | Yingtan | Jiangxi | 6 February 2020 |
Zhumadian | Henan | 4 February 2020 | Chaoyang | Liaoning | 5 February 2020 |
Xinyang | Henan | 6 February 2020 | Dalian | Liaoning | 5 February 2020 |
Harbin | Heilongjiang | 4 February 2020 | Dandong | Liaoning | 5 February 2020 |
Huanggang | Hubei | 23 January 2020 | Fushun | Liaoning | 5 February 2020 |
Wuhan | Hubei | 23 January 2020 | Fuxin | Liaoning | 5 February 2020 |
Huangshi | Hubei | 24 January 2020 | Shenyang | Liaoning | 5 February 2020 |
Jingmen | Hubei | 24 January 2020 | Tieling | Liaoning | 5 February 2020 |
Jingzhou | Hubei | 24 January 2020 | Bayannur | Inner Mongolia | 12 February 2020 |
Shiyan | Hubei | 24 January 2020 | Ordos | Inner Mongolia | 12 February 2020 |
Xianning | Hubei | 24 January 2020 | Hohhot | Inner Monglia | 12 February 2020 |
Xiaogan | Hubei | 24 January 2020 | Ulanqab | Inner Mongolia | 12 February 2020 |
Yichang | Hubei | 24 January 2020 | Yinchuan | Ningxia | 31 January 2020 |
Xiangyang | Hubei | 28 January 2020 | Dongying | Shandong | 30 January 2020 |
Changzhou | Jiangsu | 4 February 2020 | Jining | Shandong | 3 February 2020 |
Nanjing | Jiangsu | 4 February 2020 | Linyi | Shandong | 4 February 2020 |
Nantong | Jiangsu | 4 February 2020 | Wenzhou | Zhejiang | 4 February 2020 |
Xuzhou | Jiangsu | 4 February 2020 | Hangzhou | Zhejiang | 4 February 2020 |
Yangzhou | Jiangsu | 5 February 2020 | Ningbo | Zhejiang | 4 February 2020 |
Wuxi | Jiangsu | 9 February 2020 |
AQI | PM2.5 | PM10 | SO2 | NO2 | O3 | CO | |
---|---|---|---|---|---|---|---|
short_t | −7.557 * | −5.918 * | −8.723 ** | −0.371 | −3.295 *** | 4.705 *** | 0.010 |
(4.073) | (3.382) | (3.781) | (0.850) | (0.954) | (0.879) | (0.039) | |
wind | −3.813 *** | −4.111 *** | −3.336 *** | −0.975 *** | −3.165 *** | 2.940 *** | −0.047 *** |
(0.393) | (0.341) | (0.432) | (0.102) | (0.159) | (0.258) | (0.005) | |
airpressure | 0.782 *** | 0.552 *** | 0.696 *** | −0.159 *** | −0.252 *** | 0.780 *** | −0.009 *** |
(0.155) | (0.136) | (0.160) | (0.041) | (0.053) | (0.088) | (0.002) | |
temperature | 0.669 *** | 0.462 *** | 0.692 *** | −0.278 *** | −0.271 *** | 1.119 *** | −0.008 *** |
(0.180) | (0.158) | (0.203) | (0.049) | (0.064) | (0.100) | (0.003) | |
temper2 | 0.053 *** | 0.0435 *** | 0.0639 *** | 0.014 *** | 0.020 *** | 0.021 *** | 0.0003 *** |
(0.008) | (0.007) | (0.008) | (0.002) | (0.002) | (0.003) | (8.04 × 10−5) | |
humidity | 0.216 *** | 0.371 *** | −0.122 | −0.030 *** | 0.008 | −0.161 *** | 0.005 *** |
(0.063) | (0.048) | (0.096) | (0.008) | (0.013) | (0.024) | (0.0005) | |
sunduration | −0.725 *** | −0.454 *** | −1.088 *** | 0.020 | −0.023 | 0.938 *** | 0.0004 |
(0.161) | (0.118) | (0.293) | (0.026) | (0.037) | (0.06) | (0.0014) | |
Observations | 24,249 | 24,249 | 24,249 | 24,249 | 24,248 | 24,249 | 24,249 |
Adj R-squared | 0.484 | 0.504 | 0.421 | 0.601 | 0.706 | 0.612 | 0.577 |
Number of cities | 249 | 249 | 249 | 249 | 249 | 249 | 249 |
City fixed effects | Y | Y | Y | Y | Y | Y | Y |
Date fixed effects | Y | Y | Y | Y | Y | Y | Y |
AQI | PM2.5 | PM10 | SO2 | NO2 | O3 | CO | |
---|---|---|---|---|---|---|---|
(Panel C) short_t | −8.192 * | −6.874 * | −8.808 ** | −0.570 | −3.675 *** | 6.105 *** | 0.001 |
(4.681) | (4.132) | (4.222) | (1.085) | (1.342) | (1.157) | (0.050) | |
medium_t | −6.727 | −6.368 | −5.782 | −0.666 | −2.259 | 11.109 *** | 0.002 |
(5.401) | (4.862) | (4.826) | (1.444) | (1.560) | (2.500) | (0.060) | |
Observations | 53,029 | 53,031 | 53,031 | 53,031 | 53,028 | 53,031 | 53,031 |
Adj R-squared | 0.447 | 0.426 | 0.360 | 0.461 | 0.599 | 0.452 | 0.510 |
(Panel D) short_t | −7.086 * | −5.403 | −8.158 ** | −0.284 | −3.323 *** | 4.424 *** | 0.017 |
(4.219) | (3.524) | (3.910) | (0.870) | (1.073) | (0.898) | (0.041) | |
medium_t | −5.281 | −4.655 | −4.466 | −0.631 | −1.932 | 8.509 *** | 0.012 |
(4.873) | (4.194) | (4.480) | (1.126) | (1.291) | (2.218) | (0.051) | |
wind | −2.180 *** | −2.742 *** | −1.733 *** | −0.772 *** | −3.049 *** | 2.245 *** | −0.039 *** |
(0.281) | (0.233) | (0.369) | (0.088) | (0.153) | (0.277) | (0.003) | |
airpressure | 0.934 *** | 0.755 *** | 0.901 *** | −0.037 | 0.069 | 0.283 *** | −0.003 ** |
(0.128) | (0.117) | (0.133) | (0.042) | (0.044) | (0.097) | (0.001) | |
temperature | 0.081 | −0.067 | 0.085 | −0.358 *** | −0.138 *** | 1.345 *** | −0.007 *** |
(0.152) | (0.132) | (0.167) | (0.047) | (0.051) | (0.153) | (0.002) | |
temper2 | 0.052 *** | 0.041 *** | 0.054 *** | 0.012 *** | 0.013 *** | 0.036 *** | 0.0004 *** |
(0.006) | (0.005) | (0.007) | (0.002) | (0.002) | (0.004) | (6.98 × 10−5) | |
humidity | 0.038 | 0.207 *** | −0.247 *** | −0.036 *** | −0.021 * | −0.054 | 0.004 *** |
(0.040) | (0.033) | (0.061) | (0.009) | (0.012) | (0.034) | (0.0004) | |
sunduration | −0.496 *** | −0.415 *** | −0.965 *** | −0.007 | −0.060 * | 0.679 *** | −0.0004 |
(0.106) | (0.087) | (0.202) | (0.023) | (0.032) | (0.097) | (0.001) | |
Observations | 50,671 | 50,673 | 50,673 | 50,673 | 50,670 | 50,673 | 50,673 |
Adj R-squared | 0.481 | 0.469 | 0.384 | 0.519 | 0.658 | 0.558 | 0.566 |
Number of cities | 249 | 249 | 249 | 249 | 249 | 249 | 249 |
City fixed effects | Y | Y | Y | Y | Y | Y | Y |
Date fixed effects | Y | Y | Y | Y | Y | Y | Y |
AQI | PM2.5 | PM10 | SO2 | NO2 | O3 | CO | |
---|---|---|---|---|---|---|---|
short_t | −8.151 * | −6.623 * | −10.01 ** | −1.132 | −3.232 *** | 3.991 *** | −0.0285 |
(4.766) | (3.951) | (4.447) | (0.969) | (1.120) | (0.949) | (0.0423) | |
wind2 | −3.847 *** | −4.162 *** | −3.371 *** | −0.990 *** | −3.223 *** | 2.973 *** | −0.0470 *** |
(0.410) | (0.356) | (0.449) | (0.106) | (0.166) | (0.268) | (0.005) | |
airpressure | 0.766 *** | 0.546 *** | 0.656 *** | −0.163 *** | −0.266 *** | 0.769 *** | −0.008 *** |
(0.158) | (0.139) | (0.161) | (0.0413) | (0.0541) | (0.0897) | (0.002) | |
temperature | 0.609 *** | 0.416 *** | 0.627 *** | −0.285 *** | −0.280 *** | 1.118 *** | −0.009 *** |
(0.180) | (0.157) | (0.204) | (0.0494) | (0.0649) | (0.102) | (0.003) | |
temper2 | 0.0527 *** | 0.0427 *** | 0.0631 *** | 0.0137 *** | 0.0207 *** | 0.0196 *** | 0.0002 *** |
(0.00783) | (0.00687) | (0.00753) | (0.00196) | (0.00214) | (0.00302) | (8.03 × 10−5) | |
humidity | 0.219 *** | 0.375 *** | −0.123 | −0.0321 *** | 0.00790 | −0.154 *** | 0.005 *** |
(0.0641) | (0.0483) | (0.0981) | (0.00854) | (0.0127) | (0.0240) | (0.0005) | |
sunduration | −0.745 *** | −0.469 *** | −1.125 *** | 0.00827 | −0.0178 | 0.941 *** | −0.0001 |
(0.168) | (0.123) | (0.308) | (0.0270) | (0.0390) | (0.0652) | (0.002) | |
Observations | 23,173 | 23,173 | 23,173 | 23,173 | 23,172 | 23,173 | 23,173 |
Adj R-squared | 0.492 | 0.511 | 0.428 | 0.608 | 0.709 | 0.617 | 0.589 |
AQI | PM2.5 | PM10 | SO2 | NO2 | O3 | CO | |
---|---|---|---|---|---|---|---|
short_t | −8.288 * | −6.616 | −10.10 ** | −1.047 | −3.287 *** | 3.692 *** | −0.022 |
(4.885) | (4.066) | (4.525) | (0.971) | (1.240) | (0.978) | (0.045) | |
medium_t | −4.127 | −4.135 | −4.404 | −1.401 | −2.462 | 9.247 *** | −0.003 |
(5.503) | (4.770) | (5.143) | (1.284) | (1.502) | (2.556) | (0.059) | |
wind2 | −2.225 *** | −2.798 *** | −1.754 *** | −0.781 *** | −3.071 *** | 2.253 *** | −0.039 *** |
(0.289) | (0.239) | (0.382) | (0.0901) | (0.159) | (0.287) | (0.003) | |
airpressure | 0.916 *** | 0.743 *** | 0.877 *** | −0.0427 | 0.0687 | 0.266 *** | −0.003 ** |
(0.130) | (0.118) | (0.135) | (0.0421) | (0.0450) | (0.0982) | (0.001) | |
temperature | 0.0333 | −0.107 | 0.0418 | −0.362 *** | −0.136 *** | 1.343 *** | −0.007 *** |
(0.153) | (0.133) | (0.170) | (0.0475) | (0.0519) | (0.155) | (0.002) | |
temper2 | 0.0521 *** | 0.0408 *** | 0.0533 *** | 0.0115 *** | 0.0130 *** | 0.0368 *** | 0.0004 *** |
(0.00613) | (0.00514) | (0.00743) | (0.00162) | (0.00152) | (0.00359) | (7.11 × 10−5) | |
humidity | 0.0367 | 0.205 *** | −0.249 *** | −0.0378 *** | −0.0191 | −0.0478 | 0.004 *** |
(0.0410) | (0.0340) | (0.0625) | (0.00919) | (0.0123) | (0.0348) | (0.0004) | |
sunduration | −0.509 *** | −0.428 *** | −0.985 *** | −0.00965 | −0.0487 | 0.663 *** | −0.0005 |
(0.112) | (0.0904) | (0.212) | (0.0238) | (0.0327) | (0.101) | (0.001) | |
Observations | 48,333 | 48,335 | 48,335 | 48,335 | 48,332 | 48,335 | 48,335 |
Adj R-squared | 0.484 | 0.472 | 0.387 | 0.525 | 0.660 | 0.559 | 0.571 |
AQI | PM2.5 | PM10 | SO2 | NO2 | O3 | CO | |
---|---|---|---|---|---|---|---|
short_t | −10.31 ** | −8.236 ** | −11.36 *** | −0.665 | −3.982 *** | 5.928 *** | −0.012 |
(4.211) | (3.485) | (3.975) | (0.882) | (0.994) | (0.948) | (0.040) | |
wind2 | −3.855 *** | −4.165 *** | −3.210 *** | −0.897 *** | −3.116 *** | 3.064 *** | −0.046 *** |
(0.431) | (0.339) | (0.490) | (0.0989) | (0.170) | (0.268) | (0.004) | |
airpressure | 0.649 *** | 0.421 *** | 0.609 *** | −0.169 *** | −0.289 *** | 0.848 *** | −0.009 *** |
(0.173) | (0.151) | (0.183) | (0.0431) | (0.0573) | (0.104) | (0.002) | |
temperature | 0.745 *** | 0.494 *** | 0.774 *** | −0.276 *** | −0.258 *** | 1.130 *** | −0.008 *** |
(0.182) | (0.159) | (0.219) | (0.0527) | (0.0686) | (0.114) | (0.003) | |
temper2 | 0.0456 *** | 0.0380 *** | 0.0564 *** | 0.0135 *** | 0.0185 *** | 0.0231 *** | 0.0002 *** |
(0.00754) | (0.00660) | (0.00770) | (0.00221) | (0.00221) | (0.00354) | (8.16 × 10−5) | |
humidity | 0.175 ** | 0.335 *** | −0.169 | −0.0298 *** | 0.00164 | −0.154 *** | 0.005 *** |
(0.0698) | (0.0521) | (0.109) | (0.00909) | (0.0131) | (0.0271) | (0.0005) | |
sunduration | −0.880 *** | −0.565 *** | −1.319 *** | 0.00975 | −0.0333 | 0.979 *** | −0.001 |
(0.181) | (0.129) | (0.343) | (0.0300) | (0.0396) | (0.0716) | (0.002) | |
Constant | −563.1 *** | −377.3 ** | −503.4 *** | 178.0 *** | 308.6 *** | −771.3 *** | 9.709 *** |
(167.9) | (147.0) | (173.1) | (41.60) | (55.72) | (100.8) | (1.760) | |
Observations | 19,897 | 19,897 | 19,897 | 19,897 | 19,896 | 19,897 | 19,897 |
Adj R-squared | 0.486 | 0.511 | 0.416 | 0.600 | 0.710 | 0.620 | 0.584 |
AQI | PM2.5 | PM10 | SO2 | NO2 | O3 | CO | |
---|---|---|---|---|---|---|---|
short_t | −9.739 ** | −7.584 ** | −10.68 *** | −0.536 | −3.953 *** | 5.536 *** | −0.003 |
(4.352) | (3.624) | (4.086) | (0.896) | (1.110) | (0.964) | (0.042) | |
medium_t | −6.672 | −5.894 | −5.563 | −0.981 | −2.596 * | 10.46 *** | −0.001 |
(5.105) | (4.393) | (4.747) | (1.161) | (1.354) | (2.345) | (0.053) | |
wind2 | −2.060 *** | −2.641 *** | −1.463 *** | −0.746 *** | −3.006 *** | 2.235 *** | −0.038 *** |
(0.320) | (0.248) | (0.419) | (0.0933) | (0.169) | (0.293) | (0.003) | |
airpressure | 0.915 *** | 0.734 *** | 0.895 *** | −0.0435 | 0.0528 | 0.394 *** | −0.003 ** |
(0.145) | (0.132) | (0.151) | (0.0455) | (0.0490) | (0.104) | (0.002) | |
temperature | 0.182 | −0.000457 | 0.140 | −0.364 *** | −0.108 ** | 1.434 *** | −0.007 *** |
(0.158) | (0.140) | (0.177) | (0.0516) | (0.0520) | (0.168) | (0.002) | |
temper2 | 0.0445 *** | 0.0360 *** | 0.0453 *** | 0.0117 *** | 0.0117 *** | 0.0352 *** | 0.0003 *** |
(0.00626) | (0.00529) | (0.00801) | (0.00183) | (0.00158) | (0.00380) | (7.57 × 10−5) | |
humidity | 0.0192 | 0.193 *** | −0.267 *** | −0.0374 *** | −0.0203 * | −0.0462 | 0.004 *** |
(0.0424) | (0.0336) | (0.0684) | (0.00876) | (0.0117) | (0.0373) | (0.0004) | |
sunduration | −0.547 *** | −0.454 *** | −1.071 *** | −0.0171 | −0.0661 ** | 0.667 *** | −0.0013 |
(0.117) | (0.0911) | (0.235) | (0.0245) | (0.0323) | (0.105) | (0.0011) | |
Constant | −827.1 *** | −682.8 *** | −786.0 *** | 57.48 | −21.21 | −350.8 *** | 3.879 ** |
(140.1) | (127.5) | (142.3) | (44.00) | (47.36) | (101.4) | (1.531) | |
Observations | 42,069 | 42,070 | 42,070 | 42,070 | 42,069 | 42,070 | 42,070 |
Adj R-squared | 0.476 | 0.468 | 0.373 | 0.514 | 0.664 | 0.556 | 0.570 |
AQI | PM2.5 | PM10 | SO2 | NO2 | O3 | CO | |
---|---|---|---|---|---|---|---|
Lead_D5 | −5.549 | −4.570 | −3.712 | 1.020 | 4.249 ** | −8.092 *** | 0.062 |
(5.958) | (5.051) | (5.782) | (1.327) | (1.719) | (2.100) | (0.074) | |
Lead_D4 | −5.732 | −4.660 | −3.154 | −0.780 | 2.489 * | −8.857 *** | 0.007 |
(4.392) | (3.680) | (4.301) | (0.591) | (1.430) | (1.674) | (0.042) | |
Lead_D3 | −7.197 | −5.746 | −4.724 | −0.551 | 1.871 | −6.721 *** | −0.014 |
(5.459) | (4.615) | (5.371) | (0.743) | (1.271) | (1.245) | (0.045) | |
Lead_D2 | −4.893 | −3.240 | −0.991 | 0.0630 | −0.249 | −4.183 *** | −0.023 |
(5.802) | (5.297) | (5.978) | (1.095) | (1.019) | (1.187) | (0.043) | |
D0 | −14.671 *** | −12.611 *** | −12.291 *** | −1.196 * | −2.621 *** | −0.032 | −0.079 ** |
(4.291) | (3.519) | (4.060) | (0.620) | (0.853) | (0.955) | (0.039) | |
D1 | −7.581 * | −6.707 ** | −5.038 | 0.197 | −1.322 | −1.379 | −0.010 |
(4.280) | (3.404) | (4.398) | (0.861) | (0.939) | (1.351) | (0.037) | |
D2 | −15.856 *** | −12.207 *** | −14.56 *** | −0.476 | −1.466 | −2.921 *** | 0.015 |
(3.884) | (3.006) | (3.821) | (0.614) | (0.940) | (1.068) | (0.032) | |
D3 | −12.771 *** | −8.978 *** | −12.61 *** | 0.057 | −1.740 ** | −0.617 | 0.016 |
(3.918) | (3.165) | (3.709) | (0.748) | (0.859) | (1.411) | (0.037) | |
D4 | −11.930 *** | −7.589 ** | −15.75 *** | −0.964 | −2.658 ** | 0.455 | 0.032 |
(3.575) | (2.936) | (3.725) | (0.767) | (1.276) | (1.323) | (0.046) | |
D5 | −11.855 *** | −9.611 *** | −11.33 *** | −1.132 | −2.661 ** | −0.840 | 0.050 |
(3.994) | (3.192) | (3.602) | (0.836) | (1.277) | (1.403) | (0.045) | |
D6 | −9.897 ** | −7.569 ** | −8.539 ** | 0.052 | −1.349 | 0.481 | 0.037 |
(4.110) | (3.402) | (3.765) | (0.808) | (1.369) | (1.527) | (0.046) | |
wind2 | −3.792 *** | −4.094 *** | −3.315 *** | −0.972 *** | −3.160 *** | 2.953 *** | −0.046 *** |
(0.392) | (0.339) | (0.431) | (0.102) | (0.159) | (0.260) | (0.005) | |
airpressure | 0.797 *** | 0.564 *** | 0.708 *** | −0.158 *** | −0.250 *** | 0.782 *** | −0.008 *** |
(0.156) | (0.137) | (0.160) | (0.041) | (0.053) | (0.089) | (0.002) | |
temperature | 0.669 *** | 0.461 *** | 0.690 *** | −0.279 *** | −0.268 *** | 1.118 *** | −0.008 *** |
(0.179) | (0.157) | (0.203) | (0.050) | (0.064) | (0.100) | (0.003) | |
temper2 | 0.053 *** | 0.044 *** | 0.0640 *** | 0.0141 *** | 0.020 *** | 0.021 *** | 0.0003 *** |
(0.008) | (0.00684) | (0.008) | (0.002) | (0.002) | (0.003) | (8.08 × 10−5) | |
humidity | 0.219 *** | 0.374 *** | −0.120 | −0.030 *** | 0.008 | −0.158 *** | 0.005 *** |
(0.063) | (0.0480) | (0.096) | (0.008) | (0.012) | (0.024) | (0.0004) | |
sunduration | −0.726 *** | −0.453 *** | −1.091 *** | 0.020 | −0.024 | 0.938 *** | 0.0004 |
(0.161) | (0.118) | (0.294) | (0.026) | (0.037) | (0.064) | (0.001) | |
Observations | 24,249 | 24,249 | 24,249 | 24,249 | 24,248 | 24,249 | 24,249 |
Adj R-squared | 0.485 | 0.504 | 0.421 | 0.602 | 0.706 | 0.617 | 0.578 |
References
- Qi, J.; Zhang, D.; Zhang, X.; Takana, T.; Pan, Y.; Yin, P.; Liu, J.; Liu, S.; Gao, G.F.; He, G.; et al. Short-and medium-term impacts of strict anti-contagion policies on non-COVID-19 mortality in China. Nat. Hum. Behav. 2022, 6, 55–63. [Google Scholar] [CrossRef]
- Pan, S.; Jung, J.; Li, Z.; Hou, X.; Roy, A.; Choi, Y.; Gao, H.O. Air quality implications of COVID-19 in California. Sustainability 2020, 12, 7067. [Google Scholar] [CrossRef]
- Kumari, P.; Toshniwal, D. Impact of lockdown on air quality over major cities across the globe during COVID-19 pandemic. Urban Clim. 2020, 34, 100719. [Google Scholar] [CrossRef]
- Albayati, N.; Waisi, B.; Al-Furaiji, M.; Kadhom, M.; Alalwan, H. Effect of COVID-19 on air quality and pollution in different countries. J. Transp. Health 2021, 21, 101061. [Google Scholar]
- Tian, X.; An, C.; Chen, Z.; Tian, Z. Assessing the impact of COVID-19 pandemic on urban transportation and air quality in Canada. Sci. Total Environ. 2021, 765, 144270. [Google Scholar] [CrossRef]
- Zangari, S.; Hill, D.T.; Charette, A.T.; Mirowsky, J.E. Air quality changes in New York City during the COVID-19 pandemic. Sci. Total Environ. 2020, 742, 140496. [Google Scholar] [CrossRef]
- Shehzad, K.; Bilgili, F.; Koçak, E.; Xiaoxing, L.; Ahmad, M. COVID-19 outbreak, lockdown, and air quality: Fresh insights from New York City. Environ. Sci. Pollut. Res. 2021, 28, 41149–41161. [Google Scholar]
- Chen, L.W.; Chien, L.C.; Li, Y.; Lin, G. Nonuniform impacts of COVID-19 lockdown on air quality over the United States. Sci. Total Environ. 2020, 745, 141105. [Google Scholar] [CrossRef]
- Cameletti, M. The Effect of Corona Virus Lockdown on Air Pollution: Evidence from the City of Brescia in Lombardia Region (Italy). Atmos. Environ. 2020, 239, 117794. [Google Scholar] [CrossRef]
- Collivignarelli, M.C.; Abbà, A.; Bertanza, G.; Pedrazzani, R.; Ricciardi, P.; Miino, M.C. Lockdown for COVID-2019 in Milan: What are the effects on air quality? Sci. Total Environ. 2020, 732, 139280. [Google Scholar] [CrossRef]
- Filonchyk, M.; Hurynovich, V.; Yan, H. Impact of COVID-19 lockdown on air quality in the Poland, Eastern Europe. Environ. Res. 2021, 198, 110454. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, A.; Eusébio, C.; Carneiro, M.J.; Madaleno, M.; Robaina, M.; Rodrigues, V.; Gama, C.; Relvas, H.; Russo, M.; Oliveira, K.; et al. Tourism and air quality during COVID-19 pandemic: Lessons for the future. Sustainability 2021, 13, 3906. [Google Scholar] [CrossRef]
- Gama, C.; Relvas, H.; Lopes, M.; Monteiro, A. The impact of COVID-19 on air quality levels in Portugal: A way to assess traffic contribution. Environ. Res. 2021, 193, 110515. [Google Scholar] [CrossRef]
- Tobías, A.; Carnerero, C.; Reche, C.; Massagué, J.; Via, M.; Minguillón, M.C.; Alastuey, A.; Querol, X. Changes in air quality during the lockdown in Barcelona (Spain) one month into the SARS-CoV-2 epidemic. Sci. Total Environ. 2020, 726, 138540. [Google Scholar] [CrossRef]
- Briz-Redón, Á.; Belenguer-Sapiña, C.; Serrano-Aroca, Á. Changes in air pollution during COVID-19 lockdown in Spain: A mul-ti-city study. J. Environ. Sci. 2021, 101, 16–26. [Google Scholar] [CrossRef]
- Baldasano, J.M. COVID-19 lockdown effects on air quality by NO2 in the cities of Barcelona and Madrid (Spain). Sci. Total Environ. 2020, 741, 140353. [Google Scholar] [CrossRef]
- Higham, J.E.; Ramírez, C.A.; Green, M.A.; Morse, A.P. UK COVID-19 lockdown: 100 days of air pollution reduction? Air Qual. Atmos. Health 2021, 14, 325–332. [Google Scholar] [CrossRef]
- Jephcote, C.; Hansell, A.L.; Adams, K.; Gulliver, J. Changes in air quality during COVID-19 ‘lockdown’ in the United Kingdom. Environ. Pollut. 2021, 272, 116011. [Google Scholar] [CrossRef]
- Ropkins, K.; Tate, J.E. Early observations on the impact of the COVID-19 lockdown on air quality trends across the UK. Sci. Total Environ. 2021, 754, 142374. [Google Scholar] [CrossRef] [PubMed]
- Kerimray, A.; Baimatova, N.; Ibragimova, O.P.; Bukenov, B.; Kenessov, B.; Plotitsyn, P.; Karaca, F. Assessing air quality changes in large cities during COVID-19 lockdowns: The impacts of traffic-free urban conditions in Almaty, Kazakhstan. Sci. Total Environ. 2020, 730, 139179. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.S.; Azad, M.A.; Hasanuzzaman, M.; Salam, R.; Islam, A.R.; Rahman, M.M.; Hoque, M.M. How air quality and COVID-19 transmission change under different lockdown scenarios? A case from Dhaka city, Bangladesh. Sci. Total Environ. 2021, 762, 143161. [Google Scholar] [CrossRef]
- Dantas, G.; Siciliano, B.; França, B.B.; da Silva, C.M.; Arbilla, G. The impact of COVID-19 partial lockdown on the air quality of the city of Rio de Janeiro, Brazil. Sci. Total Environ. 2020, 729, 139085. [Google Scholar] [CrossRef] [PubMed]
- Nakada, L.Y.; Urban, R.C. COVID-19 pandemic: Impacts on the air quality during the partial lockdown in São Paulo state, Brazil. Sci. Total Environ. 2020, 730, 139087. [Google Scholar] [CrossRef]
- Zambrano-Monserrate, M.A.; Ruano, M.A. Has air quality improved in Ecuador during the COVID-19 pandemic? A parametric analysis. Air Qual. Atmos. Health 2020, 13, 929–938. [Google Scholar] [CrossRef]
- Chau, P.N.; Zalakeviciute, R.; Thomas, I.; Rybarczyk, Y. Deep learning approach for assessing air quality during COVID-19 lock-down in Quito. Front. Big Data 2022, 5, 842455. [Google Scholar] [CrossRef]
- Das, P.; Mandal, I.; Debanshi, S.; Mahato, S.; Talukdar, S.; Giri, B.; Pal, S. Short term unwinding lockdown effects on air pollution. J. Clean. Prod. 2021, 296, 126514. [Google Scholar] [CrossRef]
- Mahato, S.; Pal, S.; Ghosh, K.G. Effect of lockdown amid COVID-19 pandemic on air quality of the megacity Delhi, India. Sci. Total Environ. 2020, 730, 139086. [Google Scholar] [CrossRef]
- Sharma, S.; Zhang, M.; Gao, J.; Zhang, H.; Kota, S.H. Effect of restricted emissions during COVID-19 on air quality in India. Sci. Total Environ. 2020, 728, 138878. [Google Scholar] [CrossRef]
- Broomandi, P.; Karaca, F.; Nikfal, A.; Jahanbakhshi, A.; Tamjidi, M.; Kim, J.R. Impact of COVID-19 event on the air quality in Iran. Aerosol Air Qual. Res. 2020, 20, 1793–1804. [Google Scholar] [CrossRef]
- Etchie, T.O.; Etchie, A.T.; Jauro, A.; Pinker, R.T.; Swaminathan, N. Season, not lockdown, improved air quality during COVID-19 State of Emergency in Nigeria. Sci. Total Environ. 2021, 768, 145187. [Google Scholar] [CrossRef]
- Dursun, S.; Sagdic, M.; Toros, H. The impact of COVID-19 measures on air quality in Turkey. Environ. Forensics 2022, 23, 47–59. [Google Scholar] [CrossRef]
- Bao, R.; Zhang, A. Does lockdown reduce air pollution? Evidence from 44 cities in northern China. Sci. Total Environ. 2020, 731, 139052. [Google Scholar] [CrossRef]
- Cole, M.A.; Elliott, R.J.; Liu, B. The impact of the Wuhan COVID-19 lockdown on air pollution and health: A machine learning and augmented synthetic control approach. Environ. Resour. Econ. 2020, 76, 553–580. [Google Scholar] [CrossRef]
- Lian, X.; Huang, J.; Huang, R.; Liu, C.; Wang, L.; Zhang, T. Impact of city lockdown on the air quality of COVID-19-hit of Wuhan city. Sci. Total Environ. 2020, 742, 140556. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Li, Q.; Huang, L.; Wang, Q.; Zhu, A.; Xu, J.; Liu, Z.; Li, H.; Shi, L.; Li, R.; et al. Air quality changes during the COVID-19 lockdown over the Yangtze River Delta Region: An insight into the impact of human activity pattern changes on air pollution variation. Sci. Total Environ. 2020, 732, 139282. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, Y.; Ma, J.; Zhu, S.; Shen, J.; Wang, P.; Zhang, H. Responses of decline in air pollution and recovery associated with COVID-19 lockdown in the Pearl River Delta. Sci. Total Environ. 2021, 756, 143868. [Google Scholar] [CrossRef]
- Wang, M.; Liu, F.; Zheng, M. Air quality improvement from COVID-19 lockdown: Evidence from China. Air Qual. Atmos. Health 2021, 14, 591–604. [Google Scholar] [CrossRef]
- Xu, K.; Cui, K.; Young, L.H.; Wang, Y.F.; Hsieh, Y.K.; Wan, S.; Zhang, J. Air quality index, indicatory air pollutants and impact of COVID-19 event on the air quality near central China. Aerosol Air Qual. Res. 2020, 20, 1204–1221. [Google Scholar] [CrossRef]
- Wang, Y.; Wen, Y.; Wang, Y.; Zhang, S.; Zhang, K.M.; Zheng, H.; Xing, J.; Wu, Y.; Hao, J. Four-month changes in air quality during and after the COVID-19 lockdown in six megacities in China. Environ. Sci. Technol. Lett. 2020, 7, 802–808. [Google Scholar] [CrossRef]
- He, G.; Pan, Y.; Tanaka, T. The short-term impacts of COVID-19 lockdown on urban air pollution in China. Nat. Sustain. 2020, 3, 1005–1011. [Google Scholar] [CrossRef]
- Cuhadaroglu, B.; Demirci, E. Influence of some meteorological factors on air pollution in Trabzon city. Energy Build. 1997, 25, 179–184. [Google Scholar] [CrossRef]
- Li, R.; Wang, Z.; Cui, L.; Fu, H.; Zhang, L.; Kong, L.; Chen, W.; Chen, J. Air pollution characteristics in China during 2015–2016: Spatiotemporal variations and key meteorological factors. Sci. Total Environ. 2019, 648, 902–915. [Google Scholar] [CrossRef] [PubMed]
- Danek, T.; Weglinska, E.; Zareba, M. The influence of meteorological factors and terrain on air pollution concentration and mi-gration: A geostatistical case study from Krakow, Poland. Sci. Rep. 2022, 12, 11050. [Google Scholar] [CrossRef] [PubMed]
- China National Environmental Monitoring Station. Available online: https://air.cnemc.cn:18007/ (accessed on 23 June 2024).
- Ambient Air Quality Standards. Available online: https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/dqhjbh/dqhjzlbz/201203/t20120302_224165.htm (accessed on 23 June 2024).
- China Meteorological Data Service Centre. Available online: https://data.cma.cn/en (accessed on 23 June 2024).
- Sustainable Development Goals. Available online: https://unstats.un.org/sdgs/indicators/indicators-list/ (accessed on 23 June 2024).
- Sustainable Cities and Communities—Indicators for City Services and Quality of Life. Available online: https://www.iso.org/obp/ui/en/#iso:std:iso:37120:ed-2:v1:en (accessed on 23 June 2024).
- New-Type Urbanization—Evaluation Index System of Quality City. Available online: https://openstd.samr.gov.cn/bzgk/gb/newGbInfo?hcno=90A631A301C7F5F3565E0B8489B5A737 (accessed on 24 June 2024).
- China Mobile Source Environmental Management Annual Report. Available online: https://www.mee.gov.cn/hjzl/sthjzk/ydyhjgl/202109/W020210910400449015882.pdf (accessed on 24 June 2024).
- 2020 China City Statistical Yearbook. Available online: https://www.stats.gov.cn/zs/tjwh/tjkw/tjzl/202302/t20230215_1907995.html (accessed on 24 June 2024).
- Carbon Emission Accounts and Datasets. Available online: https://www.ceads.net/ (accessed on 6 July 2024).
- China Population Census Yearbook 2020. Available online: https://www.stats.gov.cn/sj/pcsj/rkpc/7rp/zk/indexce.htm (accessed on 24 June 2024).
- Liang, L.; Gong, P. Urban and air pollution: A multi-city study of long-term effects of urban landscape patterns on air quality trends. Sci. Rep. 2020, 10, 18618. [Google Scholar] [CrossRef]
- Lu, S.; Yao, Y.; Zhang, S.; Zhao, J. Long-Term Impacts of COVID-19 on Air Quality: Insights from Human Travel Behavior. 2022. Available online: https://nsd.pku.edu.cn/docs/20220507231557716167.pdf (accessed on 8 July 2024).
- Zhang, H.; Jiang, H.; Gao, J.; Li, H. Review on Causes and Influencing Factors of O3 Pollution in China (in Chinese). Res. Environ. Sci. 2022, 12, 2657–2665. [Google Scholar]
AQI | PM2.5 | PM10 | SO2 | NO2 | O3 | CO | |
---|---|---|---|---|---|---|---|
(Panel A) short_t | −8.398 * | −6.951 * | −8.884 ** | −0.357 | −3.345 ** | 5.790 *** | 0.001 |
(4.541) | (4.000) | (4.087) | (1.059) | (1.291) | (1.054) | (0.048) | |
Observations | 24,401 | 24,401 | 24,401 | 24,401 | 24,400 | 24,401 | 24,401 |
Adj R-squared | 0.458 | 0.457 | 0.403 | 0.567 | 0.646 | 0.488 | 0.519 |
(Panel B) short_t | −7.557 * | −5.918 * | −8.723 ** | −0.371 | −3.295 *** | 4.705 *** | 0.010 |
(4.073) | (3.382) | (3.781) | (0.850) | (0.954) | (0.879) | (0.039) | |
Meteorological control | Y | Y | Y | Y | Y | Y | Y |
Observations | 24,249 | 24,249 | 24,249 | 24,249 | 24,248 | 24,249 | 24,249 |
Adj R-squared | 0.484 | 0.504 | 0.421 | 0.601 | 0.706 | 0.612 | 0.577 |
Number of cities | 249 | 249 | 249 | 249 | 249 | 249 | 249 |
City fixed effects | Y | Y | Y | Y | Y | Y | Y |
Date fixed effects | Y | Y | Y | Y | Y | Y | Y |
AQI | PM2.5 | PM10 | SO2 | NO2 | O3 | CO | |
---|---|---|---|---|---|---|---|
(Panel C) short_t | −8.151 * | −6.623 * | −10.009 ** | −1.132 | −3.232 *** | 3.991 *** | −0.029 |
(4.766) | (3.951) | (4.447) | (0.969) | (1.120) | (0.949) | (0.042) | |
Observations | 23,173 | 23,173 | 23,173 | 23,173 | 23,172 | 23,173 | 23,173 |
Adj R-squared | 0.484 | 0.504 | 0.420 | 0.602 | 0.705 | 0.612 | 0.583 |
(Panel D) short_t | −8.288 * | −6.616 | −10.102 ** | −1.047 | −3.287 *** | 3.692 *** | −0.022 |
(4.885) | (4.066) | (4.525) | (0.971) | (1.240) | (0.978) | (0.045) | |
medium_t | −4.127 | −4.135 | −4.404 | −1.401 | −2.462 | 9.247 *** | −0.003 |
(5.503) | (4.770) | (5.143) | (1.284) | (1.502) | (2.556) | (0.059) | |
Observations | 48,333 | 48,335 | 48,335 | 48,335 | 48,332 | 48,335 | 48,335 |
Adj R-squared | 0.480 | 0.467 | 0.381 | 0.520 | 0.657 | 0.555 | 0.567 |
Number of cities | 238 | 238 | 238 | 238 | 238 | 238 | 238 |
Meteorological control | Y | Y | Y | Y | Y | Y | Y |
City fixed effects | Y | Y | Y | Y | Y | Y | Y |
Date fixed effects | Y | Y | Y | Y | Y | Y | Y |
AQI | PM2.5 | PM10 | SO2 | NO2 | O3 | CO | |
---|---|---|---|---|---|---|---|
(Panel E) short_t | −10.312 ** | −8.236 ** | −11.365 *** | −0.665 | −3.982 *** | 5.928 *** | −0.012 |
(4.211) | (3.485) | (3.975) | (0.882) | (0.994) | (0.948) | (0.040) | |
Observations | 19,897 | 19,897 | 19,897 | 19,897 | 19,896 | 19,897 | 19,897 |
Adj R-squared | 0.478 | 0.504 | 0.407 | 0.594 | 0.705 | 0.614 | 0.578 |
(Panel F) short_t | −9.739 ** | −7.584 ** | −10.683 *** | −0.536 | −3.953 *** | 5.536 *** | −0.003 |
(4.352) | (3.624) | (4.086) | (0.896) | (1.110) | (0.964) | (0.042) | |
medium_t | −6.672 | −5.894 | −5.563 | −0.981 | −2.596 * | 10.461 *** | −0.001 |
(5.105) | (4.393) | (4.747) | (1.161) | (1.354) | (2.345) | (0.053) | |
Observations | 42,069 | 42,070 | 42,070 | 42,070 | 42,069 | 42,070 | 42,070 |
Adj R-squared | 0.471 | 0.463 | 0.367 | 0.509 | 0.660 | 0.552 | 0.566 |
Number of cities | 204 | 204 | 204 | 204 | 204 | 204 | 204 |
Meteorological control | Y | Y | Y | Y | Y | Y | Y |
City fixed effects | Y | Y | Y | Y | Y | Y | Y |
Date fixed effects | Y | Y | Y | Y | Y | Y | Y |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Z.; Yoon, Y. The Impact of City Anti-Contagion Policies (CAPs) on Air Quality Evidence from a Natural Experiment in China. Sustainability 2024, 16, 5969. https://doi.org/10.3390/su16145969
Yang Z, Yoon Y. The Impact of City Anti-Contagion Policies (CAPs) on Air Quality Evidence from a Natural Experiment in China. Sustainability. 2024; 16(14):5969. https://doi.org/10.3390/su16145969
Chicago/Turabian StyleYang, Zili, and Yong Yoon. 2024. "The Impact of City Anti-Contagion Policies (CAPs) on Air Quality Evidence from a Natural Experiment in China" Sustainability 16, no. 14: 5969. https://doi.org/10.3390/su16145969
APA StyleYang, Z., & Yoon, Y. (2024). The Impact of City Anti-Contagion Policies (CAPs) on Air Quality Evidence from a Natural Experiment in China. Sustainability, 16(14), 5969. https://doi.org/10.3390/su16145969