Digital Economy Development and Green Innovation Efficiency from a Two-Stage Innovation Value Chain Perspective
Abstract
:1. Introduction
2. Theoretical Analysis and Research Hypotheses
2.1. Mechanism Analysis
- (1)
- Green innovation technology research and development phase.
- (2)
- Green innovation achievement transformation phase.
2.2. Analysis of the Moderating Mechanism
3. Methodology and Materials
3.1. Model Construction
3.2. Measurement and Description of Variables
3.3. Data Sources and Descriptive Statistics
4. Empirical Analysis
4.1. Spatial Correlation Test and Spatial Econometric Model Selection Test
4.2. Analysis of Basic Estimation Results
4.3. Robustness Tests and Endogeneity Tests
4.4. Heterogeneity Analysis
- (1)
- Geographic location heterogeneity.
- (2)
- Development approach heterogeneity.
5. Expansion Analysis
5.1. Moderating Effects of Intellectual Property Protection
5.2. Moderating Effects of Data Factor Endowment
6. Conclusions and Policy Implications
6.1. Conclusions
6.2. Policy Implications
6.3. Limitations and Research Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ding, C.H.; Liu, C.; Zheng, C.Y.; Li, F. Digital Economy, Technological Innovation and High-Quality Economic Development: Based on Spatial Effect and Mediation Effect. Sustainability 2022, 14, 216. [Google Scholar] [CrossRef]
- Guo, B.N.; Wang, Y.; Zhang, H.; Liang, C.Y.; Feng, Y.; Hu, F. Impact of the digital economy on high-quality urban economic development: Evidence from Chinese cities. Econ. Model. 2023, 120, 106194. [Google Scholar] [CrossRef]
- Pan, H.; Yang, J.; Zhou, H.Y.; Zheng, X.R.; Hu, F. Global value chain embeddedness, digital economy and green innovation-Evidence from provincial-level regions in China. Front. Environ. Sci. 2022, 10, 1027130. [Google Scholar] [CrossRef]
- Du, K.R.; Cheng, Y.Y.; Yao, X. Environmental regulation, green technology innovation, and industrial structure upgrading: The road to the green transformation of Chinese cities. Energy Econ. 2021, 98, 105247. [Google Scholar] [CrossRef]
- Tang, Y.J.; Yue, S.F.; Ma, W.C.; Zhang, L.L. How do environmental protection expenditure and green technology innovation affect synergistically the financial performance of heavy polluting enterprises? Evidence from China. Environ. Sci. Pollut. Res. 2022, 29, 89597–89613. [Google Scholar] [CrossRef]
- Zhang, W.; Zhao, S.Q.; Wan, X.Y.; Yao, Y. Study on the effect of digital economy on high-quality economic development in China. PLoS ONE 2021, 16, e0257365. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.H.; Chen, L.M. The Impact of the Digital Economy on the Urban Total-Factor Energy Efficiency: Evidence from 275 Cities in China. Sustainability 2023, 15, 3195. [Google Scholar] [CrossRef]
- Wu, T.L.; Shao, W. How does digital economy drive industrial structure upgrading: An empirical study based on 249 prefecture-level cities in China. PLoS ONE 2022, 17, e0277787. [Google Scholar] [CrossRef] [PubMed]
- Groshen, E.L.; Moyer, B.C.; Aizcorbe, A.M.; Bradley, R.; Friedman, D.M. How Government Statistics Adjust for Potential Biases from Quality Change and New Goods in an Age of Digital Technologies: A View from the Trenches. J. Econ. Perspect. 2017, 31, 187–210. [Google Scholar] [CrossRef]
- Polyakov, M.; Kovshun, N. Diffusion of innovations as a key driver of the digital economy development. Balt. J. Econ. Stud. 2021, 7, 84–92. [Google Scholar] [CrossRef]
- Xu, Y.Z.; Xu, L.L. The Convergence between Digital Industrialization and Industrial Digitalization and Export Technology Complexity: Evidence from China. Sustainability 2023, 15, 9081. [Google Scholar] [CrossRef]
- Jin, X.J.; Pan, X. Government Attention, Market Competition and Firm Digital Transformation. Sustainability 2023, 15, 9057. [Google Scholar] [CrossRef]
- Jiang, H.; Chen, Z.H.; Liang, Y.W.; Zhao, W.C.; Liu, D.; Chen, Z.Y. The impact of industrial structure upgrading and digital economy integration on China’s urban carbon emissions. Front. Ecol. Evol. 2023, 11, 17. [Google Scholar] [CrossRef]
- Quinones, G.; Heeks, R.; Nicholson, B. Embeddedness of digital start-ups in development contexts: Field experience from Latin America. Inform. Technol. Dev. 2021, 27, 171–190. [Google Scholar] [CrossRef]
- Zhao, Y.; Song, Z.Y.; Chen, J.; Dai, W. The mediating effect of urbanisation on digital technology policy and economic development: Evidence from China. J. Innov. Knowl. 2023, 8, 100318. [Google Scholar] [CrossRef]
- Zhao, S.; Zhang, L.Q.; An, H.Y.; Peng, L.; Zhou, H.Y.; Hu, F. Has China’s low-carbon strategy pushed forward the digital transformation of manufacturing enterprises? Evidence from the low-carbon city pilot policy. Environ. Impact Assess. Rev. 2023, 102, 107184. [Google Scholar] [CrossRef]
- Xu, Y.M.; Tao, Y.T.; Zhang, C.J.; Xie, M.X.; Li, W.G.; Tai, J.J. Review of Digital Economy Research in China: A Framework Analysis Based on Bibliometrics. Comput. Intell. Neurosci. 2022, 2022, 2427034. [Google Scholar] [CrossRef]
- Li, G.; Li, X.; Huo, L. Digital economy, spatial spillover and industrial green innovation efficiency: Empirical evidence from China. Heliyon 2023, 9, e12875. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Zhang, W. Green innovation efficiency: A threshold effect of research and development. Clean Technol. Environ. Policy 2021, 23, 285–298. [Google Scholar] [CrossRef]
- Hashimoto, A.; Haneda, S. Measuring the change in R&D efficiency of the Japanese pharmaceutical industry. Res. Policy 2008, 37, 1829–1836. [Google Scholar]
- Du, J.; Liang, L.; Zhu, J. A slacks-based measure of super-efficiency in data envelopment analysis: A comment. Eur. J. Oper. Res. 2010, 204, 694–697. [Google Scholar] [CrossRef]
- Yang, H.; Li, L.; Liu, Y. The effect of manufacturing intelligence on green innovation performance in China. Technol. Forecast. Soc. Chang. 2022, 178, 121569. [Google Scholar] [CrossRef]
- Chen, H.; Lin, H.; Zou, W. Research on the Regional Differences and Influencing Factors of the Innovation Efficiency of China’s High-Tech Industries: Based on a Shared Inputs Two-Stage Network DEA. Sustainability 2020, 12, 3284. [Google Scholar] [CrossRef]
- Zhao, P.; Lu, Z.; Kou, J.; Du, J. Regional differences and convergence of green innovation efficiency in China. J. Environ. Manag. 2023, 325, 116618. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.X.; Li, Y.F.; You, N. Corporate digitalization, application modes, and green growth: Evidence from the innovation of Chinese listed companies. Front. Environ. Sci. 2023, 10, 1103540. [Google Scholar] [CrossRef]
- Yu, H.Y.; Wang, J.C.; Hou, J.; Yu, B.L.; Pan, Y.L. The effect of economic growth pressure on green technology innovation: Do environmental regulation, government support, and financial development matter? J. Environ. Manag. 2023, 330, 117172. [Google Scholar] [CrossRef]
- Liu, P.Z.; Zhang, L.Y.; Tarbert, H.; Yan, Z.Y. Analysis on Spatio-Temporal Characteristics and Influencing Factors of Industrial Green Innovation Efficiency-From the Perspective of Innovation Value Chain. Sustainability 2022, 14, 342. [Google Scholar] [CrossRef]
- Li, Q.Y. Regional technological innovation and green economic efficiency based on DEA model and fuzzy evaluation. J. Intell. Fuzzy Syst. 2019, 37, 6415–6425. [Google Scholar] [CrossRef]
- Dilling-Hansen, M.; Madsen, E.S.; Smith, V. Efficiency, R&D and ownership—Some empirical evidence. Int. J. Prod. Econ. 2003, 83, 85–94. [Google Scholar]
- Jiang, Z.S.; Xu, C.H. Disrupting the Technology Innovation Efficiency of Manufacturing Enterprises Through Digital Technology Promotion: An Evidence of 5G Technology Construction in China. IEEE Trans. Eng. Manag. 2023, 11, 6918–6928. [Google Scholar] [CrossRef]
- Li, J.L.; Chen, L.T.; Chen, Y.; He, J.W. Digital economy, technological innovation, and green economic efficiency-Empirical evidence from 277 cities in China. Manag. Decis. Econ. 2022, 43, 616–629. [Google Scholar] [CrossRef]
- Wang, Z.; Teng, Y.P.; Wu, S.Z.; Chen, H.X. Does Green Finance Expand China’s Green Development Space? Evidence from the Ecological Environment Improvement Perspective. Systems 2023, 11, 369. [Google Scholar] [CrossRef]
- Xue, Y.; Tang, C.; Wu, H.T.; Liu, J.M.; Hao, Y. The emerging driving force of energy consumption in China: Does digital economy development matter? Energy Policy 2022, 165, 112997. [Google Scholar] [CrossRef]
- Sun, C.Q.; Chen, J.L.; He, B.H.; Liu, J.L. Digitalization and carbon emission reduction technology R&D in a Stackelberg model. Appl. Econ. Lett. 2024, 6, 1–6. [Google Scholar]
- Xu, A.T.; Song, M.Y.; Xu, S.Y.; Wang, W.P. Accelerated green patent examination and innovation benefits: An analysis of private economic value and public environmental benefits. Technol. Forecast. Soc. Chang. 2024, 200, 123105. [Google Scholar] [CrossRef]
- Zhang, W.W.; Zhang, S.Q.; Bo, L.; Haque, M.; Liu, E.R. Does China’s Regional Digital Economy Promote the Development of a Green Economy? Sustainability 2023, 15, 1564. [Google Scholar] [CrossRef]
- Xie, Y.; Zhou, L.K. Asssessing the Green Technology Innovation Efficiency in Yangtze River Delta Region under Dual Carbon Background. Processes 2023, 11, 1082. [Google Scholar] [CrossRef]
- Tian, Z.X.; Li, Y.; Niu, X.G.; Liu, M.Y. The impact of digital economy on regional technological innovation capability: An analysis based on China’s provincial panel data. PLoS ONE 2023, 18, e0288065. [Google Scholar] [CrossRef] [PubMed]
- Yrjola, S.; Ahokangas, P.; Matinmikko-Blue, M. Value Creation and Capture From Technology Innovation in the 6G Era. IEEE Access 2022, 10, 16299–16319. [Google Scholar] [CrossRef]
- Leick, B.; Falk, M.T.; Eklund, M.A.; Vinogradov, E. Individual-contextual determinants of entrepreneurial service provision in the platform-based collaborative economy. Int. J. Entrep. Behav. Res. 2022, 28, 853–877. [Google Scholar] [CrossRef]
- Schüssler, E.; Attwood-Charles, W.; Kirchner, S.; Schor, J.B. Between mutuality, autonomy and domination: Rethinking digital platforms as contested relational structures. Socio-Econ. Rev. 2021, 19, 1217–1243. [Google Scholar] [CrossRef]
- Cheng, Y.R.; Zhou, X.R.; Li, Y.J. The effect of digital transformation on real economy enterprises? total factor productivity. Int. Rev. Econ. Financ. 2023, 85, 488–501. [Google Scholar] [CrossRef]
- Guo, J.F.; Zhang, K.; Liu, K.C. Exploring the Mechanism of the Impact of Green Finance and Digital Economy on China’s Green Total Factor Productivity. Int. J. Environ. Res. Public Health 2022, 19, 16303. [Google Scholar] [CrossRef]
- Lyu, Y.W.; Wang, W.Q.; Wu, Y.; Zhang, J.N. How does digital economy affect green total factor productivity? Evidence from China. Sci. Total Environ. 2023, 857, 159428. [Google Scholar] [CrossRef] [PubMed]
- Sweet, C.M.; Maggio, D.S.E. Do Stronger Intellectual Property Rights Increase Innovation? World Dev. 2015, 66, 665–677. [Google Scholar] [CrossRef]
- He, Y.; Tian, J.X.; Chen, Z.Z.; Qin, Z.H.; Andrianarimanana, M.H. Influence of national intellectual property demonstration enterprise policy on urban green innovation: Evidence from China. Environ. Dev. Sustain. 2023, 20, 1–20. [Google Scholar]
- Huang, J.H.; Chen, J.J.; Yin, Z.J. A Network DEA Model with Super Efficiency and Undesirable Outputs: An Application to Bank Efficiency in China. Math. Probl. Eng. 2014, 2014, 793192. [Google Scholar] [CrossRef]
- Lu, J.C.; Zhou, S.Q.; Xiao, X.H.; Zhong, M.; Zhao, Y.F. The Dynamic Evolution of the Digital Economy and Its Impact on the Urban Green Innovation Development from the Perspective of Driving Force-Taking China’s Yangtze River Economic Belt Cities as an Example. Sustainability 2023, 15, 6989. [Google Scholar] [CrossRef]
- Chen, W.; Wu, Y. Does intellectual property protection stimulate digital economy development? J. Appl. Econ. 2022, 25, 723–730. [Google Scholar] [CrossRef]
- Zhang, X.F.; Xiao, Y.; Wang, L.Y. Can the Sci-Tech Innovation Increase the China’s Green Brands Value?-Evidence from Threshold Effect and Spatial Dubin Model. Entropy 2023, 25, 290. [Google Scholar] [CrossRef]
- Feng, Y.; Nie, C.F. The effect of government informatization construction on corporate digital technology innovation: New evidence from China. Bus. Ethics Environ. Responsib. 2024, 20. [Google Scholar] [CrossRef]
- Evenett, S.J.; Keller, W. On theories explaining the success of the gravity equation. J. Polit. Econ. 2002, 110, 281–316. [Google Scholar] [CrossRef]
- Liu, S.C.; Wu, P.J. The impact of high-tech industrial agglomeration on China’s green innovation efficiency: A spatial econometric analysis. Front. Environ. Sci. 2023, 11, 1167918. [Google Scholar] [CrossRef]
- Shen, T.T.; Li, D.J.; Jin, Y.Y.; Li, J. Impact of Environmental Regulation on Efficiency of Green Innovation in China. Atmosphere 2022, 13, 767. [Google Scholar] [CrossRef]
- Zhao, T.; Zhou, H.H.; Jiang, J.D.; Yan, W.Y. Impact of Green Finance and Environmental Regulations on the Green Innovation Efficiency in China. Sustainability 2022, 14, 3206. [Google Scholar] [CrossRef]
First-Level Index | Second-Level Index | Specific Indicators | |
---|---|---|---|
Internet development | Internet penetration | Internet users per 100 population | |
Cell phone penetration rate | Cell phone subscribers per 100 population | ||
Composite index of digital economy development | Internet industry output value | Total value of telecommunications services per capita | |
Internet professional | Information transmission, software, and information technology services as a percentage of | ||
Digital inclusive finance | Digital inclusive finance index | Peking University Digital Inclusive Finance Index |
Variable Type | Variable Symbol | Obs | Min | Max | Mean | Std |
---|---|---|---|---|---|---|
Explained variable | gier | 330 | 0.018 | 1.263 | 0.269 | 0.206 |
giet | 330 | 0.011 | 1.297 | 0.191 | 0.202 | |
Explanatory variables | dige | 330 | 0.008 | 0.954 | 0.215 | 0.151 |
Moderator variable | ipr | 330 | 0.001 | 0.191 | 0.017 | 0.029 |
data | 330 | 0.001 | 1.000 | 0.136 | 0.144 | |
Control variable | fdi | 330 | 0.001 | 0.121 | 0.018 | 0.018 |
gov | 330 | 0.107 | 0.758 | 0.266 | 0.115 | |
mar | 330 | 3.360 | 12.922 | 7.988 | 1.977 | |
env | 330 | 0.002 | 0.043 | 0.008 | 0.006 |
Year | Gier | Giet | Dige | |||
---|---|---|---|---|---|---|
Moran’s I | Z-Value | Moran’s I | Z-Value | Moran’s I | Z-Value | |
2011 | 0.304 *** | 2.826 | 0.297 *** | 2.801 | 0.146 ** | 1.811 |
2012 | 0.342 *** | 3.151 | 0.335 *** | 3.135 | 0.149 ** | 1.869 |
2013 | 0.322 *** | 2.980 | 0.309 *** | 3.109 | 0.124 * | 1.552 |
2014 | 0.300 *** | 2.922 | 0.279 *** | 2.935 | 0.106 * | 1.417 |
2015 | 0.397 *** | 3.691 | 0.349 *** | 3.547 | 0.108 * | 1.441 |
2016 | 0.342 *** | 3.393 | 0.266 *** | 3.334 | 0.120 * | 1.575 |
2017 | 0.419 *** | 3.750 | 0.419 *** | 3.879 | 0.104 * | 1.391 |
2018 | 0.435 *** | 3.883 | 0.410 *** | 3.830 | 0.095 | 1.238 |
2019 | 0.420 *** | 3.755 | 0.413 *** | 3.773 | 0.090 | 1.185 |
2020 | 0.196 ** | 1.917 | 0.048 | 0.709 | 0.112 * | 1.389 |
2021 | 0.440 *** | 3.925 | 0.238 ** | 2.230 | 0.165 ** | 2.054 |
Test Methods | Gier | Giet | ||
---|---|---|---|---|
Statistical Value | p-Value | Statistical Value | p-Value | |
LM spatial lag | 10.939 | 0.001 | 19.208 | 0.000 |
R-LM spatial lag | 8.342 | 0.004 | 7.462 | 0.006 |
LM spatial error | 99.826 | 0.000 | 77.896 | 0.000 |
R-LM spatial error | 97.229 | 0.000 | 66.150 | 0.000 |
Wald spatial lag | 15.73 | 0.003 | 13.14 | 0.010 |
LR spatial lag | 28.21 | 0.000 | 26.17 | 0.000 |
Wald spatial error | 23.30 | 0.000 | 24.54 | 0.000 |
LR spatial error | 22.69 | 0.000 | 24.01 | 0.000 |
Variable | Gier | Giet | ||||
---|---|---|---|---|---|---|
SAR | SEM | SDM | SAR | SEM | SDM | |
dige | 0.903 *** (11.47) | 0.861 *** (10.92) | 0.818 *** (9.87) | 0.966 *** (4.18) | 1.054 *** (4.58) | 0.843 *** (8.53) |
fdi | −0.371 (−1.03) | −0.185 (−0.51) | −0.437 (−1.14) | −0.501 *** (−3.21) | −0.528 *** (−3.39) | −0.596 (−1.29) |
gov | −0.511 *** (−4.22) | −0.547 *** (−4.32) | −0.662 *** (−4.72) | −0.038 *** (−3.29) | −0.040 *** (−3.44) | −0.474 *** (−2.81) |
mar | 0.029 *** (5.58) | 0.033 *** (6.66) | 0.034 *** (6.59) | −0.774 *** (−3.97) | −0.774 *** (−3.93) | 0.032 *** (5.18) |
env | 5.047 *** (2.37) | 4.571 ** (2.19) | 6.539 *** (2.79) | 0.362 *** (4.28) | 0.341 *** (4.09) | 4.990 * (1.77) |
W * dige | 0.328 * (1.67) | 0.588 ** (2.55) | ||||
ρ | 0.216 *** (3.99) | 0.312 *** (4.67) | 0.258 *** (2.75) | 0.190 *** (2.85) | ||
λ | 0.330 *** (4.82) | 0.342 *** (3.33) | ||||
R-sq | 0.842 | 0.849 | 0.880 | 0.326 | 0.323 | 0.882 |
N | 330 | 330 | 330 | 330 | 330 | 330 |
Variable | Gier | Giet | ||||
---|---|---|---|---|---|---|
Direct Effect | Indirect Effect | Total Effect | Direct Effect | Indirect Effect | Total Effect | |
dige | 0.869 *** (9.86) | 0.799 *** (3.12) | 1.668 *** (5.54) | 0.881 *** (8.64) | 0.889 *** (3.39) | 1.770 *** (5.79) |
fdi | −0.365 (−0.93) | 1.427 (1.21) | 1.062 (0.78) | −0.561 (−1.24) | 1.333 (1.11) | 0.773 (0.56) |
gov | −0.630 *** (−4.70) | 0.287 (1.21) | −0.343 (−1.04) | −0.459 *** (−2.87) | −0.074 (−0.24) | −0.533 (−1.60) |
mar | 0.034 *** (6.28) | 0.001 (0.08) | 0.035 ** (2.23) | 0.032 *** (4.88) | −0.027 ** (−1.98) | 0.004 (0.27) |
env | 6.472 *** (2.84) | 2.449 (0.43) | 8.921 (1.28) | 4.862 * (1.83) | 3.400 (0.58) | 8.262 (1.16) |
Variable | Gier | Giet | ||||
---|---|---|---|---|---|---|
Substitution of Explained Variables (1) | Transformed Nested Matrix (2) | Explanatory Variables Lagged One Period (3) | Substitution of Explained Variables (4) | Transformed Nested Matrix (5) | Explanatory Variables Lagged One Period (6) | |
dige | 0.937 *** (12.79) | 1.023 *** (11.46) | 0.846 *** (9.54) | 1.011 *** (11.62) | 1.043 *** (10.04) | 0.895 *** (8.39) |
W * dige | 0.318 ** (2.29) | 1.629 *** (4.42) | 0.317 (1.48) | 0.380 (0.70) | 1.764 ** (4.25) | 0.458 * (1.77) |
Control | Yes | Yes | Yes | Yes | Yes | Yes |
ρ | 0.338 *** (3.56) | 0.356 ** (2.33) | 0.323 *** (4.70) | 0.419 *** (4.74) | 0.350 ** (2.28) | 0.206 *** (2.94) |
R-sq | 0.879 | 0.850 | 0.886 | 0.871 | 0.857 | 0.892 |
N | 330 | 330 | 330 | 330 | 330 | 330 |
Variable | Gier | Giet | ||||
---|---|---|---|---|---|---|
Eastern Region | Central Region | Western Region | Eastern Region | Central Region | Western Region | |
Direct effect | 0.909 *** (6.66) | −0.187 (−0.70) | −0.269 (−0.72) | 0.821 *** (5.50) | 0.018 (0.009) | −0.301 (−0.81) |
Indirect effect | 0.821 *** (2.66) | 0.696 ** (2.46) | −0.874 (−1.22) | 0.997 *** (3.29) | 0.320 (1.47) | −1.170 * (−1.73) |
Aggregate effect | 1.730 *** (4.22) | 0.508 (1.30) | −1.143 (−1.22) | 1.817 *** (4.73) | 0.337 (1.06) | −1.471 * (−1.67) |
Control | Yes | Yes | Yes | Yes | Yes | Yes |
ρ | 0.129 (1.35) | 0.520 *** (5.16) | 0.119 (0.90) | 0.128 (1.34) | 0.403 *** (3.92) | 0.197 (1.48) |
R-sq | 0.886 | 0.941 | 0.790 | 0.901 | 0.941 | 0.692 |
Log L | 96.831 | 198.859 | 135.981 | 71.281 | 226.016 | 134.496 |
N | 121 | 88 | 121 | 121 | 88 | 121 |
Variable | Gier | Giet | ||
---|---|---|---|---|
Resource-Based Provinces | Non-Resource-Based Provinces | Resource-Based Provinces | Non-Resource-Based Provinces | |
Direct effect | 0.844 *** (3.19) | 0.620 *** (4.88) | 1.007 *** (3.24) | 0.633 ** (3.97) |
Indirect effect | 0.060 (0.27) | 0.605 *** (2.85) | 0.113 (0.41) | 0.131 (0.64) |
Aggregate effect | 0.905 ** (2.11) | 1.225 *** (4.61 | 1.119 ** (2.18) | 0.764 *** (3.31) |
Control | Yes | Yes | Yes | Yes |
ρ | 0.288 *** (2.96) | 0.120 (1.23) | 0.310 ** (3.56) | 0.197 ** (2.18) |
R-sq | 0.513 | 0.948 | 0.401 | 0.938 |
N | 154 | 176 | 154 | 176 |
Moderator Variable | Variable | Gier | Giet | ||||
---|---|---|---|---|---|---|---|
Direct Effect | Indirect Effect | Total Effect | Direct Effect | Indirect Effect | Total Effect | ||
Intellectual property protection | dige | 0.725 *** (6.01) | 0.173 (0.50) | 0. 898 ** (2.35) | 0.669 *** (4.70) | 0.419 (1.15) | 1.084 ** (2.08) |
dige×ipr | 1.494 * (1.81) | 6.431 *** (3.33) | 7.925 *** (3.68) | 2.145 ** (2.19) | 5.293 *** (2.72) | 7.439 *** (3.53) | |
ρ | 0.293 *** (4.39) | 0.169 ** (2.55) | |||||
R-sq | 0.905 | 0.915 | |||||
N | 330 | 330 | 330 | 330 | 330 | 330 |
Moderator Variable | Variable | Gier | Giet | ||||
---|---|---|---|---|---|---|---|
Direct Effect | Indirect Effect | Aggregate Effect | Direct Effect | Direct Effect | Indirect Effect | ||
Data factor endowment | dige | 0.854 *** (9.55) | 0.903 *** (3.29) | 1.759 *** (5.57) | 0.853 *** (8.26) | 1.045 *** (3.73) | 1.899 *** (5.95) |
dige×data | 0.377 ** (2.10) | −0.107 (−0.28) | 0.270 (0.88) | 0.641 *** (3.00) | −0.187 (−0.46) | 0.454 (1.05) | |
ρ | 0.303 *** (4.52) | 0.180 *** (2.69) | |||||
R-sq | 0.882 | 0.890 | |||||
N | 330 | 330 | 330 | 330 | 330 | 330 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, D.; Li, M. Digital Economy Development and Green Innovation Efficiency from a Two-Stage Innovation Value Chain Perspective. Sustainability 2024, 16, 4421. https://doi.org/10.3390/su16114421
Fan D, Li M. Digital Economy Development and Green Innovation Efficiency from a Two-Stage Innovation Value Chain Perspective. Sustainability. 2024; 16(11):4421. https://doi.org/10.3390/su16114421
Chicago/Turabian StyleFan, Danxue, and Meiyue Li. 2024. "Digital Economy Development and Green Innovation Efficiency from a Two-Stage Innovation Value Chain Perspective" Sustainability 16, no. 11: 4421. https://doi.org/10.3390/su16114421
APA StyleFan, D., & Li, M. (2024). Digital Economy Development and Green Innovation Efficiency from a Two-Stage Innovation Value Chain Perspective. Sustainability, 16(11), 4421. https://doi.org/10.3390/su16114421