Application of Phosphogypsum and Organic Amendment for Bioremediation of Degraded Soil in Tunisia Oasis: Targeting Circular Economy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Geographic Localization and Characteristics of the Experimental Site
2.2. Preparation of the Experimental Plot and Application of the Amendments
- Three elementary plots were left as untreated soil (C).
- Three elementary plots were initial soil amended with manure (SI + M) at a dose of M = 90 kg/24 m2 (37.5 t/ha).
- Three elementary plots were initial soil amended with phosphogypsum (SI + PG1) at a dose of phosphogypsum PG1 = 60 kg/24 m2 (12.5 t/ha).
- Three elementary plots were initial soil amended with phosphogypsum (SI + PG2) at a dose of phosphogypsum PG2 = 90 kg/24 m2 (25 t/ha).
- Three elementary plots were initial soil amended with phosphogypsum (SI + PG3) at a dose of phosphogypsum PG3 = 120 kg/24 m2 (50 t/ha).
- The mixing of the soil with the added materials was undertaken homogeneously.
2.3. Agronomic Test Scenario
2.4. Agronomic Analysis (Yield, Germination Rate (GR), and Cd Levels in Plants)
Radioactivity Analysis (Uranium (U-238), Radium (Ra-226))
2.5. Statistical Analysis
3. Results and Discussion
3.1. Effect of Organic Amendment and PG on Germination Rate (GR)
3.2. Effect of Organic Amendments and PG on Yield
3.3. Effect of Organic Amendment and PG on Cd Content in Plants
3.4. Effect of PG Amendment on Radioactive Parameters
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Tallou, A.; Salcedo, F.P.; Haouas, A.; Jamali, M.Y.; Atif, K.; Aziz, F.; Amir, S. Assessment of biogas and biofertilizer produced from anaerobic co-digestion of olive mill wastewater with municipal wastewater and cow dung. Environ. Technol. Innov. 2020, 20, 101152. [Google Scholar] [CrossRef]
- Pedrero Salcedo, F.; Pérez Cutillas, P.; Aziz, F.; Llobet Escabias, M.; Boesveld, H.; Bartholomeus, H.; Tallou, A. Soil Salinity Prediction Using Remotely Piloted Aircraft Systems under Semi-Arid Environments Irrigated with Salty Non-Conventional Water Resources. Agronomy 2022, 12, 2022. [Google Scholar] [CrossRef]
- Tallou, A.; Aziz, F.; Garcia, A.J.; Salcedo, F.P.; El Minaoui, F.E.; Amir, S. Bio-fertilizers issued from anaerobic digestion for growing tomatoes under irrigation by treated wastewater: Targeting circular economy concept. Int. J. Environ. Sci. Technol. 2021, 19, 2379–2388. [Google Scholar] [CrossRef]
- Zhang, X.; He, H.; Amelung, W. A GC/MS method for the assessment of 15N and 13C incorporation into soil amino acid enantiomers. Soil Biol. Biochem. 2007, 39, 2785–2796. [Google Scholar] [CrossRef]
- Tengberg, M. Beginnings and early history of date palm garden cultivation in the Middle East. J. Arid. Environ. 2012, 86, 139–147. [Google Scholar] [CrossRef]
- Blaikie, P.M.; Brookfield, H.C. Land Degradation and Society; Blaikie, P., Brookfield, H., Eds.; (Routledge Revivals); Routledge: Abingdon, UK, 2015; ISBN 978-1-317-41194-9. [Google Scholar]
- Marzouk, H.A.; Kassem, H.A. Improving yield, quality, and shelf life of Thompson seedless grapevine by preharvest foliar applications. Sci. Hortic. 2011, 130, 425–430. [Google Scholar] [CrossRef]
- Hannachi, N.; Cocco, S.; Fornasier, F.; Agnelli, A.; Brecciaroli, G.; Massaccesi, L.; Weindorf, D.; Corti, G. Effects of cultivation on chemical and biochemical properties of dryland soils from southern Tunisia. Agric. Ecosyst. Environ. 2015, 199, 249–260. [Google Scholar] [CrossRef]
- Hentati, O.; Abrantes, N.; Caetano, A.L.; Bouguerra, S.; Gonçalves, F.; Römbke, J.; Pereira, R. Phosphogypsum as a soil fertilizer: Ecotoxicity of amended soil and elutriates to bacteria, invertebrates, algae and plants. J. Hazard. Mater. 2015, 294, 80–89. [Google Scholar] [CrossRef]
- Kuryatnyk, T.; Angulski da Luz, C.; Ambroise, J.; Pera, J. Valorization of phosphogypsum as hydraulic binder. J. Hazard. Mater. 2008, 160, 681–687. [Google Scholar] [CrossRef]
- Kumar, S. A perspective study on fly ash–lime–gypsum bricks and hollow blocks for low cost housing development. Constr. Build. Mater. 2002, 16, 519–525. [Google Scholar] [CrossRef]
- Yang, J.; Liu, W.; Zhang, L.; Xiao, B. Preparation of load-bearing building materials from autoclaved phosphogypsum. Constr. Build. Mater. 2009, 23, 687–693. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, Q.; Li, X.; Ye, J.; Chen, J. Adsorption of Cu(II) by phosphogypsum modified with sodium dodecyl benzene sulfonate. J. Hazard. Mater. 2020, 387, 121808. [Google Scholar] [CrossRef] [PubMed]
- Akın Altun, İ.; Sert, Y. Utilization of weathered phosphogypsum as set retarder in Portland cement. Cem. Concr. Res. 2004, 34, 677–680. [Google Scholar] [CrossRef]
- Costa, R.P.; de Medeiros, M.H.G.; Rodriguez Martinez, E.D.; Quarcioni, V.A.; Suzuki, S.; Kirchheim, A.P. Effect of soluble phosphate, fluoride, and pH in Brazilian phosphogypsum used as setting retarder on Portland cement hydration. Case Stud. Constr. Mater. 2022, 17, e01413. [Google Scholar] [CrossRef]
- Haneklaus, N.; Barbossa, S.; Basallote, M.D.; Bertau, M.; Bilal, E.; Chajduk, E.; Chernysh, Y.; Chubur, V.; Cruz, J.; Dziarczykowski, K.; et al. Closing the upcoming EU gypsum gap with phosphogypsum. Resour. Conserv. Recycl. 2022, 182, 106328. [Google Scholar] [CrossRef]
- Tayibi, H.; Choura, M.; López, F.A.; Alguacil, F.J.; López-Delgado, A. Environmental impact and management of phosphogypsum. J. Environ. Manag. 2009, 90, 2377–2386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, L.; Yan, Y.; Hu, Z. Utilization of phosphogypsum for the preparation of non-autoclaved aerated concrete. Constr. Build. Mater. 2013, 44, 600–606. [Google Scholar] [CrossRef]
- Ma, L.; Niu, X.; Hou, J.; Zheng, S.; Xu, W. Reaction mechanism and influence factors analysis for calcium sulfide generation in the process of phosphogypsum decomposition. Thermochim. Acta 2011, 526, 163–168. [Google Scholar] [CrossRef]
- Zhang, D.; Luo, H.; Zheng, L.; Wang, K.; Li, H.; Wang, Y.; Feng, H. Utilization of waste phosphogypsum to prepare hydroxyapatite nanoparticles and its application towards removal of fluoride from aqueous solution. J. Hazard. Mater. 2012, 241–242, 418–426. [Google Scholar] [CrossRef]
- Zhao, H.; Li, H.; Bao, W.; Wang, C.; Li, S.; Lin, W. Experimental study of enhanced phosphogypsum carbonation with ammonia under increased CO2 pressure. J. CO2 Util. 2015, 11, 10–19. [Google Scholar] [CrossRef]
- Cárdenas-Escudero, C.; Morales-Flórez, V.; Pérez-López, R.; Santos, A.; Esquivias, L. Procedure to use phosphogypsum industrial waste for mineral CO2 sequestration. J. Hazard. Mater. 2011, 196, 431–435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Contreras, M.; Pérez-López, R.; Gázquez, M.J.; Morales-Flórez, V.; Santos, A.; Esquivias, L.; Bolívar, J.P. Fractionation and fluxes of metals and radionuclides during the recycling process of phosphogypsum wastes applied to mineral CO2 sequestration. Waste Manag. 2015, 45, 412–419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campos, M.P.; Costa, L.J.P.; Nisti, M.B.; Mazzilli, B.P. Phosphogypsum recycling in the building materials industry: Assessment of the radon exhalation rate. J. Environ. Radioact. 2017, 172, 232–236. [Google Scholar] [CrossRef] [PubMed]
- Değirmenci, N. Utilization of phosphogypsum as raw and calcined material in manufacturing of building products. Constr. Build. Mater. 2008, 22, 1857–1862. [Google Scholar] [CrossRef]
- Elloumi, N.; Zouari, M.; Chaari, L.; Abdallah, F.B.; Woodward, S.; Kallel, M. Effect of phosphogypsum on growth, physiology, and the antioxidative defense system in sunflower seedlings. Environ. Sci. Pollut. Res. 2015, 22, 14829–14840. [Google Scholar] [CrossRef] [PubMed]
- Boulbaba, A.; Marzouk, L.; ben Rabah, R.; Najet, S. Variations of Natural Soil Salinity in an Arid Environment Using Underground Watertable Effects on Salinization of Soils in Irrigated Perimeters in South Tunisia. Int. J. Geosci. 2012, 03, 1040–1047. [Google Scholar] [CrossRef] [Green Version]
- Takasu, E.; Yamada, F.; Shimada, N.; Kumagai, N.; Hirabayashi, T.; Saigusa, M. Effect of phosphogypsum application on the chemical properties of Andosols, and the growth and Ca uptake of melon seedlings. Soil Sci. Plant Nutr. 2006, 52, 760–768. [Google Scholar] [CrossRef] [Green Version]
- Verlinden, S.; McDonald, L. Productivity and quality of statice (Limonium sinuatum cv. Soiree Mix) and cockscomb (Celosia argentea cv. Chief Mix) under organic and inorganic fertilization regiments. Sci. Hortic. 2007, 114, 199–206. [Google Scholar] [CrossRef]
- Haouas, A.; El Modafar, C.; Douira, A.; Ibnsouda-Koraichi, S.; Filali-Maltouf, A.; Moukhli, A.; Amir, S. Evaluation of the nutrients cycle, humification process, and agronomic efficiency of organic wastes composting enriched with phosphate sludge. J. Clean. Prod. 2021, 302, 127051. [Google Scholar] [CrossRef]
- Ministère des Affaires Étrangères. Memento de L’Agronome; Ministère des Affaires Étrangères: Paris, France, 2002; ISBN 2-86844-129-7. [Google Scholar]
- Buerkert, A.; Bationo, A.; Piepho, H.-P. Efficient phosphorus application strategies for increased crop production in sub-Saharan West Africa. Field Crops Res. 2001, 72, 1–15. [Google Scholar] [CrossRef]
- Eleiwa, E.M.; Ibrahim, S.A.; Mohamed, M.F. Combined effect of NPK levels and foliar nutritional compounds on growth and yield parameters of potato plants (Solanum tuberosum L.). Afr. J. Microbiol. Res. 2021, 6, 5100–5109. [Google Scholar] [CrossRef]
- International Atomic Energy Agency. Radiation Protection and Management of NORM Residues in the Phosphate Industry; (Safety Reports Series); International Atomic Energy Agency: Vienna, Austria, 2013; p. 308. [Google Scholar]
- Kammoun, M.; Ghorbel, I.; Charfeddine, S.; Kamoun, L.; Gargouri-Bouzid, R.; Nouri-Ellouz, O. The positive effect of phosphogypsum-supplemented composts on potato plant growth in the field and tuber yield. J. Environ. Manag. 2017, 200, 475–483. [Google Scholar] [CrossRef]
- Mahmoud, E.; Abd El-Kader, N. Heavy Metal Immobilization in Contaminated Soils using Phosphogypsum and Rice Straw Compost: Heavy Metal Immobilization. Land Degrad. Dev. 2015, 26, 819–824. [Google Scholar] [CrossRef]
- Al-Hwaiti, M.; Al-Khashman, O. Health risk assessment of heavy metals contamination in tomato and green pepper plants grown in soils amended with phosphogypsum waste materials. Environ. Geochem. Health 2015, 37, 287–304. [Google Scholar] [CrossRef]
- Prochnow, L.; Caires, E.; Rodrigues, C. Phosphogypsum Use to Reduce Subsoil Acidity: The Brazilian Experience. Better Crops 2016, 100, 13–15. [Google Scholar]
- Saadaoui, E.; Ghazel, N.; Ben Romdhane, C.; Massoudi, N. Phosphogypsum: Potential uses and problems—A review. Int. J. Environ. Stud. 2017, 74, 558–567. [Google Scholar] [CrossRef]
- Liu, M.; Liang, Z.; Ma, H.; Huang, L.; Wang, M. Responses of rice (Oryza sativa L.) growth and yield to phosphogypsum amendment in saline-sodic soils of North-East China. J. Food Agric. Environ. 2010, 8, 827–833. [Google Scholar]
- Churka Blum, S.; Caires, E.F.; Alleoni, L.R.F. Lime and phosphogypsum application and sulfate retention in subtropical soils under no-till system. J. Soil Sci. Plant Nutr. 2013, 13, 279–300. [Google Scholar] [CrossRef] [Green Version]
- Smaoui-Jardak, M.; Kriaa, W.; Maalej, M.; Zouari, M.; Kamoun, L.; Trabelsi, W.; Ben Abdallah, F.; Elloumi, N. Effect of the phosphogypsum amendment of saline and agricultural soils on growth, productivity and antioxidant enzyme activities of tomato (Solanum lycopersicum L.). Ecotoxicology 2017, 26, 1089–1104. [Google Scholar] [CrossRef]
- Abril, J.-M.; García-Tenorio, R.; Enamorado, S.M.; Hurtado, M.D.; Andreu, L.; Delgado, A. The cumulative effect of three decades of phosphogypsum amendments in reclaimed marsh soils from SW Spain: 226Ra, 238U and Cd contents in soils and tomato fruit. Sci. Total Environ. 2008, 403, 80–88. [Google Scholar] [CrossRef]
- Abid, M.G.B. Contamination Métallique Issue des Déchets de L’ancien Site Minier de Jebel Ressas: Modélisation des Mécanismes de Transfert et Conception de Cartes D’aléa Post-Mine dans un Contexte Carbonaté et Sous un Climat Semi-Aride. Evaluation du Risque pour la Santé Humaine. Ph.D. Thesis, Université Paul Sabatier, Toulouse, France, 2012. [Google Scholar]
- Gorbunov, A.V.; Frontasyeva, M.V.; Gundorina, S.F.; Onischenko, T.L.; Maksjuta, B.B.; Pal, C.S. Effect of agricultural use of phosphogypsum on trace elements in soils and vegetation. Sci. Total Environ. 1992, 122, 337–346. [Google Scholar] [CrossRef]
- Nascimento, R.D.; Souza, J.A.D.; Moreira, A.; Moraes, L.A.C. Universidade Estadual de Londrina, Brazil; Embrapa Soja, Brazil Phosphogypsum and Vinasse Application: Soil Chemical Properties and Alfalfa Productivity and Nutritional Characteristics. Rev. Caatinga 2017, 30, 213–219. [Google Scholar] [CrossRef] [Green Version]
- Gascó, C.; Alvarez, A.; Navarro, N.; Yagüe, L.; Tayibi, H.; López, F.A.; López-Delgado, A.; Alguacil, F.J. Advantages and Disadvantages of Using Phosphogypsum as Building Material. Radiol. Asp. 2009, 61, 503–515. [Google Scholar]
- Rutherford, P.M.; Dudas, M.J.; Arocena, J.M. Heterogeneous distribution of radionuclides, barium and strontium in phosphogypsum by-product. Sci. Total Environ. 1996, 180, 201–209. [Google Scholar] [CrossRef]
- Dueñas, C.; Fernández, M.C.; Cañete, S.; Pérez, M. Radiological impacts of natural radioactivity from phosphogypsum piles in Huelva (Spain). Radiat. Meas. 2010, 45, 242–246. [Google Scholar] [CrossRef]
- Ahmed, N.K.; El-Arabi, A.G.M. Natural radioactivity in farm soil and phosphate fertilizer and its environmental implications in Qena governorate, Upper Egypt. J. Environ. Radioact. 2005, 84, 51–64. [Google Scholar] [CrossRef]
- Hameed, P.S.; Pillai, G.S.; Mathiyarasu, R. A study on the impact of phosphate fertilizers on the radioactivity profile of cultivated soils in Srirangam (Tamil Nadu, India). J. Radiat. Res. Appl. Sci. 2014, 7, 463–471. [Google Scholar] [CrossRef]
- Muhanbet, A.; Khusainov, A.; Elubaev, S. Environmental Safety for Chernozem Soil Fertilized with Phosphogypsum and Ash for Spring Wheat Cultivation in North Kazakhstan. MATEC Web Conf. 2016, 73, 03010. [Google Scholar] [CrossRef] [Green Version]
Samples | Ra-226 | U-238 |
---|---|---|
PG (Tunisia) | 211.8 ± 5.5 | 70.5 ± 17.3 |
PG (Tunisia) | 217.1 ± 7.9 | 75.6 ± 30.5 |
PG (Morocco) | 620 | 140 |
PG (Brazil) | 744 | 49 |
PG (USA) | 1140 | 130 |
Samples | Ra-226 | U-238 |
---|---|---|
01 (0–10 cm) | 10.5 ± 1.4 | 28 ± 6 |
02 (10–20 cm) | 10.2 ± 1.4 | 37.6 ± 7.2 |
03 (20–40 cm) | 9.7 ± 1.4 | 40.3 ± 9 |
04 (40–60 cm) | 8.6 ± 1.3 | 26.7 ± 5.4 |
05 (60–80 cm) | 7.9 ± 1.4 | 50.2 ± 16.4 |
Samples | Ra-226 | U-238 |
---|---|---|
06 (0–10 cm) | 13.4 ± 1.5 | 53 ± 15.6 |
07 (10–20 cm) | 9.8 ± 1.5 | 39.2 ± 11.0 |
08 (20–40 cm) | 8 ± 1.3 | 67.8 ± 17.1 |
09 (40–60 cm) | 7.4 ± 1.3 | 62.9 ± 18.9 |
10 (60–80 cm) | 8.6 ± 1.4 | 68.1 ± 18.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gabsi, H.; Tallou, A.; Aziz, F.; Boukchina, R.; Karbout, N.; Caceres, L.A.; García-Tenorio, R.; Boudabbous, K.; Moussa, M. Application of Phosphogypsum and Organic Amendment for Bioremediation of Degraded Soil in Tunisia Oasis: Targeting Circular Economy. Sustainability 2023, 15, 4769. https://doi.org/10.3390/su15064769
Gabsi H, Tallou A, Aziz F, Boukchina R, Karbout N, Caceres LA, García-Tenorio R, Boudabbous K, Moussa M. Application of Phosphogypsum and Organic Amendment for Bioremediation of Degraded Soil in Tunisia Oasis: Targeting Circular Economy. Sustainability. 2023; 15(6):4769. https://doi.org/10.3390/su15064769
Chicago/Turabian StyleGabsi, Hajer, Anas Tallou, Faissal Aziz, Rachid Boukchina, Nissaf Karbout, Luis Andreu Caceres, Rafael García-Tenorio, Khaoula Boudabbous, and Mohamed Moussa. 2023. "Application of Phosphogypsum and Organic Amendment for Bioremediation of Degraded Soil in Tunisia Oasis: Targeting Circular Economy" Sustainability 15, no. 6: 4769. https://doi.org/10.3390/su15064769
APA StyleGabsi, H., Tallou, A., Aziz, F., Boukchina, R., Karbout, N., Caceres, L. A., García-Tenorio, R., Boudabbous, K., & Moussa, M. (2023). Application of Phosphogypsum and Organic Amendment for Bioremediation of Degraded Soil in Tunisia Oasis: Targeting Circular Economy. Sustainability, 15(6), 4769. https://doi.org/10.3390/su15064769