Development of a Biodegradable Material with Oregano Stick as a Prototype of Substitute for Wooden Agglomerate Material
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Oregano Raw Material
2.2. Preparation of Treatments
2.2.1. Lactic Acid Treatment (A, B and C)
2.2.2. Polyvinyl Acetate Treatment (D, E and F)
2.3. Drying Process
2.4. Mechanical Bendign and Compression Tests
2.5. Statistical Analysis
3. Results
- H0 (null or equality hypothesis): the means of the samples are equal.
- H1 (alternative or difference hypothesis): the means of the samples are significantly different.
3.1. ANOVA and Tukey’s Range Test for Compression Test
3.2. ANOVA and Tukey’s Range Test for Flexion Test
3.3. Modulus of Rupture (MOR)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- García-Pérez, E.; Castro-Álvarez, F.F.; Gutiérrez-Uribe, J.A.; García-Lara, S. Revision de la producción composición, fitoquímica y propiedades nutracéuticas del orégano mexicano. Rev. Mex. Cienc. Agric. 2012, 3, 339–353. [Google Scholar]
- Solís-Campoverde, P.N. Evaluacion de la Actividad Antimicrobiana de los Aceites Esenciales de Oregano (Origanum vulgere L.) y Tomillo (Thymus vulgaris L.) como Potenciales Bioconservadores en Carne de Pollo. Ph.D. Thesis, Pharmaceutical Biochemist, Escuela Superior Politécnica de Chimborazo, Riobamba, Ecuador, 2012. Available online: http://dspace.espoch.edu.ec/handle/123456789/1992 (accessed on 17 February 2023).
- Mera, M.C. Chemical characterization of essential oil of oregano as a bioconservative agent in food. Univ. Cienc. Tecnol. 2020, 24, 54–62. [Google Scholar] [CrossRef]
- Giannotas, G.; Kamperidou, V.; Stefanidou, M.; Kampragkou, P.; Liapis, A.; Barboutis, I. Utilization of tree-bark in cement pastes. J. Build. Eng. 2022, 57, 104913. [Google Scholar] [CrossRef]
- Sáez, A.; Urdaneta, G.J.A. Manejo de residuos sólidos en América Latina y el Caribe. Omnia 2014, 20, 121–135. [Google Scholar]
- Rojas, A.M.; Montaño, L.P.; Bastidas, M.J. Produccion de acido lactico a pártir del lactosuero utilizando Lactobacillus delbrueckii subsp. bulgaricus y Streptococcus thermophilus. Rev. Colomb. Química 2015, 44, 5–10. [Google Scholar] [CrossRef]
- Durán, Y. Administración del inventario: Elemento clave para la optimización de las utilidades en las empresas. Visión Gerenc. 2012, 1, 55–78. [Google Scholar]
- Haro-Pacheco, A.J.; Nájera-Luna, J.A.; Méndez-Gónzales, J.; Corral-Rivas, S.; Hernández-Díaz, J.C.; Carrillo-Parra, A.; Cruz-Cobos, F. Factor de conversión de productos forestales en la industria de tarimas en Durango. Rev. Mex. Cienc. For. 2015, 6, 90–105. [Google Scholar]
- Wong-González, E. ¿Después de un análisis de variancia… qué? Ejemplos en Ciencia de Alimentos. Agron. Mesoam. 2010, 21, 349–356. [Google Scholar] [CrossRef]
- Rivadeneira, J.; Barrera, M.V.; De La Hoz, A.I. Análisis general del spss y su utilidad en la estadística. E-IDEA J. Bus. Sci. 2020, 2, 17–25. [Google Scholar]
- ASTM D1037; Standars Test Methods for Evaluating Properties of Wood-Base Fiber and Particle Panel Materials. ASTM International: West Conshohocken, PA, USA, 2020. Available online: https://www.astm.org/d1037-12r20.html (accessed on 11 August 2023).
- ISO 10545-4; International Standars Ceramic Tiles: Determination of Modulus of Rupture and Breaking Strength. ISO: Geneva, Switzerland, 2019. Available online: https://www.iso.org/standard/69619.html (accessed on 11 August 2023).
- López, M.; Fonthal-Rivera, G.; Ariza-Calderón, H.; Ramos-Valdéz, G. Elaboración de paneles aglomerados de la merremia tuberosa en matriz polimérica utilizando la técnica de platos calientes. Rev. Divulg. Científica Tecnol. 2017, 1, 49–54. [Google Scholar]
- Harnkarnsujarit, N.; Wongphan, P.; Chatkitanan, T.; Laorenza, Y.; Srisa, A. Chapter 7—Bioplastic for Sustainable Food Packaging. In Sustainable Food Processing and Engineering Challenges; Elsevier: Amsterdam, The Netherlands, 2021; pp. 203–277. ISBN 9780128227145. [Google Scholar] [CrossRef]
- Sen, K.Y.; Baidurah, S. Renewable biomass feedstocks for production of sustainable biodegradable polymer. Curr. Opin. Green Sustain. Chem. 2020, 27, 100412. [Google Scholar] [CrossRef]
- Merino, D.; Quilez-Molina, A.I.; Perotto, G.; Bassani, A.; Spigno, G.; Athanassiou, A. A second life for fruit and vegetable waste: A review on bioplastic films and coatings for potential food protection applications. Green Chem. 2022, 24, 4703–4727. [Google Scholar] [CrossRef]
- Armynah, B.; Anugrahwidya, R.; Tahir, D. Composite cassava starch/chitosan/Pineapple Leaf Fiber (PALF)/Zinc Oxide (ZnO): Bioplastics with high mechanical properties and faster degradation in soil and seawater. Int. J. Biol. Macromol. 2022, 213, 814–823. [Google Scholar] [CrossRef]
- Jang, Y.; Huang, J.; Li, K. A new formaldehyde-free wood adhesive from renewable materials. Int. J. Adhes. Adhes. 2011, 31, 754–759. [Google Scholar] [CrossRef]
- Taj, S.; Munawar, A.M.; Khan, S. Natural Fiber-Reinforced Polymer Composites. Pak. Acad. Sci. 2007, 44, 129–144. [Google Scholar]
- Azwa, Z.N.; Yousif, B.F.; Manalo, A.C.; Karunasena, W. A review on the degradability of polymeric composites based on natural fibres. Mater. Des. 2013, 47, 424–442. [Google Scholar] [CrossRef]
- Cordero-Villa, L.; Marín-Tinoco, R.I.; Silva-Marrufo, O. Producción de composta a base de residuos de orégano (tallo y hoja) en el Municipio de Rodeo, Dgo. Rev. Desarro. Urbano SustenTable 2018, 4, 17–21. [Google Scholar]
- Lopez-Juárez, P.; Rodriguez-Suárez, P.M. El liderazgo de los países asiáticos en el sector del vestido: Repercusiones para América Latina. Tla-Melaua 2016, 10, 152–175. [Google Scholar] [CrossRef]
- Zepeda-Rodríguez, Z.; Martín del Campo, A.; González-Núñez, R.; Vázquez-Lepe, M.O.; Ortega-Gudiño, P.; Arellano, M. Preparación y caracterización de materiales reforzados de polietileno y fibras de carbono por termocompresión. Rev. Iberoam. Polímeros 2019, 20, 236–245. [Google Scholar]
- Mohammed, L.; Ansari, M.; Pua, G.; Jawaid, M.; Islam, M. A Review on Natural Fiber Reinforced polymer Composite and Its Aplicattions. Int. J. Polym. Sci. 2015, 2015, 243947. [Google Scholar] [CrossRef]
- Rodríguez-Rodríguez, E.F.; Briceño-Rosario, J.; Billman, B.; Boswell, A. Merremia sagastegui-alvae (Convolvulaceae), una especie nueva con raíces tuberosas del Norte de Perú. Arnaldoa 2017, 24, 19–34. [Google Scholar]
- Molenda, M.; Horabik, J.; Parafiniuk, P.; Oniszczuk, A.; Bańda, M.; Wajs, J.; Gondek, E.; Chutkowski, M.; Lisowski, A.; Wiącek, J.; et al. Mechanical and Combustion Properties of Agglomerates of Wood of Popular Eastern European Species. Materials 2021, 14, 2728. [Google Scholar] [CrossRef]
- Rydén, M.; Hanning, M.; Corcoran, A.; Lind, F. Oxygen Carrier Aided Combustion (OCAC) of Wood Chips in a Semi-Commercial Circulating Fluidized Bed Boiler Using Manganese Ore as Bed Material. Appl. Sci. 2016, 6, 347. [Google Scholar] [CrossRef]
- Guerrero-Martin, C.A.; Ortega-Ramírez, A.T.; Silva-Marrufo, O.; Casallas-Martín, B.D.; Cortés-Salazar, N.; Salinas-Silva, R.; Camacho-Galindo, S.; Fernandes, F.A.D.S.; Guerrero-Martin, L.E.; de Freitas, P.P.; et al. Biofortification of Kidney Bean (Phaseolus vulgaris L.) Crops Applying Zinc Sulfate and Ferric Sulfate: Pilot Crop in Colombia. Molecules 2023, 28, 2004. [Google Scholar] [CrossRef]
Sample | Sieve (mm) | Quantity of Soaked Stick (g) | Binding Agent | Amount of Binding Agent (mL) | 2,2 Azobisisobutyronitrile (AIBN) (mL) |
---|---|---|---|---|---|
A | 0.025 | 100.0 | Lactic acid | 30 | 0.30 |
B | 0.025 | 125.0 | Lactic acid | 40 | 0.40 |
C | 0.025 | 110.6 | Lactic acid | 44 | 0.44 |
D | 0.118 | 92.0 | Polyvinyl acetate | 20 | 0.18 |
E | 0.118 | 92.0 | Polyvinyl acetate | 35 | 0.30 |
F | 0.118 | 92.0 | Polyvinyl acetate | 42 | 0.40 |
Sample | Binding Agent | Compression Test | Flexion Test | ||
---|---|---|---|---|---|
mm | kN | mm | kN | ||
A (1A) | Lactic acid | 3.9814 ± 0.32 | 0.8513 ± 0.032 | 0.3542 ± 0.003 | 0.0540 ± 0.013 |
B (2A) | Lactic acid | 2.8578 ± 0.28 | 0.4197 ± 0.015 | 0.8427 ± 0.030 | 0.0420 ± 0.011 |
C (3A) | Lactic acid | 1.9663 ± 0.38 | 0.4676 ± 0.015 | 0.0122 ± 0.001 | 0.0540 ± 0.013 |
D (1B) | Polyvinyl acetate | 1.9451 ± 0.32 | 0.6295 ± 0.022 | 2.0640 ± 0.023 | 0.1499 ± 0.023 |
E (2B) | Polyvinyl acetate | 1.8686 ± 0.30 | 0.8273 ± 0.032 | 1.2946 ± 0.020 | 0.0420 ± 0.011 |
F (3B) | Polyvinyl acetate | 1.1480 ± 0.21 | 0.7734 ± 0.028 | 0.8183 ± 0.031 | 0.1559 ± 0.028 |
Source | GL | SC Adjusted | MC Adjusted | F Value | p Value |
---|---|---|---|---|---|
Sample N° | 5 | 34.55 | 6.9099 | 10.38 | 0.000 |
Error | 316 | 210.29 | 0.6655 | ||
Total | 321 | 244.84 |
Sample N° | N | Average | Group | ||
---|---|---|---|---|---|
A (1A) | 69 | 1.8740 | a | ||
B (2A) | 72 | 1.3580 | b | ||
C (3A) | 45 | 1.2045 | b | c | |
D (1B) | 50 | 1.1864 | b | c | |
E (2B) | 56 | 1.1766 | b | c | |
F (3B) | 30 | 0.7242 | c |
Source | GL | SC Adjusted | MC Adjusted | F Value | p Value |
---|---|---|---|---|---|
Sample N° | 5 | 98.32 | 19.6634 | 20.55 | 0.000 |
Error | 316 | 302.36 | 0.9568 | ||
Total | 321 | 400.68 |
Sample N° | N | Average | Group | ||
---|---|---|---|---|---|
A (1A) | 69 | 2.1730 | a | ||
B (2A) | 72 | 1.9720 | a | ||
C (3A) | 45 | 0.8194 | b | c | |
D (1B) | 50 | 1.2843 | b | ||
E (2B) | 56 | 1.8450 | a | ||
F (3B) | 30 | 0.6005 | c |
Source | L (m) | L1 (m) | Fu (N) | MOR (MPas/m2) |
---|---|---|---|---|
Oregano stick agglomerate | 0.201 | 0.012 | 143.9 | 5.9958 |
Commercial agglomerate | 0.309 | 0.053 | 25343.3 | 13.4247 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guerrero-Martin, C.A.; Silva-Marrufo, O.; Ortega-Ramírez, A.T.; Marín-Tinoco, R.I.; Salinas-Silva, R.; Camacho-Galindo, S. Development of a Biodegradable Material with Oregano Stick as a Prototype of Substitute for Wooden Agglomerate Material. Sustainability 2023, 15, 14465. https://doi.org/10.3390/su151914465
Guerrero-Martin CA, Silva-Marrufo O, Ortega-Ramírez AT, Marín-Tinoco RI, Salinas-Silva R, Camacho-Galindo S. Development of a Biodegradable Material with Oregano Stick as a Prototype of Substitute for Wooden Agglomerate Material. Sustainability. 2023; 15(19):14465. https://doi.org/10.3390/su151914465
Chicago/Turabian StyleGuerrero-Martin, Camilo Andrés, Oscar Silva-Marrufo, Angie Tatiana Ortega-Ramírez, Rubén Iván Marín-Tinoco, Raúl Salinas-Silva, and Stefanny Camacho-Galindo. 2023. "Development of a Biodegradable Material with Oregano Stick as a Prototype of Substitute for Wooden Agglomerate Material" Sustainability 15, no. 19: 14465. https://doi.org/10.3390/su151914465
APA StyleGuerrero-Martin, C. A., Silva-Marrufo, O., Ortega-Ramírez, A. T., Marín-Tinoco, R. I., Salinas-Silva, R., & Camacho-Galindo, S. (2023). Development of a Biodegradable Material with Oregano Stick as a Prototype of Substitute for Wooden Agglomerate Material. Sustainability, 15(19), 14465. https://doi.org/10.3390/su151914465