Evaluation of Valorisation Strategies to Improve Grape Stems’ Nutritional Value as an Ingredient for Ruminants’ Diets
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples and Experimental Design
2.2. In Vitro Organic Matter Digestibility
2.3. Chemical Analyses
2.4. Calculation and Statistical Analysis
3. Results
3.1. Effect of Washing and Hydrolysis of Grape Stems on Chemical Composition
3.2. Effect of Washing and Hydrolysis of Grape Stems on In Vitro Organic Matter Digestibility and Main Fermentation Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Glossary
ADF | Acid Detergent Fibre |
ADL | Acid Detergent Lignin |
AOC | Antioxidant capacity |
C2 | Acetate |
C3 | Propionate |
C4 | Butyrate |
CP | Crude Protein |
CTR | Control |
DM | Dry Matter |
DPPH | 2,2-Diphenyl-1-picrylhydrazyl |
FEFAC | European Feed Manufacturers’ Federation |
GAE | Gallic Acid Equivalent |
IVOMD | In Vitro Organic Matter Digestibility |
NDF | Neutral Detergent Fibre |
OM | Organic Matter |
SCFA | Short Chain Fatty Acids |
SEM | Standard Error of the Mean |
TEAC | Trolox Equivalent Antioxidant Capacity |
TPC | Total Polyphenol Content |
TRS | Total Reducing Sugars |
References
- OIV. International Wine Organisation. World Wine Production. Available online: https://www.oiv.int/sites/default/files/documents/EN_OIV_2022_World_Wine_Production_Outlook_1.pdf (accessed on 3 March 2023).
- Ribéreau-Gayon, P.; Dubourdieu, D.; Donèche, B.; Lonvaud, A. Traité d’Oenologie: Microbiologie du vin, Vinifications, 7th ed.; Darriet, P., Ed.; Dunod: Paris, France, 2017. [Google Scholar]
- Mangione, R.; Simões, R.; Pereira, H.; Catarino, S.; Ricardo-da-Silva, J.; Miranda, I.; Ferreira-Dias, S. Potential Use of Grape Stems and Pomaces from Two Red Grapevine Cultivars as Source of Oligosaccharides. Processes 2022, 10, 1896. [Google Scholar] [CrossRef]
- Blackford, M.; Comby, M.; Zeng, L.; Dienes-Nagy, Á.; Bourdin, G.; Lorenzini, F.; Bach, B. A Review on Stems Composition and Their Impact on Wine Quality. Molecules 2021, 26, 1240. [Google Scholar] [CrossRef] [PubMed]
- Foulonneau, C. La Vinification, 4th ed.; Dunod: Paris, France, 2014. [Google Scholar]
- Garcia-Perez, J.V.; Blasco, M.; Cárcel, J.; Clemente, G.; Mulet, A. Drying Kinetics of Grape Stalk. Defect Diffus. Forum 2006, 258, 225–230. [Google Scholar] [CrossRef]
- Pascual, O.; González-Royo, E.; Gil, M.; Gómez-Alonso, S.; García-Romero, E.; Canals, J.M.; Hermosín-Gutíerrez, I.; Zamora, F. Influence of Grape Seeds and Stems on Wine Composition and Astringency. J. Agric. Food Chem. 2016, 64, 6555–6566. [Google Scholar] [CrossRef]
- Anastasiadi, M.; Pratsinis, H.; Kletsas, D.; Skaltsounis, A.-L.; Haroutounian, S.A. Grape stem extracts: Polyphenolic content and assessment of their in vitro antioxidant properties. LWT—Food Sci. Technol. 2012, 48, 316–322. [Google Scholar] [CrossRef]
- San Martin, D.; Bald, C.; Cebrian, M.; Iñarra, B.; Orive, M.; Ramos, S.; Zufía, J. Principles for Developing a Safe and Sustainable Valorization of Food Waste for Animal Feed: Second Generation Feedstuff. In Handbook of Famine, Starvation, and Nutrient Deprivation; Preedy, V., Patel, V., Eds.; Springer: Cham, Switherland, 2017. [Google Scholar] [CrossRef]
- Salem, A.Z.M.; Kunst, C.R.; Jose, S. Alternative animal feeds from agroforestry plants. Agrofor. Syst. 2020, 94, 1133–1138. [Google Scholar] [CrossRef]
- San Martin, D.; Ramos, S.; Zufía, J. Valorisation of food waste to produce new raw materials for animal feed. Food Chem. 2016, 198, 68–74. [Google Scholar] [CrossRef]
- Bešlo, D.; Došlić, G.; Agić, D.; Rastija, V.; Šperanda, M.; Gantner, V.; Lučić, B. Polyphenols in Ruminant Nutrition and Their Effects on Reproduction. Antioxidants 2022, 11, 970. [Google Scholar] [CrossRef]
- Hassan, Y.I.; Kosir, V.; Yin, X.; Ross, K.; Diarra, M.S. Grape Pomace as a Promising Antimicrobial Alternative in Feed: A Critical Review. J. Agric. Food Chem. 2019, 67, 9705–9718. [Google Scholar] [CrossRef]
- Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on Waste and Repealing Certain Directives. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32008L0098 (accessed on 26 July 2023).
- Baruah, J.; Nath, B.K.; Sharma, R.; Kumar, S.; Deka, R.C.; Baruah, D.C.; Kalita, E. Recent Trends in the Pretreatment of Lignocellulosic Biomass for Value-Added Products. Front. Energy Res. 2018, 6, 141. [Google Scholar] [CrossRef]
- Bhandari, B.R.; Datta, N.; Howes, T. Problems Associated With Spray Drying Of Sugar-Rich Foods. Dry. Technol. 1997, 15, 671–684. [Google Scholar] [CrossRef]
- Berk, Z. Production of Single-Strength Citrus Juices; Academic Press: Haifa, Israel, 2016; pp. 127–185. [Google Scholar] [CrossRef]
- Chatterjee, S.; Venkata Mohan, S. Refining of vegetable waste to renewable sugars for ethanol production: Depolymerization andfermentation optimization. Bioresour. Technol. 2021, 340, 125650. [Google Scholar] [CrossRef]
- Rodríguez, L.A.; Toro, M.E.; Vazquez, F.; Correa-Daneri, M.L.; Gouiric, S.C.; Vallejo, M.D. Bioethanol production from grape and sugar beet pomaces by solid-state fermentation. Int. J. Hydrogen Energy 2010, 35, 5914–5917. [Google Scholar] [CrossRef]
- Andrew, M.A.; Fred, K.; Samuel, O.; Swidiq, M.; Cyprian, E. Optimizing bio-physical conditions and pre-treatment options for breaking lignin barrier of maize stover feed using white rot fungi. Anim. Nutr. 2016, 2, 361–369. [Google Scholar] [CrossRef]
- Tucker, C.B.; Weary, D.M.; Fraser, D. Effects of Three Types of Free-Stall Surfaces on Preferences and Stall Usage by Dairy Cows. J. Dairy Sci. 2003, 86, 521–529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belyea, R.L.; Foster, M.B.; Zinn, G.M. Effect of Delignification on In Vitro Digestion of Alfalfa Cellulose1. J. Dairy Sci. 1983, 66, 1277–1281. [Google Scholar] [CrossRef]
- San Martin, D.; Orive, M.; Iñarra, B.; Castelo, J.; Estévez, A.; Nazzaro, J.; Iloro, I.; Elortza, F.; Zufía, J. Brewers’ Spent Yeast and Grain Protein Hydrolysates as Second-Generation Feedstuff for Aquaculture Feed. Waste Biomass Valorization 2020, 11, 5307–5320. [Google Scholar] [CrossRef]
- Jauregi, P.; Alvarez-Ossorio, C.; Bald, C.; Ibarruri, J.; Iñarra, B.; San Martin, D.; Zufia, J. Chapter 7—Enzymatic processes for the production of food ingredients from food processing by-products. In Value-Addition in Food Products and Processing through Enzyme Technology; Kuddus, M., Aguilar, C.N., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 83–100. [Google Scholar] [CrossRef]
- Sánchez, O.; Sierra, R.; Alméciga-Díaz, C.J. Delignification Process of Agro-Industrial Wastes an Alternative to Obtain Fermentable Carbohydrates for Producing Fuel. In Alternative Fuel; Maximino, M., Ed.; IntechOpen: Rijeka, Croatia, 2011; p. Ch. 6. [Google Scholar] [CrossRef] [Green Version]
- Menke, K.H.; Raab, L.; Salewski, A.; Steingass, H.; Fritz, D.; Schneider, W. The estimation of the digestibility and metabolizable energy content of ruminant feedingstuffs from the gas production when they are incubated with rumen liquor in vitro. J. Agric. Sci. 1979, 93, 217–222. [Google Scholar] [CrossRef] [Green Version]
- Theodorou, M.K.; Williams, B.A.; Dhanoa, M.S.; McAllan, A.B.; France, J. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Anim. Feed Sci. Technol. 1994, 48, 185–197. [Google Scholar] [CrossRef]
- Pell, A.N.; Schofield, P. Computerized Monitoring of Gas Production to Measure Forage Digestion In Vitro. J. Dairy Sci. 1993, 76, 1063–1073. [Google Scholar] [CrossRef]
- AOAC. Association of Official Analytical Chemists. Official Methods of Analysis; AOAC International: Rockville, MD, USA, 1996. [Google Scholar]
- ISO. International Standard UNE EN ISO 16472 Method. Available online: https://cdn.standards.iteh.ai/samples/37898/ce818d47f82c457797cc8def610be3b1/ISO-16472-2006.pdf (accessed on 30 July 2023).
- Miller, G.L. Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Anal. Chem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
- Ibarruri, J.; Cebrián, M.; Hernández, I. Valorisation of fruit and vegetable discards by fungal submerged and solid-state fermentation for alternative feed ingredients production. J. Environ. Manag. 2021, 281, 111901. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT—Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Goiri, I.; Ruiz, R.; Atxaerandio, R.; Lavin, J.L.; Díaz de Otálora, X.; García-Rodríguez, A. Assessing the potential use of a feed additive based on biochar on broilers feeding upon productive performance, pH of digestive organs, cecum fermentation and bacterial community. Anim. Feed Sci. Technol. 2021, 279, 115039. [Google Scholar] [CrossRef]
- Mertens, D.R. Predicting intake and digestibility using mathematical models of ruminal function. J. Anim. Sci. 1987, 64, 1548–1558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Llamas-Lamas, G.; Combs, D.K. Effect of forage to concentrate ratio and intake level on utilization of early vegetative alfalfa silage by dairy cows. J. Dairy Sci. 1991, 74, 526–536. [Google Scholar] [CrossRef] [PubMed]
- Dado, R.G.; Allen, M.S. Intake Limitations, Feeding Behavior, and Rumen Function of Cows Challenged with Rumen Fill from Dietary Fiber or Inert Bulk. J. Dairy Sci. 1995, 78, 118–133. [Google Scholar] [CrossRef]
- Ping, L.; Brosse, N.; Sannigrahi, P.; Ragauskas, A. Evaluation of grape stalks as a bioresource. Ind. Crop. Prod. 2011, 33, 200–204. [Google Scholar] [CrossRef]
- Filippi, K.; Georgaka, N.; Alexandri, M.; Papapostolou, H.; Koutinas, A. Valorisation of grape stalks and pomace for the production of bio-based succinic acid by Actinobacillus succinogenes. Ind. Crop. Prod. 2021, 168, 113578. [Google Scholar] [CrossRef]
- Ding, D.; Li, P.; Zhang, X.; Ramaswamy, S.; Xu, F. Synergy of hemicelluloses removal and bovine serum albumin blocking of lignin for enhanced enzymatic hydrolysis. Bioresour. Technol. 2019, 273, 231–236. [Google Scholar] [CrossRef]
- Kumar, R.; Wyman, C.E. Access of cellulase to cellulose and lignin for poplar solids produced by leading pretreatment technologies. Biotechnol. Prog. 2009, 25, 807–819. [Google Scholar] [CrossRef]
- Corbin, K.R.; Hsieh, Y.S.Y.; Betts, N.S.; Byrt, C.S.; Henderson, M.; Stork, J.; DeBolt, S.; Fincher, G.B.; Burton, R.A. Grape marc as a source of carbohydrates for bioethanol: Chemical composition, pre-treatment and saccharification. Bioresour. Technol. 2015, 193, 76–83. [Google Scholar] [CrossRef] [PubMed]
- Amendola, D.; De Faveri, D.M.; Egües, I.; Serrano, L.; Labidi, J.; Spigno, G. Autohydrolysis and organosolv process for recovery of hemicelluloses, phenolic compounds and lignin from grape stalks. Bioresour. Technol. 2012, 107, 267–274. [Google Scholar] [CrossRef] [PubMed]
- Buxton, D.R.; Mertens, D.R.; Fisher, D.S. Forage quality and ruminant utilization. In Cool-Season Forage Grasses; Moser, L.E., Buxton, D.R., Casler, M.D., Eds.; American Society of Agronomy: Madison, WI, USA, 1996; pp. 229–266. [Google Scholar] [CrossRef]
- Buxton, D.R.; Redfearn, D.D. Plant Limitations to Fiber Digestion and Utilization. J. Nutr. 1997, 127, 814S–818S. [Google Scholar] [CrossRef] [Green Version]
- Jarrige, R.; Minson, D.J. Digestibilité des constituants du ray-grass Anglais S 24 et du dactyle S 37, plus spécialement des constituants glucidiques. Annales. Zootech. 1964, 13, 117–150. [Google Scholar] [CrossRef] [Green Version]
- Palmonari, A.; Cavallini, D.; Sniffen, C.J.; Fernandes, L.; Holder, P.; Fusaro, I.; Giammarco, M.; Formigoni, A.; Mammi, L.M.E. In vitro evaluation of sugar digestibility in molasses. Ital. J. Anim. Sci. 2021, 20, 571–577. [Google Scholar] [CrossRef]
- San Martin, D.; Ibarruri, J.; Luengo, N.; Ferrer, J.; García-Rodríguez, A.; Goiri, I.; Atxaerandio, R.; Medjadbi, M.; Zufía, J.; Sáez de Cámara, E.; et al. Evaluation of Valorisation Strategies to Improve Spent Coffee Grounds’ Nutritional Value as an Ingredient for Ruminants’ Diets. Animals 2023, 13, 1477. [Google Scholar] [CrossRef]
- Taherzadeh, M.J.; Karimi, K. Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: A review. Int. J. Mol. Sci. 2008, 9, 1621–1651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, A.; Silva, V.; Igrejas, G.; Gaivão, I.; Aires, A.; Klibi, N.; Maria de Lurdes Enes, D.; Valentão, P.; Falco, V.; Poeta, P. Valorization of Winemaking By-Products as a Novel Source of Antibacterial Properties: New Strategies to Fight Antibiotic Resistance. Molecules 2021, 26, 2331. [Google Scholar] [CrossRef]
- Spigno, G.; Marinoni, L.; Garrido, G.D. 1—State of the Art in Grape Processing By-Products. In Handbook of Grape Processing By-Products; Galanakis, C.M., Ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 1–27. [Google Scholar] [CrossRef]
- Souquet, J.-M.; Labarbe, B.; Le Guernevé, C.; Cheynier, V.; Moutounet, M. Phenolic Composition of Grape Stems. J. Agric. Food Chem. 2000, 48, 1076–1080. [Google Scholar] [CrossRef] [PubMed]
- Hogervorst, J.C.; Miljić, U.; Puškaš, V. 5—Extraction of Bioactive Compounds from Grape Processing By-Products. In Handbook of Grape Processing By-Products; Galanakis, C.M., Ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 105–135. [Google Scholar] [CrossRef]
- Makris, D.P.; Boskou, G.; Andrikopoulos, N.K. Recovery of antioxidant phenolics from white vinification solid by-products employing water/ethanol mixtures. Bioresour. Technol. 2007, 98, 2963–2967. [Google Scholar] [CrossRef]
- Câmara, J.S.; Lourenço, S.; Silva, C.; Lopes, A.; Andrade, C.; Perestrelo, R. Exploring the potential of wine industry by-products as source of additives to improve the quality of aquafeed. Microchem. J. 2020, 155, 104758. [Google Scholar] [CrossRef]
- Pérez-Jiménez, J.; Díaz-Rubio, M.E.; Saura-Calixto, F. Non-extractable polyphenols, a major dietary antioxidant: Occurrence, metabolic fate and health effects. Nutr. Res. Rev. 2013, 26, 118–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, C.; Zhao, Y.; Li, X.; Jia, J.; Chen, Y.; Hua, Z. Antioxidant Capacities and Main Reducing Substance Contents in 110 Fruits and Vegetables Eaten in China. Food Nutr. Sci. 2014, 05, 293–307. [Google Scholar] [CrossRef] [Green Version]
- Vuolo, M.M.; Lima, V.S.; Maróstica Junior, M.R. Chapter 2—Phenolic Compounds: Structure, Classification, and Antioxidant Power. In Bioactive Compounds; Campos, M.R.S., Ed.; Woodhead Publishing: Sawston, UK, 2019; pp. 33–50. [Google Scholar] [CrossRef]
- Moharram, H.; Youssef, M. Methods for Determining the Antioxidant Activity: A Review. Alex. J. Fd. Sci. Technol. 2014, 11, 31–42. [Google Scholar]
With Washing | Without Washing | p-Value | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Item | CTR | AH | EH | AEH | CTR | AH | EH | AEH | SEM | H | W | H × W |
DM (%) | 93.4 | 92.4 | 94.1 | 93.8 | 92.6 | 93.2 | 93.7 | 92.1 | 1.07 | 0.767 | 0.434 | 0.681 |
Ash (%DM) | 6.22 | 12.7 | 6.77 | 8.73 | 4.72 | 10.6 | 5.97 | 8.14 | 0.596 | <0.001 | 0.011 | 0.601 |
CP (%DM) | 5.27 | 5.17 | 6.09 | 5.21 | 4.84 | 4.45 | 5.67 | 5.82 | 0.360 | 0.043 | 0.374 | 0.371 |
NDF (%DM) | 51.1 | 52.9 | 61.9 | 58.6 | 26.4 c | 41.6 b | 55.7 a | 64.2 a | 2.28 | <0.001 | <0.001 | <0.001 |
ADF (%DM) | 43.7 b | 47.3 ab | 56.3 a | 57.6 a | 24.8 c | 40.6 b | 50.4 ab | 61.1 a | 2.14 | <0.001 | <0.001 | 0.002 |
ADL (%DM) | 17.7 b | 18.2 b | 26.2 a | 25.3 a | 10.6 c | 18.1 b | 23.3 ab | 27.2 a | 1.40 | <0.001 | 0.060 | 0.038 |
TRS (mg/g) | 108 | 115 | 72.2 | 107 | 350 a | 198 b | 119 b | 145 b | 45.2 | 0.005 | <0.001 | 0.018 |
TPC (mg GAE/g) | 17.8 b | 29.7 a | 7.18 c | 16.6 b | 25.3 a | 22.4 a | 7.33 b | 13.4 b | 2.473 | <0.001 | 0.567 | 0.005 |
AOC (mg TEAC/g) | 18.0 b | 33.4 a | 11.0 b | 24.6 b | 26.7 a | 25.4 a | 11.5 b | 19.6 ab | 2.63 | <0.001 | 0.476 | 0.002 |
With Washing | Without Washing | p-Value | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
CTR | AH | EH | AEH | CTR | AH | EH | AEH | SEM | H | W | H × W | |
IVOMD (%) | 37.6 b | 48.6 a | 27.5 c | 35.0 bc | 61.6 a | 57.2 a | 36.7 b | 39.9 b | 1.34 | <0.001 | <0.001 | <0.001 |
SCFA (mmol/100 mL) | 4.39 a | 4.17 ab | 2.81 c | 3.34 bc | 6.00 a | 5.13 a | 3.78 b | 3.50 b | 0.241 | <0.001 | <0.001 | 0.017 |
Individual SCFA proportions (mmol/100 mmol) | ||||||||||||
C2 | 71.2 | 73.2 | 70.5 | 67.4 | 64.3 b | 69.9 ab | 69.7 ab | 71.8 a | 1.44 | 0.083 | 0.103 | 0.007 |
C3 | 18.5 | 17.4 | 19.3 | 21.8 | 24.1 | 20.3 | 20.4 | 18.8 | 1.30 | 0.287 | 0.083 | 0.020 |
C4 | 7.80 | 7.06 | 7.51 | 7.54 | 9.25 a | 7.67 b | 7.55 b | 6.87 b | 0.338 | <0.001 | 0.046 | 0.001 |
C2:C3 | 3.85 ab | 4.20 a | 3.66 ab | 3.54 b | 2.69 b | 3.44 a | 3.42 a | 3.81 a | 0.1405 | 0.002 | <0.001 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
San Martin, D.; Ibarruri, J.; Luengo, N.; Ferrer, J.; García-Rodríguez, A.; Goiri, I.; Atxaerandio, R.; Zufía, J.; Sáez de Cámara, E.; Iñarra, B. Evaluation of Valorisation Strategies to Improve Grape Stems’ Nutritional Value as an Ingredient for Ruminants’ Diets. Sustainability 2023, 15, 11951. https://doi.org/10.3390/su151511951
San Martin D, Ibarruri J, Luengo N, Ferrer J, García-Rodríguez A, Goiri I, Atxaerandio R, Zufía J, Sáez de Cámara E, Iñarra B. Evaluation of Valorisation Strategies to Improve Grape Stems’ Nutritional Value as an Ingredient for Ruminants’ Diets. Sustainability. 2023; 15(15):11951. https://doi.org/10.3390/su151511951
Chicago/Turabian StyleSan Martin, David, Jone Ibarruri, Nagore Luengo, Jorge Ferrer, Aser García-Rodríguez, Idoia Goiri, Raquel Atxaerandio, Jaime Zufía, Estíbaliz Sáez de Cámara, and Bruno Iñarra. 2023. "Evaluation of Valorisation Strategies to Improve Grape Stems’ Nutritional Value as an Ingredient for Ruminants’ Diets" Sustainability 15, no. 15: 11951. https://doi.org/10.3390/su151511951