Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (79)

Search Parameters:
Keywords = winery by-products

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4718 KiB  
Article
Assessment of Winery By-Products as Ingredients as a Base of “3S” (Safe, Salubrious, and Sustainable) Fermented Beverages Rich in Bioactive Anthocyanins
by Berta María Cánovas, Irene Pérez-Novas, Cristina García-Viguera, Raúl Domínguez-Perles and Sonia Medina
Foods 2025, 14(14), 2514; https://doi.org/10.3390/foods14142514 - 17 Jul 2025
Viewed by 508
Abstract
Oenological residues may cause environmental pollution when processing does not significantly reduce volume and/or harmful conditions. The lack of proper valorisation alternatives entails high disposal costs and resource inefficiency that jeopardise the sustainability and competitiveness of the industry. Interestingly, wine by-products are underappreciated [...] Read more.
Oenological residues may cause environmental pollution when processing does not significantly reduce volume and/or harmful conditions. The lack of proper valorisation alternatives entails high disposal costs and resource inefficiency that jeopardise the sustainability and competitiveness of the industry. Interestingly, wine by-products are underappreciated sources of multipurpose bioactive compounds, such as anthocyanins, associated with health benefits. Alternatively, transforming oenological by-products into valuable co-products will promote sustainability and thus, create new business opportunities. In this context, the present study has assessed the applicability of winery by-products (grape pomace and wine lees) as ingredients to develop new functional kombucha-analogous beverages “3S” (safe, salubrious, and sustainable) by the Symbiotic Culture of Bacteria and Yeast (SCOBY). Concerning the main results, during the kombucha’s development, the fermentation reactions modified the physicochemical parameters of the beverages, namely pH, total soluble solids, acetic acid, ethanol, and sugars, which remained stable throughout the monitored shelf-life period considered (21 days). The fermented beverages obtained exhibited high anthocyanin concentration, especially when using wine lees as an ingredient (up to 5.60 mg/L at the end of the aerobic fermentation period (10 days)) compared with the alternative beverages produced using grape pomace (1.69 mg/L). These findings demonstrated that using winery by-products for the development of new “3S” fermented beverages would provide a dietary source of bioactive compounds (mainly anthocyanins), further supporting new valorisation chances and thus contributing to the competitiveness and sustainability of the winery industries. This study opens a new avenue for cross-industry innovation, merging fermentation traditions with a new eco-friendly production of functional beverages that contribute to transforming oenological residues into valuable co-products. Full article
Show Figures

Figure 1

29 pages, 921 KiB  
Review
Upcycling Wine Industry Waste: Dealcoholized Grape Pomace as a Platform for Bio-Based Material Innovation
by Jorge Miguel Matias, Fernando Braga and Alice Vilela
Appl. Sci. 2025, 15(13), 7215; https://doi.org/10.3390/app15137215 - 26 Jun 2025
Viewed by 511
Abstract
The wine industry produces substantial amounts of organic waste, particularly in the form of dealcoholized grape pomace—the primary residual biomass that remains after the fermentation process and the extraction of alcohol from winery by-products. This study explores the potential of upcycling dealcoholized pomace, [...] Read more.
The wine industry produces substantial amounts of organic waste, particularly in the form of dealcoholized grape pomace—the primary residual biomass that remains after the fermentation process and the extraction of alcohol from winery by-products. This study explores the potential of upcycling dealcoholized pomace, an often-overlooked by-product, into a sustainable platform for innovative bio-based materials. Using a multidisciplinary approach that combines materials science, biotechnology, and principles of the circular economy, we carefully examine the physical, chemical, and mechanical properties of dealcoholized pomace. Our research includes comprehensive analyses of its structural integrity, biodegradability, and potential applications, including biocomposites, eco-friendly packaging solutions, and other sustainable materials. The results of our study highlight not only the promising performance characteristics of dealcoholized pomace, such as its strength-to-weight ratio and biocompatibility, but also underscore its significant role in advancing waste valorization strategies. By effectively transforming waste into valuable resources, we contribute to the development of sustainable materials, thereby supporting a more circular economy within the wine industry and beyond. Full article
Show Figures

Figure 1

13 pages, 1276 KiB  
Article
Evaluation of the Antimicrobial Capacity of a White Grape Marc Extract Through Gastrointestinal Digestion
by Lorena G. Calvo, María Celeiro, Rosa-Antía Villarino, Ana G. Abril, Sandra Sánchez, José Luis R. Rama and Trinidad de Miguel
Appl. Sci. 2025, 15(12), 6390; https://doi.org/10.3390/app15126390 - 6 Jun 2025
Viewed by 453
Abstract
Polyphenols are extensively studied for their antimicrobial and prebiotic properties, but concerns about their stability persist. In order to elucidate the antimicrobial stability of such molecules in the gastrointestinal environment and their potential effect as antimicrobials and microbiota modulators, a white grape marc [...] Read more.
Polyphenols are extensively studied for their antimicrobial and prebiotic properties, but concerns about their stability persist. In order to elucidate the antimicrobial stability of such molecules in the gastrointestinal environment and their potential effect as antimicrobials and microbiota modulators, a white grape marc extract from the variety Albariño has been exposed to simulated digestions. In vitro digestions were performed following the INFOGEST protocol and samples were taken after each digestive phase and submitted to bacterial resazurin viability assays. The results reveal that the extract presents a potential antimicrobial effect against foodborne pathogens, such as Staphylococcus aureus, Listeria monocytogenes, Escherichia coli, and Salmonella enterica, which is enhanced during the intestinal phase. Modulation of the bacterial growth at concentrations below 2% (v/v) of the extract against pathogenic bacteria was observed. Although gastrointestinal digestion reduces the extract’s polyphenolic content, with procyanidin and quercetin-3-glucoside identified as the most unstable compounds, cell viability assays confirmed that its antimicrobial efficacy is maintained. In conclusion, the Albariño marc extract demonstrates a promising microbial modulation capacity, which persists during the digestive process despite variations in the polyphenolic composition. Full article
(This article belongs to the Special Issue Advances in Food Safety and Microbial Control)
Show Figures

Figure 1

17 pages, 2256 KiB  
Article
Evaluation of White Grape Marc Extract as an Additive to Extend the Shelf-Life of Fish Fillets
by María Isabel Sáez, Javier Sabio, Alba Galafat, Antonio Jesús Vizcaíno, Francisco Javier Alarcón-López and Tomás Francisco Martínez Moya
Foods 2025, 14(8), 1438; https://doi.org/10.3390/foods14081438 - 21 Apr 2025
Viewed by 499
Abstract
In this study, an extract of white grape marc (GME), a by-product obtained during the winemaking process, was applied to the surface of gilthead seabream (Sparus aurata) fillets, which were then stored under refrigeration (4 °C) for a period of 14 [...] Read more.
In this study, an extract of white grape marc (GME), a by-product obtained during the winemaking process, was applied to the surface of gilthead seabream (Sparus aurata) fillets, which were then stored under refrigeration (4 °C) for a period of 14 days. The effects of GME were compared with those of ascorbic acid (one of the few additives authorized for fresh fish in the EU) and distilled water (as a control batch). Samples were taken at 1, 2, 4, 7, 9, 11, and 14 days postmortem (dpm) cold storage, and several objective quality parameters were measured (instrumental color, pH, water holding capacity, texture profile analysis—TPA, lipid oxidation, and microbial spoilage). The results showed that the grape extract significantly improved several of the parameters studied, not only compared to the control batch, but even compared to the ascorbic acid batch. Thus, GME slowed down the proliferation of psychrophilic bacteria, prevented the oxidation of muscle lipids, and even improved the firmness of the fillets compared to the other two experimental groups. On the other hand, minor effects on color, pH, or water retention capacity were observed. In the context of the scarcity of approved food additives for fresh fish in the EU and the strong consumer rejection of synthetic substances for this purpose, this grape extract could well represent a viable alternative. In addition to its natural origin, the use of GME as a food additive could also contribute to the valorization of winery by-products as part of a circular bioeconomy strategy. Full article
Show Figures

Figure 1

16 pages, 748 KiB  
Review
Sustainable Valorization of Wine Lees: From Waste to Value-Added Products
by Ancuța Chetrariu, Adriana Dabija, Larisa Caisin, Vitalii Agapii and Ionuț Avrămia
Appl. Sci. 2025, 15(7), 3648; https://doi.org/10.3390/app15073648 - 26 Mar 2025
Cited by 2 | Viewed by 1117
Abstract
After the winemaking process, the residues formed are called wine lees, which represent a mixture of autolyzed yeasts deposited at the bottom of wine-storage tanks. Approximately 2.96 million tons of yeast result from the vinification of 49.4 million tons of grapes. The increased [...] Read more.
After the winemaking process, the residues formed are called wine lees, which represent a mixture of autolyzed yeasts deposited at the bottom of wine-storage tanks. Approximately 2.96 million tons of yeast result from the vinification of 49.4 million tons of grapes. The increased costs of removing these by-products from the wine industry, which is no longer required in the production process, offer us the opportunity to capitalize on various bioactive compounds through the circular economy concept and circular process. Wine lees resulting from the large-scale production of wine represent a raw material for the valorization of phenolic compounds, proteins, and polysaccharides, as well as pigments or organic compounds. The substantial nutrient resources available from wine lees are described extensively in this manuscript and range from vitamins, amino acids, and fatty acids to food supplements, edible packaging, or food products such as bakery products. This review article explores the emerging horizons of winery waste utilization, unveiling the abundance of bioactive compounds and their manifold applications across the industrial realm. Full article
(This article belongs to the Special Issue Extraction and Applications of Bioactive Compounds for Food Products)
Show Figures

Figure 1

28 pages, 2752 KiB  
Article
Insight into the Phenolic Composition of Cabernet Sauvignon Grapevine Berries During Fermentation—Towards the Application of Winery By-Products for Antibacterial Purposes
by Okba Hatem, Anita Seres-Steinbach, György Schneider, Éva Szabó and László Kőrösi
Antibiotics 2025, 14(3), 236; https://doi.org/10.3390/antibiotics14030236 - 25 Feb 2025
Viewed by 941
Abstract
Background: Wine production generates significant amounts of grape marc, which can serve as a potential source of bioactive compounds, including polyphenols. Objectives: In this study, we aimed to investigate the polyphenol content of skin and seeds separated from grape marc, and test their [...] Read more.
Background: Wine production generates significant amounts of grape marc, which can serve as a potential source of bioactive compounds, including polyphenols. Objectives: In this study, we aimed to investigate the polyphenol content of skin and seeds separated from grape marc, and test their extracts against two significant bacteria, Listeria monocytogenes (LM) and Staphylococcus aureus (SA). Methods: A comprehensive analysis of the phenolic composition in the skin, seeds, and juice/wine derived from Cabernet Sauvignon grape berries was conducted over an 18-day fermentation period. High-performance liquid chromatography was performed to identify and quantify the main flavan-3-ols, flavonols, anthocyanins, and stilbenes. In addition, the total phenolic content (TPC) was determined by the Folin–Ciocalteu method. Results: The TPC of both seeds and skins significantly decreased over time. In parallel, the TPC in the wine gradually increased, indicating a release of phenolic compounds into the wine. We found that the TPC in seeds was consistently higher than in the skin at all examined time points. The main flavonoids in seeds were flavan-3-ols (catechin and epicatechin), while anthocyanins (delphinidin-, cyanidin-, petunidin-, peonidin-, and malvidin-3-O-glucoside) were the predominant ones in skins. Crude seed and skin extracts enriched in phenolics were prepared, of which only the crude seed extract was proven effective against LM and SA. Following the time-kill assay, our findings revealed that the minimal bactericidal concentration of the crude seed extract against LM was 5.02 mg/mL after 12 h incubation, demonstrating the eradication of the living bacterial cell number by ~6 log. A 24 h exposure time was required for complete inactivation of SA, but a lower concentration was sufficient (2.54 mg/mL). Conclusions: Grape waste remains a valuable source of polyphenols, with grape seeds, in particular, exhibiting significant antimicrobial activity against certain foodborne pathogens. Full article
Show Figures

Figure 1

12 pages, 3623 KiB  
Article
Ethanol Reduction in Montepulciano Wine: Starmerella bombicola Sequential Fermentation at Pilot Scale Under Aeration Conditions
by Laura Canonico, Silvia Gattucci, Laura Moretti, Alice Agarbati, Francesca Comitini and Maurizio Ciani
Foods 2025, 14(4), 618; https://doi.org/10.3390/foods14040618 - 13 Feb 2025
Cited by 2 | Viewed by 752
Abstract
One of the most relevant challenges in winemaking is the increase in the alcohol content of wine, mainly due to climate change. The use of selected non-Saccharomyces yeasts in sequential fermentation with Saccharomyces cerevisiae is one of the effective strategies for dealing [...] Read more.
One of the most relevant challenges in winemaking is the increase in the alcohol content of wine, mainly due to climate change. The use of selected non-Saccharomyces yeasts in sequential fermentation with Saccharomyces cerevisiae is one of the effective strategies for dealing with this issue, even if it has been poorly confirmed at the winery level. This work evaluated the use of Starmerella bombicola and commercial S. cerevisiae strains in sequential fermentation at pilot scale in winery conditions to reduce the ethanol content and obtain a wine with enhanced aroma complexity. The results showed that the sequential S. bombicola/S. cerevisiae fermentation in aeration conditions (20 mL/L/min for the first three days) resulted in a reduction in ethanol of 0.80% (v/v) compared to pure S. cerevisiae fermentation. The aeration conditions of sequential fermentation did not affect the fermentation performance of yeasts. The winery conditions determined, in the sequential fermentation modalities, an enhancement of wild yeasts’ presence. At the same time, the inoculation of S. bombicola determined an enhancement of glycerol and lactic acid, which positively influences the structure and body of the wine as well as specific aromatic notes. In winery conditions, better control of fermentation is needed to achieve potential ethanol reduction and favorable by-product formation using S. bombicola. Full article
Show Figures

Figure 1

17 pages, 1990 KiB  
Article
Integrated System of Microalgae Photobioreactor and Wine Fermenter: Growth Kinetics for Sustainable CO2 Biocapture
by María Carla Groff, Cecilia Fernández Puchol, Rocío Gil, Lina Paula Pedrozo, Santiago Albareti, Ana Belén Manzanares, Emilia Sánchez and Gustavo Scaglia
Fermentation 2025, 11(2), 58; https://doi.org/10.3390/fermentation11020058 - 28 Jan 2025
Cited by 1 | Viewed by 2084
Abstract
Microalgae possess the remarkable ability to autotrophically grow, utilizing atmospheric carbon dioxide (CO2) for photosynthesis, thereby converting solar energy into chemical energy and releasing oxygen. This capacity makes them an effective tool for mitigating industrial CO2 emissions. Mathematical models are [...] Read more.
Microalgae possess the remarkable ability to autotrophically grow, utilizing atmospheric carbon dioxide (CO2) for photosynthesis, thereby converting solar energy into chemical energy and releasing oxygen. This capacity makes them an effective tool for mitigating industrial CO2 emissions. Mathematical models are crucial for predicting microalgal growth kinetics and thus assessing their potential as industrial CO2 sequestration agents under controlled conditions. This study innovatively evaluated the effect of continuously supplying CO2 from winemaking processes on microalgal cultivation and biomass production, demonstrating a novel approach to both carbon capture and the valorization of a valuable by-product. To analyze microalgal growth kinetics, three mathematical models were employed: Logistic, First Order Plus Dead Time, and Second Order Plus Dead Time. Optimal parameter values for each model were identified using a hybrid search algorithm developed by our research group. First, an integrated microvinification system was established, utilizing two microalgae species, Chlorella spp. (FAUBA-17) and Desmodesmus spinosus (FAUBA-4), in conjunction with yeast fermenters. This system facilitated a comparison of the biomass kinetics of these two microalgae species, selecting Chlorella spp. (FAUBA-17) as the most suitable candidate for subsequent cultivation. A pilot-scale vertical column photobioreactor was then constructed and installed at the Casimiro Wines boutique winery in Angaco, San Juan, Argentina. After 15 days of operation within the photobioreactor, a biomass growth of 1.04 ± 0.05 g/L and 1.07 ± 0.1 g/L was obtained in Photobioreactors 1 and 2, respectively. This novel integrated approach to CO2 capture in the winemaking process is unprecedented. These findings highlight the potential for producing high-value microalgal biomass, promoting the establishment of a local biorefinery and fostering a circular economy and sustainable social development. Full article
(This article belongs to the Special Issue Wine and Beer Fermentation, 2nd Edition)
Show Figures

Figure 1

28 pages, 766 KiB  
Review
Unveiling the Utilization of Grape and Winery By-Products in Cosmetics with Health Promoting Properties
by Olga I. Tsiapali, Efthymia Ayfantopoulou, Athanasia Tzourouni, Anna Ofrydopoulou, Sophia Letsiou and Alexandros Tsoupras
Appl. Sci. 2025, 15(3), 1007; https://doi.org/10.3390/app15031007 - 21 Jan 2025
Cited by 5 | Viewed by 1664
Abstract
Winemaking by-products, such as grape pomace and grape seed oil, provide sustainable and eco-friendly resources for cosmetics and are rich in bioactive compounds like phenolic bioactives, proteins, and lipids (i.e., unsaturated fatty acids, bioactive polar lipids, and carotenoids). These compounds, extracted using advanced [...] Read more.
Winemaking by-products, such as grape pomace and grape seed oil, provide sustainable and eco-friendly resources for cosmetics and are rich in bioactive compounds like phenolic bioactives, proteins, and lipids (i.e., unsaturated fatty acids, bioactive polar lipids, and carotenoids). These compounds, extracted using advanced techniques such as ultrasound, microwave, and enzyme-assisted methods, exhibit antioxidant, antimicrobial, anti-aging, and anti-inflammatory properties. In vitro and in vivo studies on keratinocytes and fibroblasts demonstrate their efficacy in enhancing skin hydration, elasticity, and UV protection while reducing oxidative stress and inflammation through pathways like SIRT1 and HSP47. Encapsulation techniques further improve their stability and bioavailability. The aim of this review is to investigate in detail the advanced techniques for the extraction of bioactive compounds from winemaking by-products and to evaluate their effectiveness in the isolation of phenolic compounds, proteins, and lipids. At the same time, it focuses on the application of the extracted compounds in the cosmetics industry, highlighting their contribution to products with antioxidant, anti-aging, antimicrobial, and anti-inflammatory properties. Finally, special emphasis is given to encapsulation techniques to improve their stability and bioavailability, with the aim of developing innovative and sustainable cosmetic products. Full article
(This article belongs to the Special Issue Bioactive-Based Cosmeceuticals)
Show Figures

Figure 1

22 pages, 1483 KiB  
Article
Valorisation of Winery By-Products: Revealing the Polyphenolic Profile of Grape Stems and Their Inhibitory Effects on Skin Aging-Enzymes for Cosmetic and Pharmaceutical Applications
by Rui Dias-Costa, Concepción Medrano-Padial, Raquel Fernandes, Raúl Domínguez-Perles, Irene Gouvinhas and Ana Novo Barros
Molecules 2024, 29(22), 5437; https://doi.org/10.3390/molecules29225437 - 18 Nov 2024
Cited by 2 | Viewed by 1945
Abstract
Grape (Vitis vinifera L.) stems, a by-product of winemaking, possess significant potential value due to their rich polyphenolic composition, which allows their exploitation for cosmetic and pharmaceutical applications. This presents a promising opportunity for valorisation aimed at developing innovative products with potential [...] Read more.
Grape (Vitis vinifera L.) stems, a by-product of winemaking, possess significant potential value due to their rich polyphenolic composition, which allows their exploitation for cosmetic and pharmaceutical applications. This presents a promising opportunity for valorisation aimed at developing innovative products with potential health-promoting effects. In this study, the polyphenolic profile of extracts from grape stems of seven white grape varieties was determined using spectrophotometric and chromatographic methods, specifically high-performance liquid chromatography coupled with a photodiode array detector and electrospray ionization multi-stage mass spectrometry (HPLC-PDA-ESI-MSn), as well as on their ferric-reducing antioxidant power (FRAP) and radical scavenging capacity, using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS●+) radicals. This study also evaluated the anti-aging activity and skin depigmenting activity of these extracts. These findings revealed a diverse polyphenolic profile, encompassing proanthocyanidins and catechin derivatives (PCDs), phenolic acids, and flavonols. Among the varieties studied, ‘Códega do Larinho’ exhibited the highest concentrations of six distinct polyphenols and the highest total phenolic content. It also demonstrated the highest results for antioxidant capacity and elastase and tyrosinase inhibition. Pearson’s correlation analysis showed a significant positive correlation between certain PCDs with both FRAP and DPPH assays, as well as between the identified flavonols and anti-elastase activity. These results underscore the potential health benefits of grape stem extracts and emphasize the importance of their polyphenolic composition in enhancing antioxidant and anti-aging properties, thus supporting their application in different industries. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

25 pages, 1319 KiB  
Article
Multitarget Phytocomplex: Focus on Antibacterial Profiles of Grape Pomace and Sambucus ebulus L. Lyophilisates Against Extensively Drug-Resistant (XDR) Bacteria and In Vitro Antioxidative Power
by Vladimir S. Kurćubić, Vesna Đurović, Slaviša B. Stajić, Marko Dmitrić, Saša Živković, Luka V. Kurćubić, Pavle Z. Mašković, Jelena Mašković, Milan Mitić, Vladimir Živković and Vladimir Jakovljević
Antibiotics 2024, 13(10), 980; https://doi.org/10.3390/antibiotics13100980 - 17 Oct 2024
Cited by 1 | Viewed by 1759
Abstract
Objectives: This study was conceived with the aim of translating the experience and knowledge of the research group into the design and creation of multi-active phytocomplex cocktails from lyophilised winery by-products (Grape Pomace—GP) and weeds (Sambucus ebulus L., Dwarf Elder—DE). Methods: Quantification [...] Read more.
Objectives: This study was conceived with the aim of translating the experience and knowledge of the research group into the design and creation of multi-active phytocomplex cocktails from lyophilised winery by-products (Grape Pomace—GP) and weeds (Sambucus ebulus L., Dwarf Elder—DE). Methods: Quantification of bioactive molecules was performed by high-performance liquid chromatography (HPLC) method. Results: In the extract obtained from lyophilised GP, the most dominant component that was quantified was petunidin-3-glucoside. Prominent compounds that were quantified in DE extract were cyanidin derivatives. The total number of microorganisms in lyophilisates is low, but some of them still survive lyophilisation. Antibacterial activity was determined by microdilution, the minimum inhibitory concentration (MIC) of the tested bacteria ranged from 0.78 mg/mL to 25.00 mg/mL. Antibacterial susceptibility testing (AST) revealed that Klebsiella spp. and Acinetobacter baumannii complex are extensively drug-resistant (XDR). Conclusions: The GP + DE cocktail showed very strong AB power against both tested XDR bacteria. The total phenolic content and antioxidative effect (determined spectrophotometrically) indicate their linear correlation. Full article
Show Figures

Figure 1

14 pages, 301 KiB  
Article
Growth Performance, Meat Quality, and Lipid Oxidation in Pigs’ Fed Diets Containing Grape Pomace
by Barbara Cristina da Silveira Almeida, Maria do Carmo Mohaupt Marques Ludke, Teresinha Marisa Bertol, Jorge Vitor Ludke, Daniela Miotto Bernardi, Anildo Cunha Jr. and Arlei Coldebella
Appl. Biosci. 2024, 3(3), 378-391; https://doi.org/10.3390/applbiosci3030025 - 31 Aug 2024
Cited by 2 | Viewed by 1617
Abstract
Grape pomace is a winery byproduct that is rich in polyphenols with antioxidant capacity. This study investigated the effect of 0, 5, and 10% inclusion of dehydrated grape pomace (DGP) in finishing pig diets on the growth performance, carcass traits, fatty acid profile, [...] Read more.
Grape pomace is a winery byproduct that is rich in polyphenols with antioxidant capacity. This study investigated the effect of 0, 5, and 10% inclusion of dehydrated grape pomace (DGP) in finishing pig diets on the growth performance, carcass traits, fatty acid profile, fresh meat quality, and fat stability of a local pig genotype. A total of 36 pigs, 18 barrows, and 18 gilts (83.23 ± 6.03 kg and 132.1 ± 5.6 days old) were allotted in a randomized block design considering the initial weight (block) within sex, with six replicates of each sex per treatment. Including DGP in the diets did not affect daily weight gain or the feed-to-gain ratio; however, daily feed intake increased linearly (p < 0.05) and backfat thickness at the last rib, backfat thickness at the first sacral vertebrae, P2 backfat thickness, fat area, and the percentage of lean meat decreased linearly (p < 0.05) in pigs. The inclusion of DGP in pig diets did not affect the antioxidant potential evaluated by thiobarbituric acid-reactive substances in mini hamburgers or the quality characteristics of fresh meat, except for intramuscular fat (EE). The dietary inclusion of DGP linearly increased (p < 0.05) EE, saturated fatty acids, monounsaturated fatty acids, and Σω-3 and reduced the ω-6:ω-3 ratio in a linear way (p < 0.05) in the loin of pigs. We concluded that it is feasible to include up to 10% of DGP in pig diets without affecting growth performance, but carcass quality may be impaired due to increased adiposity. Furthermore, meat quality can be improved by increasing intramuscular fat and ω-3 fatty acid content, but fat stability is not affected when DGP is included at up to 10% of the diet for 49 days prior to slaughter. Full article
(This article belongs to the Special Issue Plant Natural Compounds: From Discovery to Application)
17 pages, 2189 KiB  
Review
Vermicomposting as a Valorization Solution to the Winery Sector By-Products
by Elisabete Nascimento-Gonçalves, Tiago Azevedo, Henda Lopes, João Ricardo Sousa, Paula Alexandra Oliveira, Marta Roboredo, Ana Maria Coimbra and Maria Cristina Morais
Agronomy 2024, 14(6), 1111; https://doi.org/10.3390/agronomy14061111 - 23 May 2024
Cited by 4 | Viewed by 2257
Abstract
Winemaking is one of the most relevant socio-economic activities in the world, particularly in countries such as Portugal, generating substantial amounts of by-products across its various phases. Managing these by-products presents significant environmental, ecological, and economic challenges. Vermicomposting, the use of earthworms to [...] Read more.
Winemaking is one of the most relevant socio-economic activities in the world, particularly in countries such as Portugal, generating substantial amounts of by-products across its various phases. Managing these by-products presents significant environmental, ecological, and economic challenges. Vermicomposting, the use of earthworms to process and transform organic wastes into nutrient-rich end-products, provides a viable alternative for waste management within the wine sector. This bioprocess also produces vermicompost that enhances soil health and fosters optimal conditions for plant growth, thereby promoting resilient and sustainable viticulture practices. This review explores the various by-products produced by the vine and wine industry, highlighting the potential of vermicomposting. Remarkably, grape marc, the primary solid waste of the winemaking process, has been the most commonly vermicomposted material. In contrast, other vineyard and wine cellar by-products have been comparatively underutilized and understudied in this context. However, we hypothesize that all vine and wine industry by-products have vermicomposting potential, allowing for the production of fertilizers and soil amendments. This approach aligns with the principles of the circular economy, ensuring that all materials stemming from viticulture and wine production are valued and reused, thereby contributing to enhanced sustainability and the preservation of resources like soil. Full article
(This article belongs to the Special Issue Agricultural Biomass Waste Conversion into Value-Added Products)
Show Figures

Figure 1

17 pages, 3526 KiB  
Article
Valorization of Winery By-Products as Bio-Fillers for Biopolymer-Based Composites
by Filippo Biagi, Alberto Giubilini, Paolo Veronesi, Giovanni Nigro and Massimo Messori
Polymers 2024, 16(10), 1344; https://doi.org/10.3390/polym16101344 - 9 May 2024
Cited by 9 | Viewed by 1910
Abstract
Grape seeds (GS), wine lees (WL), and grape pomace (GP) are common winery by-products, used as bio-fillers in this research with two distinct biopolymer matrices—poly(butylene adipate-co-terephthalate) (PBAT) and polybutylene succinate (PBS)—to create fully bio-based composite materials. Each composite included at least [...] Read more.
Grape seeds (GS), wine lees (WL), and grape pomace (GP) are common winery by-products, used as bio-fillers in this research with two distinct biopolymer matrices—poly(butylene adipate-co-terephthalate) (PBAT) and polybutylene succinate (PBS)—to create fully bio-based composite materials. Each composite included at least 30 v% bio-filler, with a sample reaching 40 v%, as we sought to determine a composition that could be economically and environmentally effective as a substitute for a pure biopolymer matrix. The compounding process employed a twin-screw extruder followed by an injection molding procedure to fabricate the specimens. An acetylation treatment assessed the specimen’s efficacy in enhancing matrix–bio-filler affinity, particularly for WL and GS. The fabricated bio-composites underwent an accurate characterization, revealing no alteration in thermal properties after compounding with bio-fillers. Moreover, hygroscopic measurements indicated increased water-affinity in bio-composites compared to neat biopolymer, most significantly with GP, which exhibited a 7-fold increase. Both tensile and dynamic mechanical tests demonstrated that bio-fillers not only preserved, but significantly enhanced, the stiffness of the neat biopolymer across all samples. In this regard, the most promising results were achieved with the PBAT and acetylated GS sample, showing a 162% relative increase in Young’s modulus, and the PBS and WL sample, which exhibited the highest absolute values of Young’s modulus and storage modulus, even at high temperatures. These findings underscore the scientific importance of exploring the interaction between bio-fillers derived from winery by-products and three different biopolymer matrices, showcasing their potential for sustainable material development, and advancing polymer science and bio-sourced material processing. From a practical standpoint, the study highlighted the tangible benefits of using by-product bio-fillers, including cost savings, waste reduction, and environmental advantages, thus paving the way for greener and more economically viable material production practices. Full article
(This article belongs to the Special Issue Polymer Composites in Waste Recycling)
Show Figures

Figure 1

19 pages, 291 KiB  
Review
Enhancement of the Nutritional Composition and Antioxidant Activities of Fruit Pomaces and Agro-Industrial Byproducts through Solid-State Fermentation for Livestock Nutrition: A Review
by Olusegun Oyebade Ikusika, Oluwakamisi Festus Akinmoladun and Conference Thando Mpendulo
Fermentation 2024, 10(5), 227; https://doi.org/10.3390/fermentation10050227 - 25 Apr 2024
Cited by 11 | Viewed by 3338
Abstract
The abundance of fruit waste from the food industry and wineries, particularly peels, seeds, and other fruit pomace throughout the year, could lead to health and environmental hazards if not channelled into productive areas. Improving or transforming these waste products for better use [...] Read more.
The abundance of fruit waste from the food industry and wineries, particularly peels, seeds, and other fruit pomace throughout the year, could lead to health and environmental hazards if not channelled into productive areas. Improving or transforming these waste products for better use in other vital sectors could be achieved via solid-state fermentation (SSF) since most waste products are solid. One such productive and important area is the feeding of livestock, which will guarantee millennium food security goals for many nations of the world. The nutritional and antioxidant composition of abundantly available fruit pomace and agro-industrial byproducts could be improved via solid-state fermentation for overall livestock productivity. They contain substantial dietary fibre, protein, and phenolic compounds; hence, improving them via fermentation could serve the livestock industry in dual capacities, including nutraceutical and conventional feedstuff. This review seeks to provide reinforcing evidence on the applicability and impact of fruit pomaces on livestock nutrition. The significant nutrient improvements, beneficial outcomes in feeding trials, and inconsistencies or areas of research gap were also explored. Full article
(This article belongs to the Special Issue In Vitro Fermentation, 3rd Edition)
Back to TopTop