Cu2O Heterojunction Solar Cell with Photovoltaic Properties Enhanced by a Ti Buffer Layer
Abstract
1. Introduction
2. Method
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Y.; Wang, G.; Zhou, Y.; Xie, Q.; Chen, J.; Zheng, K.; Zheng, L.; Pan, J.; Wang, R. Research progress in doped absorber layer of CdTe solar cells. Renew. Sustain. Energy Rev. 2023, 113427. [Google Scholar] [CrossRef]
- Shilpa, G.; Kumar, P.M.; Kumar, D.K.; Deepthi, P.R.; Sadhu, V.; Sukhdev, A.; Kakarla, R.R. Recent advances in the development of high efficiency quantum dot sensitized solar cells (QDSSCs): A review. Mater. Sci. Energy Technol. 2023, 6, 533–546. [Google Scholar] [CrossRef]
- Duan, L.; Walter, D.; Chang, N.; Bullock, J.; Kang, D.; Phang, S.P.; Weber, K.; White, T.; Macdonald, D.; Catchpole, K.; et al. Stability challenges for the commercialization of perovskite–silicon tandem solar cells. Nat. Rev. Mater. 2023, 8, 261–281. [Google Scholar] [CrossRef]
- Khezami, L.; Megbel, A.O.A.; Jemai, A.B.; Rabha, M.B. Theoretical and experimental analysis on effect of porous silicon surface treatment in multicrystalline silicon solar cells. Appl. Surf. Sci. 2015, 353, 106–111. [Google Scholar] [CrossRef]
- Rabha, M.B.; Boujmil, M.F.; Saadoun, M.; Bessaïs, B. The use of chemical vapor etching in multicrystalline silicon solar cells. Eur. Phys. J. -Appl. Phys. 2009, 47, 10301. [Google Scholar] [CrossRef]
- Olsen, L.C.; Bohara, R.C.; Urie, M.W. Explanation for low-efficiency Cu2O Schottky-barrier solar cells. Appl. Phys. Lett. 1979, 34, 47–49. [Google Scholar] [CrossRef]
- Wong, T.K.S.; Zhuk, S.; Masudy-Panah, S.; Dalapati, G.K. Current status and future prospects of copper oxide heterojunction solar cells. Materials 2016, 9, 271. [Google Scholar] [CrossRef]
- Olsen, L.C.; Addis, F.W.; Miller, W. Experimental and theoretical studies of Cu2O solar cells. Sol. Cells 1982, 7, 247–279. [Google Scholar] [CrossRef]
- Bai, B.P. Cu2O solar cells: A review. Sol. Cells 1988, 25, 265–272. [Google Scholar]
- Susman, M.D.; Feldman, Y.; Vaskevich, A.; Rubinstein, I. Chemical Deposition of Cu2O Nanocrystals with Precise Morphology Control. ACS Nano 2014, 8, 162–174. [Google Scholar] [CrossRef]
- Hossain, M.A.; Al-Gaashani, R.; Hamoudi, H.; Marri, M.J.A.; Hussein, I.A.; Belaidi, A.; Merzougui, B.A.; Alharbi, F.H.; Tabet, N. Controlled growth of Cu2O thin films by electrodeposition approach. Mater. Sci. Semicond. Process. 2017, 63, 203–211. [Google Scholar] [CrossRef]
- Wang, G.J.; Weichman, F.L. The temperature dependence of the electrical conductivity and switching phenomena in Cu2O single crystals. Can. J. Phys. 1982, 60, 1648–1655. [Google Scholar] [CrossRef]
- Minami, T.; Miyata, T.; Ihara, K.; Minamino, Y.; Tsukada, S. Effect of ZnO film deposition methods on the photovoltaic properties of ZnO–Cu2O heterojunction devices. Thin Solid Film. 2006, 494, 47–52. [Google Scholar] [CrossRef]
- Wang, L.; Tao, M. Fabrication and Characterization of p-n Homojunctions in Cuprous Oxide by Electrochemical Deposition. Electrochem. Solid-State Lett. 2007, 10, 248–250. [Google Scholar] [CrossRef]
- Pan, L.; Zou, J.J.; Zhang, T.; Wang, S.; Li, Z.; Wang, L.; Zhang, X. Cu2O film via hydrothermal redox approach: Morphology and photocatalytic performance. J. Phys. Chem. C 2014, 118, 16335–16343. [Google Scholar] [CrossRef]
- Yang, Y.; Han, J.; Ning, X.; Cao, W.; Xu, W.; Guo, L. Controllable Morphology and Conductivity of Electrodeposited Cu2O Thin Film: Effect of Surfactants. ACS Appl. Mater. Interfaces 2014, 6, 22534–22543. [Google Scholar] [CrossRef]
- Paracchino, A.; Brauer, J.C.; Moser, J.-E.; Thimsen, E.; Graetzel, M. Synthesis and Characterization of High-Photoactivity Electrodeposited Cu2O Solar Absorber by Photoelectrochemistry and Ultrafast Spectroscopy. J. Phys. Chem. C 2012, 116, 7341–7350. [Google Scholar] [CrossRef]
- Jayatissa, A.H.; Guo, K.; Jayasuriya, A.C. Fabrication of cuprous and cupric oxide thin films by heat treatment. Appl. Surf. Sci. 2009, 255, 9474–9479. [Google Scholar] [CrossRef]
- Zimbovskii, D.S.; Churagulov, B.R. Cu2O and CuO films produced by chemical and anodic oxidation on the surface of copper foil. Inorg. Mater. 2018, 54, 660–666. [Google Scholar] [CrossRef]
- Zimbovskiy, D.S.; Gavrilov, A.I.; Churagulov, B.R. Synthesis of copper oxides films via anodic oxidation of copper foil followed by thermal reduction. IOP Conf. Ser. Mater. Sci. Eng. 2018, 347, 012010. [Google Scholar] [CrossRef]
- Zhu, H.L.; Zhang, J.Y.; Li, C.Z.; Pan, F.; Wang, T.M.; Huang, B.B. Cu2O thin films deposited by reactive direct current magnetron sputtering. Thin Solid Film. 2009, 517, 5700–5704. [Google Scholar] [CrossRef]
- Deuermeier, J.; Gassmann, J.; Brötz, J.; Kleina, A. Reactive magnetron sputtering of Cu2O: Dependence on oxygen pressure and interface formation with indium tin oxide. J. Appl. Phys. 2011, 109, 113704. [Google Scholar] [CrossRef]
- Zhao, W.Y.; Fu, W.Y.; Yang, H.B.; Tian, C.J.; Li, M.H.; Li, Y.Z.; Zhang, L.N.; Sui, Y.M.; Zhou, X.M.; Chen, H.; et al. Electrodeposition of Cu2O films and their photoelectrochemical properties. CrystEngComm 2011, 13, 2871. [Google Scholar] [CrossRef]
- Matsuzaki, K.K.; Nomura, K.; Yanagi, H.; Kamiya, T.; Hirano, M.; Hosono, H. Epitaxial growth of high mobility Cu2O thin films and application to p-channel thin film transistor. Appl. Phys. Lett. 2008, 93, 202107. [Google Scholar] [CrossRef]
- Shibasaki, S.; Honishi, Y.; Nakagawa, N.; Yamazaki, M.; Mizuno, Y.; Nishida, Y.; Sugimoto, K.; Yamamoto, K. Highly transparent Cu2O absorbing layer for thin film solar cells. Appl. Phys. Lett. 2021, 119, 242102. [Google Scholar] [CrossRef]
- Mohra, D.; Benhaliliba, M.; Serin, M.; Khelladi, M.R.; Lahmar, H.; Azizi, A. The investigation of electrodeposited Cu2O/ITO layers by chronocoulometry process: Effect of electrical potential. J. Semicond. 2016, 37, 103001. [Google Scholar] [CrossRef]
- Septina, W.; Ikeda, S.; Khan, M.A.; Hirai, T.; Harada, T.; Matsumura, M.; Peter, L.M. Potentiostatic electrodeposition of cuprous oxide thin films for photovoltaic applications. Electrochim. Acta 2011, 56, 4882–4888. [Google Scholar] [CrossRef]
- Chen, L.C. Review of preparation and optoelectronic characteristics of Cu2O-based solar cells with nanostructure. Mater. Sci. Semicond. Process. 2013, 16, 1172–1185. [Google Scholar] [CrossRef]
- Messaoudi, O.; Assaker, I.B.; Gannouni, M.; Souissi, A.; Makhlouf, H.; Bardaoui, A.; Chtourou, R. Structural, morphological and electrical characteristics of electrodeposited Cu2O: Effect of deposition time. Appl. Surf. Sci. 2016, 366, 383–388. [Google Scholar] [CrossRef]
- Laidoudi, S.; Bioud, A.Y.; Azizi, A.; Schmerber, G.; Bartringer, J.; Barre, S.; Dinia, A. Growth and characterization of electrodeposited Cu2O thin films. Semicond. Sci. Technol. 2013, 28, 115005. [Google Scholar] [CrossRef]
- Hanif, A.S.M.; Azmal, S.A.; Ahmad, M.K.; Mohamad, F. Effect of deposition time on the electrodeposited n-Cu2O thin film. Appl. Mech. Mater. 2015, 773–774, 677–681. [Google Scholar] [CrossRef]
- Kamoun, O.; Gassoumi, A.; Shkir, M.; Gorji, N.E.; Turki-Kamoun, N. Synthesis and Characterization of Highly Photocatalytic Active Ce and Cu Co-Doped Novel Spray Pyrolysis Developed MoO3 Films for Photocatalytic Degradation of Eosin-Y Dye. Coatings 2022, 12, 823. [Google Scholar] [CrossRef]
- Tran, M.H.; Cho, J.Y.; Sinha, S.; Gang, M.G.; Heo, J.Y. Cu2O/ZnO heterojunction thin-film solar cells: The effect of electrodeposition condition and thickness of Cu2O. Thin Solid Film. 2018, 661, 132–136. [Google Scholar] [CrossRef]
- Yang, T.H.; Ding, Y.L.; Li, C.Y.; Yin, N.Q.; Liu, X.L.; Li, P. Potentiostatic and galvanostatic two-step electrodeposition of semiconductor Cu2O films and its photovoltaic application. J. Alloy. Compd. 2017, 727, 14–19. [Google Scholar] [CrossRef]
- Perng, D.C.; Hong, M.H.; Chen, K.H. Enhancement of short-circuit current density in Cu2O/ZnO heterojunction solar cells. J. Alloy. Compd. 2017, 695, 549–554. [Google Scholar] [CrossRef]
- Yanga, Y.Y.; Pritzkera, M.; Li, Y.N. Electrodeposited p-type Cu2O thin films at high pH for all-oxide solar cells with improved performance. Thin Solid Film. 2019, 676, 42–53. [Google Scholar] [CrossRef]
- Kaur, J.; Bethgec, O.; Wibowo, R.A.; Bansal, N.; Bauch, M.; Hamid, R.; Bertagnolli, E.; Dimopoulos, T. All-oxide solar cells based on electrodeposited Cu2O absorber and atomic layer deposited ZnMgO on precious-metal-free electrode. Sol. Energy Mater. Sol. Cells 2017, 161, 449–459. [Google Scholar] [CrossRef]
- Wu, L.L.; Tsui, L.; Swami, N.; Zangar, G. Photoelectrochemical Stability of Electrodeposited Cu2O Films. J. Phys. Chem. C 2010, 114, 11551–11556. [Google Scholar] [CrossRef]
- Kim, H.; Gilmore, C.M.; Piqué, A.; Horwitz, J.S.; Mattoussi, H.; Murata, H.; Kafafi, Z.H.; Chrisey, D.B. Electrical, optical, and structural properties of indium-tin-oxide thin films for organic light-emitting devices. J. Appl. Phys. 1999, 86, 6451–6461. [Google Scholar] [CrossRef]
- Wang, W.; Wu, D.; Zhang, Q.; Wang, L.; Tao, M.J. pH-dependence of conduction type in cuprous oxide synthesized from solution. Appl. Phys. 2010, 107, 123717. [Google Scholar] [CrossRef]
- Pourbaix, M. Atlas of Electrochemical Equilibria in Aqueous Solutions; Pergamon Press Ltd.: New York, NY, USA, 1966. [Google Scholar]
- Shahrestani, S.M. Electro Deposition of Cuprous Oxide for Thin Film Solar Cell Applications. Ph.D. Dissertation, University of Montreal, Montreal, QC, Canada, 2013. [Google Scholar]
- van Zeghbroeck, B. Principles of Semiconductor Devices and Heterojunctions; Prentice Hall: London, UK, 2010. [Google Scholar]
- von Roedern, B.; Bauer, G.H. Proceeding of Material Research Society Spring Meeting, Symposium A—Amorphous and Heterogeneous Silicon Thin Films—Fundamentals to Devices. Mater. Res. Soc. Symp. Proc. 1999, 557, 761. [Google Scholar]
Solar Cell | n | ϕi (V) | VOC (V) | JSC (mA/cm2) | Vm (V) | Jm (mA/cm2) | Pm (mW/cm2) | FF (%) | η (%) |
---|---|---|---|---|---|---|---|---|---|
Cu2O/ITO | 1.21 | 0.74 | 0.26 | 6.6 | 0.13 | 3.43 | 0.45 | 25.8 | 1.78 |
Cu2O/Ti/ITO | 1.64 | 1.01 | 0.37 | 7.14 | 0.18 | 3.53 | 0.64 | 24.2 | 2.54 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, B.; Chen, Z.; Zhao, F. Cu2O Heterojunction Solar Cell with Photovoltaic Properties Enhanced by a Ti Buffer Layer. Sustainability 2023, 15, 10876. https://doi.org/10.3390/su151410876
Wang B, Chen Z, Zhao F. Cu2O Heterojunction Solar Cell with Photovoltaic Properties Enhanced by a Ti Buffer Layer. Sustainability. 2023; 15(14):10876. https://doi.org/10.3390/su151410876
Chicago/Turabian StyleWang, Binghao, Zhiqiang Chen, and Feng Zhao. 2023. "Cu2O Heterojunction Solar Cell with Photovoltaic Properties Enhanced by a Ti Buffer Layer" Sustainability 15, no. 14: 10876. https://doi.org/10.3390/su151410876
APA StyleWang, B., Chen, Z., & Zhao, F. (2023). Cu2O Heterojunction Solar Cell with Photovoltaic Properties Enhanced by a Ti Buffer Layer. Sustainability, 15(14), 10876. https://doi.org/10.3390/su151410876