Agri-Food Industry Waste as Resource of Chemicals: The Role of Membrane Technology in Their Sustainable Recycling
Abstract
:1. Agri-Food Waste Problem
2. Example of Waste Streams from Agri-Food Industries
2.1. Olive Processing Industry
2.2. Wine Industry
2.3. Coffee Industry
2.4. Dairy Industry
3. Conventional Pressure Driven and Advanced Membrane Processes for Agri-Food Streams Valorization
3.1. Pressure Driven Membrane Processes
3.2. Membrane Bioreactors for the Agri-Food Biotransformation
3.3. Membrane Emulsification for Final Products Formulation
4. Case Study: Water Purification and Recovery of Biophenols from Olive Industry Waste
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Caldeira, C.; De Laurentiis, V.; Corrado, S.; van Holsteijn, F.; Sala, S. Quantification of food waste per product group along the food supply chain in the European Union: A mass flow analysis. Res. Cons. Recycl. 2019, 149, 479–488. [Google Scholar] [CrossRef] [PubMed]
- Carmona-Cabello, M.; Garcia, I.L.; Leiva-Candia, D.; Dorado, P. Valorization of food waste based on its composition through the concept of biorefinery. Cur. Opin. Green Sustain. Chem. 2018, 14, 67–79. [Google Scholar] [CrossRef]
- Garnier, C.; Guiga, W.; Lameloise, M.L.; Degrand, L. Toward the reduction of water consumption in the vegetable-processing industry through membrane technology: Case study of a carrot-processing plant. Environ. Sci. Pol. Res. 2020, 27, 42685–42703. [Google Scholar] [CrossRef] [PubMed]
- Esteban, J.; Ladero, M. Food waste as a source of value-added chemicals and materials: A biorefinery perspective. Intern. J. Food Sci. Technol. 2018, 53, 1095–1108. [Google Scholar] [CrossRef]
- Amicarelli, V.; Bux, C. Food waste measurement toward a fair, healthy and environmental-friendly food system: A critical review. Brit. Food J. 2020, 123, 2907–2935. [Google Scholar] [CrossRef]
- Freitas, L.C.; Barbosa, J.R.; da Costa, A.; Bezerra, F.; Pinto, R.; de Carvalho Junior, R.N. From waste to sustainable industry: How can agro-industrial wastes help in the development of new products? Res. Cons. Recycl. 2021, 169, 105466. [Google Scholar] [CrossRef]
- Makanjuola, O.; Arowosola, T.; Du, C. The utilization of food waste: Challenges and opportunities. J. Food Chem. Nanotechnol. 2020, 6, 182–188. [Google Scholar] [CrossRef]
- Mamma, D. Food Wastes: Feedstock for value-added products. Fermentation 2020, 6, 47. [Google Scholar] [CrossRef]
- Rodríguez García, S.L.; Raghavan, V. Green extraction techniques from fruit and vegetable waste to obtain bioactive compounds—A review. Crit. Rev. Food Sci. Nutr. 2021; in press. [Google Scholar] [CrossRef]
- Tsegaye, B.; Jaiswal, S.; Jaiswal, A.K. Food waste biorefinery: Pathway towards circular bioeconomy. Foods 2021, 10, 1174. [Google Scholar] [CrossRef]
- Amicarelli, V.; Lagioia, G.; Bux, C. Global warming potential of food waste through the life cycle assessment: An analytical review. Environ. Impact Assess. Rev. 2021, 91, 106677. [Google Scholar] [CrossRef]
- Squillaci, G.; la Cara, F.; Roseiro, L.B.; Marques, I.P.; Morana, A. Agro-industrial wastes as bioactive molecules source. Chem. Eng. Trans. 2021, 86, 37–42. [Google Scholar]
- Ben-Othman, S.; Jõudu, I.; Bhat, R. Bioactives from agri-food wastes: Present insights and future challenges. Molecules 2020, 25, 510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Socas-Rodríguez, B.; Álvarez-Rivera, G.; Valdés, A.; Ibáñez, E.; Cifuentes, A. Food by-products and food wastes: Are they safe enough for their valorization? Trends Food Sci. Technol. 2021, 114, 133–147. [Google Scholar] [CrossRef]
- Fraga-Corral, M.; Otero, P.; Echave, J.; Garcia-Oliveira, P.; Carpena, M.; Jarboui, A.; Nuñez-Estevez, B.; Simal-Gandara, J.; Prieto, M.A. By-products of agri-food industry as tannin-rich sources: A review of tannins’ biological activities and their potential for valorization. Foods 2021, 10, 137. [Google Scholar] [CrossRef]
- Gullón, P.; Gullón, B.; Astray, G.; Carpena, M.; Fraga-Corral, M.; Prieto, M.A.; Simal-Gandara, J. Valorization of by-products from olive oil industry and added-value applications for innovative functional foods. Food Res. Intern. 2020, 137, 109683. [Google Scholar] [CrossRef]
- Hejna, A. Potential applications of by-products from the coffee industry in polymer technology—Current state and perspectives. Waste Manag. 2021, 121, 296–330. [Google Scholar] [CrossRef]
- Ilyas, T.; Chowdhary, P.; Chaurasia, D.; Gnansounou, E.; Pandey, A.; Chaturvedi, P. Sustainable green processing of grape pomace for the production of value-added products: An overview. Environ. Technol. Innov. 2021, 23, 101592. [Google Scholar] [CrossRef]
- Kovalcik, A.; Obruca, S.; Marova, I. Valorization of spent coffee grounds: A review. Food Bioprod. Process. 2018, 110, 104–119. [Google Scholar] [CrossRef]
- Kumar, H.; Bhardwaj, K.; Sharma, R.; Nepovimova, E.; Kuča, K.; Dhanjal, D.S.; Verma, R.; Bhardwaj, P.; Sharma, S.; Kumar, D. Fruit and Vegetable Peels: Utilization of High Value Horticultural Waste in Novel Industrial Applications. Molecules 2020, 25, 2812. [Google Scholar] [CrossRef]
- Castrica, M.; Rebucci, R.; Giromini, C.; Tretola, M.; Cattaneo, D.; Baldi, A. Total phenolic content and antioxidant capacity of agri-food waste and by-products. Ital. J. Anim. Sci. 2019, 18, 336–341. [Google Scholar] [CrossRef]
- Abbasi-Parizad, P.; De Nisi, P.; Scaglia, B.; Scarafoni, A.; Pilu, S.; Adani, F. Recovery of phenolic compounds from agro-industrial by-products: Evaluating antiradical activities and immunomodulatory properties. Food Bioprod. Process. 2021, 127, 338–348. [Google Scholar] [CrossRef]
- Mármol, I.; Quero, J.; Ibarz, R.; Ferreira-Santos, P.; Teixeira, J.A.; Rocha, C.M.R.; Pérez-Fernández, M.; García-Juiz, S.; Osada, J.; Martín-Belloso, O.; et al. Valorization of agro-food by-products and their potential therapeutic applications. Food Bioprod. Process. 2021, 128, 247–258. [Google Scholar] [CrossRef]
- Papaioannou, E.H.; Mitrouli, S.T.; Patsios, S.I.; Kazakli, M.; Karabelas, A.J. Valorization of pomegranate husk—Integration of extraction with nanofiltration for concentrated polyphenols recovery. J. Environ. Chem. Eng. 2020, 8, 103951. [Google Scholar] [CrossRef]
- Fernando, G.S.N.; Wood, K.; Papaioannou, E.H.; Marshall, L.J.; Sergeeva, N.N.; Bosch, C. Application of an Ultrasound-Assisted Extraction Method to Recover Betalains and Polyphenols from Red Beetroot Waste. ACS Sustain. Chem. Eng. 2021, 9, 8736–8747. [Google Scholar] [CrossRef]
- Papaioannou, E.H.; Karabelas, A.J. Lycopene recovery from tomato peel under mild conditions assisted by enzymatic pre-treatment and non-ionic surfactants. Acta Biochim. Pol. 2012, 59, 71–74. [Google Scholar] [CrossRef] [PubMed]
- Cassano, A.; Conidi, C.; Giorno, L.; Drioli, E. Fractionation of olive mill wastewaters by membrane separation techniques. J. Hazard. Mater. 2013, 248–249, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Nunes, M.A.; Pawlowski, S.; Costa, A.S.G.; Alves, R.C.; Oliveira, M.B.P.P.; Velizarov, S. Valorization of olive pomace by a green integrated approach applying sustainable extraction and membrane–assisted concentration. Sci. Total Environ. 2019, 652, 40–47. [Google Scholar] [CrossRef]
- Sedej, I.; Milczarek, R.; Wang, S.C.; Sheng, R.; Avena–Bustillos, R.J.; Dao, L.; Takeoka, G. Membrane–filtered olive mill wastewater: Quality assessment of the dried phenolic–rich fraction. J. Food Sci. 2016, 81, E889–E896. [Google Scholar] [CrossRef]
- Di Lecce, G.; Cassano, A.; Bendini, A.; Conidi, C.; Giorno, L.; Toschi, G.T. Characterization of olivemill wastewater fractions treatment by integrated membrane process. J. Sci. Food Agric. 2014, 94, 2935–2942. [Google Scholar] [CrossRef]
- El Yamani, M.; Sakar, E.H.; Boussakouran, A.; Ghabbour, N.; Rharrabti, Y. Physicochemical and microbiological characterization of olive mill wastewater (OMW) from different regions of northern Morocco. Environ. Technol. 2020, 41, 3081–3093. [Google Scholar] [CrossRef] [PubMed]
- Dahmen–Ben Moussa, I.; Maalej, A.; Masmoudi, M.A.; Feki, F.; Choura, S.; Baccar, N.; Jelail, L.; Karray, F.; Chamkha, M.; Sayadi, S. Effect of olive mill wastewaters on Scenedesmus sp. growth, metabolism and polyphenols removal. J. Sci. Food Agric. 2021, 101, 5508–5519. [Google Scholar] [CrossRef] [PubMed]
- Dutournié, P.; Jeguirim, M.; Khiari, B.; Goddard, M.-L.; Jellali, S. Olive mill waste water: From a pollutant to green fuels, agricultural water source, and bio–fertilizer. Part 2: Water recovery. Water 2019, 11, 768. [Google Scholar] [CrossRef] [Green Version]
- De Marco, E.; Savarese, M.; Paduano, A.; Sacchi, R. Characterization and fractionation of phenolic compounds extracted from olive oil mill wastewaters. Food Chem. 2007, 104, 858–867. [Google Scholar] [CrossRef]
- Tundis, R.; Conidi, C.; Loizzo, M.R.; Sicari, V.; Romeo, R.; Cassano, A. Concentration of bioactive phenolic compounds in olive mill wastewater by direct contact membrane distillation. Molecules 2021, 26, 1808. [Google Scholar] [CrossRef]
- Patsios, S.I.; Papaioannou, E.H.; Karabelas, A.J. Long-term performance of a membrane bioreactor treating table olive processing wastewater. J. Chem. Technol. Biotechnol. 2016, 91, 2253–2262. [Google Scholar] [CrossRef]
- Xavier Machado, T.D.O.; Portugal, I.B.M.; Padilha, C.V.D.S.; Ferreira Padilha, F.; dos Santos Lima, M. New trends in the use of enzymes for the recovery of polyphenols in grape byproducts. J. Food Biochem. 2021, 45, e13712. [Google Scholar] [CrossRef]
- Acosta–Fernandez, R.; Poerio, T.; Nabarlatz, D.; Giorno, L.; Mazzei, R. Enzymatic hydrolysis of xylan from coffee parchment in membrane bioreactors. Ind. Eng. Chem. Res. 2020, 59, 7346–7354. [Google Scholar] [CrossRef]
- Wen–qiong, W.; Yun–chao, W.; Xiao–feng, Z.; Rui–xia, G.; Mao–lin, L. Whey protein membrane processing methods and membrane fouling mechanism analysis. Food Chem. 2019, 289, 468–481. [Google Scholar] [CrossRef]
- Argenta, A.B.; Scheer, A.D.P. Membrane Separation Processes Applied to Whey: A Review. Food Rev. Int. 2020, 36, 499–528. [Google Scholar] [CrossRef]
- Nazir, A.; Khan, K.; Maan, A.; Zia, R.; Giorno, L.; Schroën, K. Membrane separation technology for the recovery of nutraceuticals from food industrial streams. Trends Food Sci. Technol. 2019, 86, 426–438. [Google Scholar] [CrossRef]
- Cassano, A.; Conidi, C.; Ruby–Figueroa, R.; Castro–Muñoz, R. Nanofiltration and tight ultrafiltration membranes for the recovery of polyphenols from agro–food by–products. Int. J. Mol. Sci. 2018, 19, 351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arboleda Meija, J.A.; Parpinello, G.P.; Versari, A.; Conidi, C.; Cassano, A. Microwave–assisted extraction and membrane–based separation of biophenols from red wine lees. Food Bioprod. Processing 2019, 117, 74–83. [Google Scholar] [CrossRef]
- Macedo, A.; Azedo, D.; Duarte, E.; Pereira, C. Valorization of goat cheese whey through an integrated process of ultrafiltration and nanofiltration. Membranes 2021, 11, 477. [Google Scholar] [CrossRef] [PubMed]
- Bazrafshan, N.; Dadashi Firouzjaei, M.; Elliott, M.; Moradkhani, A.; Rahimpour, A. Preparation and modification of low–fouling ultrafiltration membranes for cheese whey treatment by membrane bioreactor. Case Stud. Chem. Environ. Eng. 2021, 4, 100137. [Google Scholar] [CrossRef]
- O’Halloran, J.; O’Sullivan, M.; Casey, E. Production of whey–derived DPP–IV inhibitory peptides using an enzymatic membrane reactor. Food Bioprocess Technol. 2019, 12, 799–808. [Google Scholar] [CrossRef] [Green Version]
- Pázmándi, M.; Maráz, A.; Ladányi, M.; Kovács, Z. The impact of membrane pretreatment on the enzymatic production of whey–derived galacto–oligosaccharides. J. Food Process Eng. 2018, 41, e12649. [Google Scholar] [CrossRef]
- Syed, U.T.; Brazinha, C.; Crespo, J.G.; Ricardo–da–Silva, J.M. Valorisation of grape pomace: Fractionation of bioactive flavan–3–ols by membrane processing. Sep. Purif. Technol. 2017, 172, 404–414. [Google Scholar] [CrossRef]
- Bazzarelli, F.; Piacentini, E.; Poerio, T.; Mazzei, R.; Cassano, A.; Giorno, L. Advances in membrane operations for water purification and biophenols recovery/valorization from OMWWs. J. Membr. Sci. 2016, 497, 402–409. [Google Scholar] [CrossRef]
- Uyttebroek, M.; Vandezande, P.; Van Dael, M.; Vloemans, S.; Noten, B.; Bongers, B.; Porto–Carrero, W.; Unamunzaga, M.M.; Bulut, M.; Lemmens, B. Concentration of phenolic compounds from apple pomace extracts by nanofiltration at lab and pilot scale with a techno–economic assessment. J. Food Process Eng. 2018, 41, e12629. [Google Scholar] [CrossRef]
- Conidi, C.; Cassano, A.; Garcia–Castello, E. Valorization of artichoke wastewaters by integrated membrane process. Water Res. 2014, 48, 363–374. [Google Scholar] [CrossRef] [PubMed]
- Arshadi, M.; Attard, T.M.; Lukasik, R.M.; Brncic, M.; da Costa Lopes, A.M.; Finell, M.; Geladi, P.; Gerschenson, L.N.; Gogus, F.; Herrero, M.; et al. Pre-treatment and extraction techniques for recovery of added value compounds from wastes throughout the agri-food chain. Green Chem. 2016, 18, 6160–6204. [Google Scholar] [CrossRef] [Green Version]
- Uca, E.; Gulec, H.A. Recovery of phenolic compounds from pomegranate peels by sequential processes of water base extraction and ultrafiltration: Modelling of the process efficiency and fouling analysis. Waste Biomass Valorization 2021, 13, 511–523. [Google Scholar] [CrossRef]
- Conidi, C.; Egea–Corbacho, A.; Cassano, A. A combination of aqueous extraction and polymeric membranes as a sustainable process for the recovery of polyphenols from olive mill solid wastes. Polymers 2019, 11, 1868. [Google Scholar] [CrossRef] [Green Version]
- de Souza, T.S.P.; Kawaguti, H.Y. Cellulases, hemicellulases, and pectinases: Applications in the food and beverage industry. Food Bioprocess Technol. 2021, 14, 1446–1477. [Google Scholar] [CrossRef]
- Vardakas, A.T.; Shikov, V.T.; Dinkova, R.H.; Mihalev, K.M. Optimisation of the enzyme–assisted extraction of polyphenols from saffron (Crocus sativus L.) petals. Acta Sci. Pol. Technol. Aliment. 2021, 20, 359–367. [Google Scholar] [CrossRef]
- Dotsenko, G.; Lange, L. Enzyme enhanced protein recovery from green biomass pulp. Waste Biomass Valorization 2017, 8, 1257–1264. [Google Scholar] [CrossRef] [Green Version]
- Formigoni, M.; Milani, P.G.; Dacome, A.S.; Costa, S.C. Effect of enzymatic pretreatment on the extraction yield of Stevia rebaudiana leaves. Int. Food Res. J. 2018, 25, 1510–1514. [Google Scholar]
- Huda, M.S.; Nahar, N.; Monono, E.; Regmi, S. Oil recovery from fractionated dried distillers grains with solubles (Ddgs) using enzymes. Processes 2021, 9, 1507. [Google Scholar] [CrossRef]
- Rani, H.; Sharma, S.; Bala, M. Technologies for extraction of oil from oilseeds and other plant sources in retrospect and prospects: A review. J. Food Process Eng. 2021, 44, e13851. [Google Scholar] [CrossRef]
- Barcelos, M.C.S.; Ramos, C.L.; Kuddus, M.; Rodriguez–Couto, S.; Srivastava, N.; Ramteke, P.W.; Mishra, P.K.; Molina, G. Enzymatic potential for the valorization of agro–industrial by–products. Biotechnol. Lett. 2020, 42, 1799–1827. [Google Scholar] [CrossRef] [PubMed]
- Chukwuma, O.B.; Rafatullah, M.; Tajarudin, H.A.; Ismail, N. Lignocellulolytic enzymes in biotechnological and industrial processes: A review. Sustainability 2020, 12, 7282. [Google Scholar] [CrossRef]
- Fibriana, F.; Upaichit, A.; Cheirsilp, B. Turning waste into valuable products: Utilization of agroindustrial oily wastes as the low–cost media for microbial lipase production. J. Phys. Conf. Ser. 2021, 1918, 052028. [Google Scholar] [CrossRef]
- Mazzei, R.; Drioli, E.; Giorno, L. Biocatalytic membranes and membrane bioreactors. Comp. Membr. Sci. Eng. 2010, 3, 195–212. [Google Scholar]
- Vitola, G.; Mazzei, R.; Poerio, T.; Barbieri, G.; Fontananova, E.; Büning, D.; Ulbricht, M.; Giorno, L. Influence of lipase immobilization mode on ethyl acetate hydrolysis in a continuous solid–gas biocatalytic membrane reactor. Bioconjug. Chem. 2019, 30, 2238–2246. [Google Scholar] [CrossRef] [PubMed]
- Mazzei, R.; Yihdego Gebreyohannes, A.; Papaioannou, E.; Vankelecom, I.F.J.; Nunes, S.P.; Giorno, L. Enzyme catalysis coupled with artificial membranes towards process intensification in biorefinery—A review. Bioresour. Technol. 2021, 335, 125248. [Google Scholar] [CrossRef]
- Mazzei, R.; Piacentini, E.; Nardi, M.; Poerio, T.; Bazzarelli, F.; Procopio, A.; Luisa Di Gioia, M.; Rizza, P.; Ceraldi, R.; Morelli, C.; et al. Production of plant–derived oleuropein aglycone by a combined membrane process and evaluation of its breast anticancer properties. Front. Bioeng. Biotechnol. 2020, 8, 908. [Google Scholar] [CrossRef] [PubMed]
- Ranieri, G.; Mazzei, R.; Poerio, T.; Bazzarelli, F.; Wu, Z.; Li, K.; Giorno, L. Biorefinery of olive leaves to produce dry oleuropein aglycone: Use of homemade ceramic capillary biocatalytic membranes in a multiphase system. Chem. Eng. Sci. 2018, 185, 149–156. [Google Scholar] [CrossRef] [Green Version]
- Piacentini, E.; Bazzarelli, F.; Poerio, T.; Albisa, A.; Mendoza, G.; Sebastian, V.; Giorno, L. Encapsulation of water–soluble drugs in Poly (vinyl alcohol) (PVA)–microparticles via membrane emulsification: Influence of process and formulation parameters on structural and functional properties. Mater. Today Commun. 2020, 24, 100967. [Google Scholar] [CrossRef]
- Piacentini, E.; Mazzei, R.; Giorno, L. Comparison between lipase performance distributed at the o/w interface by membrane emulsification and by mechanical stirring. Membranes 2021, 11, 137. [Google Scholar] [CrossRef]
- Stiller, A.; Garrison, K.; Gurdyumov, K.; Kenner, J.; Yasmin, F.; Yates, P.; Song, B.-H. From fighting critters to saving lives: Polyphenols in plant defense and human health. Int. J. Mol. Sci. 2021, 22, 8995. [Google Scholar] [CrossRef] [PubMed]
- Halalsheh, M.; Kassab, G.; Shatanawi, K. Impact of legislation on olive mill wastewater management: Jordan as a case study. Water Policy 2021, 23, 343–357. [Google Scholar] [CrossRef]
- Baena–Moreno, F.M.; le Sache, E.; Pastor–Perez, L.; Reina, T.R. Membrane–based technologies for biogas upgrading: A review. Environ. Chem. Lett. 2020, 18, 1649–1658. [Google Scholar] [CrossRef]
Process | Separation Concept in Cross-Flow Configuration | Driving Force (Trans Membrane Pressure Difference, kPa) | MWCO (kDa) | Main Separation Mechanism |
---|---|---|---|---|
Microfiltration (MF) | 100–500 | - | Size exclusion | |
Ultrafiltration (UF) | 100–800 | 1–650 | Size exclusion, macromolecular shape | |
Nanofiltration (NF) | 300–3000 | 0.2–1 | Size exclusion/steric hindrance and Donnan exclusion | |
Reverse Osmosis (RO) | 1000–10,000 | <0.1 | Solution diffusion mechanism |
Agri-Food Waste | Membrane Process a | Membrane | Average Target Compound Feed Concentration (mg/L) | Average Final Retentate Concentration (mg/L) | Rejection (Rj) Recovery (R) or Conversion (C) (%) | Ref. | |||
---|---|---|---|---|---|---|---|---|---|
Commercial name | Material b | Type c | Pore size (μm) or MWCO (kDa) | ||||||
Olive pomace | Two NF and a RO | NF: NF90, NF270 RO: BW30 | n.a. d | FS | n.a. | 110 | NF90: 1064 | NF90: 99.86 | [28] |
NF270: 1069 | NF270:99.25 | ||||||||
BW30: 1234 | BW30:99.93 | ||||||||
3-Phase OMWWs | A sequence of a MF followed by a NF step | MF: MP 020 TP-2N | MF: PP | MF: TB | MF: 0.2 μm | MF:1774 mg/kg | MF:1500 mg/kg | MF: n.a. | [30] |
NF: NF90 | NF: PA TF COM | NF: SW | NF: 0.2 | NF: 1446 mg/kg | NF: 6615 mg/kg | NF: >98 | |||
Acidified at pH 2.6 and prefiltered with nylon filter 3-Phase OMWWs | DCMD | n.a. | PVDF | FS | 0.22 µm | 513 | 2770 | n.a. | [34] |
TOPW | MBR | n.a. | Hydrophilized PVDF | HF | 0.04 μm | 525 | 131 | 75 | [36] |
Coffee parchment | MBR | n.a. | RCA | FS | 10 | 1000 | n.a. | 97 | [37] |
Red wine lees | A sequence of MF, UF and two NF | MF: FSM0 15PP | MF: PVDF | FS | MF: 0.15 μm | MF: 933.2 | MF: 4662.5 | MF: n.a. | [43] |
UF: Etna 01PP | UF: Composite fluoro polymer | UF: 1 | UF: n.a. | UF: 8 | |||||
NF: NFT50 and Desal DK | NF: Aromatic/aliphatic PA and Cross-linked aromatic PA | NF: 0.15–0.3 | NF:n.a. | NF: 40–58 | |||||
Goat Cheese Whey | UF and NF | UF: RC70PP, | UF: RCA, | FS | n.a. | n.a. | n.a. | n.a. | [44] |
ETNA01PP | Composite fluoropolymer | ||||||||
NF: NFT50 | NF: Aromatic PA | ||||||||
Whey | MBR | n.a. | PS and MOF-PS | FS | n.a. | 73,000 | n.a. | 98 | [45] |
Whey protein isolate | EMR | n.a. | PES | FS | 3 | n.a. | n.a. | 7.2–8.7 | [46] |
Whey | UF and NF | UF: SM | UF: PES | UF: SW | UF: 20 | UF: 14,000 | UF: 44,800 | n.a. | [47] |
NF: DK | NF: n.a. | NF: SW | NF: 0.15–0.3 | NF:106,000 | NF:331,500 | ||||
Dried grape pomace | A sequence of UF, NF and RO | UF: Nadir UP 005 | UF: PES on PE/PP | FS | UF: 5 | n.a. | n.a. | 51–99% | [48] |
NF: Solsep NF010306, Duramem 500 and Duramem 900 | NF: n.a. and for the last two Modified polyimide | NF: 0.5–1 | |||||||
RO: SW30HR | RO: Polyamide thin film composite | RO: n.a. | |||||||
3-Phase OMWWs | A sequence of a MF by a NF (three membranes evaluated), an OD and a ME step | MF: Isoflux | MF: TiO2 | MF: TB | MF: 0.14 µm | MF: 1728 | MF: 1728 | MF: 6.8 | [49] |
NF: n.a.; DL1812, NF90 | NF: TiO2, Cross-linked aromatic PA, PA thin-film composite | NF: TB, SW, SW | NF: n.a.; 0.15–0.3, 0.2 | NF: 1609 | NF: 12,500 | NF: 98 | |||
OD: Liqui-Cells Extra-Flow | OD: PP | OD: HF | OD: n.a. | OD: 12,500 | OD: 87,500 | OD: n.a. | |||
ME: Shirasu porous glass | ME: Al2O3 SiO2 glass | ME: TB | ME: n.a. | ME: 87,500 | ME: n.a. | ME: 90 | |||
Apple pomace extracts | Evaluated 7 NF membranes and select one for pilot testing | NFX | PA based | SW | 0.15–0.3 | 59.5 | 1256 | 97–98 | [50] |
Artichoke wastewaters | UF and two NF membranes | UF: DCQ III-006C | UF: PS | UF: HF | UF: 50 | UF: 251 | UF: 251 | UF: 1.2–8.6 | [51] |
NF: NP030, Desal DL | NF: PES, Cross-linked Aromatic PA | NF: SW | NF: 0.4, 0.15–0.3 | NF: 240 | NF: 700 | NF: 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papaioannou, E.H.; Mazzei, R.; Bazzarelli, F.; Piacentini, E.; Giannakopoulos, V.; Roberts, M.R.; Giorno, L. Agri-Food Industry Waste as Resource of Chemicals: The Role of Membrane Technology in Their Sustainable Recycling. Sustainability 2022, 14, 1483. https://doi.org/10.3390/su14031483
Papaioannou EH, Mazzei R, Bazzarelli F, Piacentini E, Giannakopoulos V, Roberts MR, Giorno L. Agri-Food Industry Waste as Resource of Chemicals: The Role of Membrane Technology in Their Sustainable Recycling. Sustainability. 2022; 14(3):1483. https://doi.org/10.3390/su14031483
Chicago/Turabian StylePapaioannou, Emmanouil H., Rosalinda Mazzei, Fabio Bazzarelli, Emma Piacentini, Vasileios Giannakopoulos, Michael R. Roberts, and Lidietta Giorno. 2022. "Agri-Food Industry Waste as Resource of Chemicals: The Role of Membrane Technology in Their Sustainable Recycling" Sustainability 14, no. 3: 1483. https://doi.org/10.3390/su14031483
APA StylePapaioannou, E. H., Mazzei, R., Bazzarelli, F., Piacentini, E., Giannakopoulos, V., Roberts, M. R., & Giorno, L. (2022). Agri-Food Industry Waste as Resource of Chemicals: The Role of Membrane Technology in Their Sustainable Recycling. Sustainability, 14(3), 1483. https://doi.org/10.3390/su14031483