Integrated Nutrient Management Improves the Productivity and Nutrient Use Efficiency of Lens culinaris Medik.
Abstract
:1. Introduction
2. Material and Methods
2.1. Experimental Site
2.2. Climate and Weather
2.3. Treatment Details and Layout
2.4. Soil Sampling and Analysis
2.5. Plant Sampling and Analysis
2.6. Crop Management
2.7. Statistical Analysis
3. Results
3.1. Crop Yield
3.2. Nutrient Use Efficiencies
3.2.1. Agronomic Efficiency
3.2.2. Partial Factor Productivity
3.2.3. Partial Nutrient Balance
3.2.4. Internal Utilization Efficiency
3.2.5. Physiological Efficiency
4. Discussion
4.1. Cultivars
4.1.1. Crop Yield
4.1.2. Nutrient Use Efficiencies
4.2. Nutrient Management
4.2.1. Crop Yield
4.2.2. Agronomic Efficiency
4.2.3. Partial Factor Productivity
4.2.4. Partial Nutrient Balance
4.2.5. Internal Utilization Efficiency
4.2.6. Physiological Efficiency
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Particulars | Mean Value |
---|---|
A. Mechanical composition | |
Sand (%) | 72.5 |
Silt (%) | 22.0 |
Clay (%) | 5.5 |
Soil texture | Sandy loam |
B. Chemical properties | |
pH (1:2 soil: water) | 8.20 |
Electrical conductivity (dS m−1) (1:2 soil: water) | 0.52 |
Organic carbon (%) | 0.42 |
Available N (kg ha−1) | 137 |
Available P2O5 (kg ha−1) | 14.6 |
Available K2O (kg ha−1) | 416 |
DTPA-extractable Zn (mg kg−1) | 0.70 |
DTPA-extractable Fe (mg kg−1) | 6.81 |
References
- FAOSTAT. Food and Agriculture Organization Corporate Statistical Database. 2021. Available online: http://www.fao.org/faostat/en/#data/RFN (accessed on 12 September 2021).
- Singh, G.; Virk, H.K.; Khanna, V. Integrated nutrient management for high productivity and net returns in lentil (Lens culinaris). J. Nat. Appl. Sci. 2017, 9, 1566–1572. [Google Scholar] [CrossRef] [Green Version]
- Hirel, B.; Le Gouis, J.; Ney, B.; Gallais, A. The challenge of improving nitrogen use efficiency in crop plants: Towards a more central role for genetic variability and quantitative genetics within integrated approaches. J. Exp. Bot. 2007, 58, 2369–2387. [Google Scholar] [CrossRef] [PubMed]
- Meena, S.K.; Meena, V.S. Importance of soil microbes in nutrient use efficiency and sustainable food production. In Agriculturally Important Microbes for Sustainable Agriculture; Springer: Singapore, 2017; pp. 3–23. [Google Scholar]
- Fageria, N.K. Yield and yield components and phosphorus use efficiency of lowland rice genotypes. J. Plant Nutr. 2014, 37, 979–989. [Google Scholar] [CrossRef]
- Jakhar, S.R.; Kumar, S.; Jangir, C.K.; Meena, R.S. The role of mycorrhizal relationship in a sustainable manner towards plant growth and soil fertility. Indian J. Agric. Allied Sci. 2017, 3, 19–24. [Google Scholar]
- Meena, R.S.; Kumar, S.; Yadav, G.S. Soil carbon sequestration in crop production. In Nutrient Dynamics for Sustainable Crop Production; Meena, R.S., Ed.; Springer: Singapore, 2020. [Google Scholar] [CrossRef]
- Kumar, R.; Sharma, P.; Gupta, R.K.; Kumar, S.; Sharma, M.M.M.; Singh, S.; Pradhan, G. Earthworms for eco-friendly resource-efficient agriculture. In Resources Use Efficiency in Agriculture; Kumar, S., Meena, R.S., Jhariya, M.K., Eds.; Springer: Singapore, 2020. [Google Scholar] [CrossRef]
- Dobermann, A. Nutrient use efficiency—Measurement and management. In Proceedings of the IFA International Workshop on Fertilizer Best Management Practices, Brussels, Belgium, 7–9 March 2007; pp. 1–28. [Google Scholar]
- Olayide, O.E.; Obisesan, D.; Nitturkar, H.; Adesida, A.; Alegieunu, B.; Obisesan, O. Cassava seed premiership, determinants of varietal adoption, profitability, and women empowerment in Nigeria. Resour. Environ. Sustain. 2021, 6, 100041. [Google Scholar]
- Apori, S.O.; Byalebeka, J.; Murongo, M.; Ssekandi, J.; Noel, G.L. Effect of co-applied corncob biochar with farmyard manure and NPK fertilizer on tropical soil. Resour. Environ. Sustain. 2021, 5, 100034. [Google Scholar] [CrossRef]
- Nielsen, S.; Joseph, S.; Ye, J.; Chia, C.; Munroe, P.; van Zwieten, L.; Thomas, T. Crop-season and residual effects of sequentially applied mineral enhanced biochar and N fertiliser on crop yield, soil chemistry and microbial communities. Agric. Ecosyst. Environ. 2018, 255, 52–61. [Google Scholar] [CrossRef]
- Rani, K.; Sharma, P.; Kumar, S.; Wati, L.; Kumar, R.; Gurjar, D.S.; Kumar, D.; Kumar, R. Legumes for sustainable soil and crop management. In Sustainable Management of Soil and Environment; Meena, R., Kumar, S., Bohra, J., Jat, M., Eds.; Springer: Singapore, 2019. [Google Scholar] [CrossRef]
- Hirsch, A.M.; Lum, M.R.; Downie, J.A. What makes the rhizobia-legume symbiosis so species? Plant Physiol. 2001, 127, 1484–1492. [Google Scholar] [CrossRef]
- Sheoran, S.; Kumar, S.; Kumar, P.; Meena, R.S.; Rakshit, S. Nitrogen fixation in maize: Breeding opportunities. Theor. Appl. Genet. 2021, 134, 1263–1280. [Google Scholar] [CrossRef]
- Roy, O.; Meena, R.S.; Kumar, S.; Jhariya, M.K.; Pradhan, G. Assessment of land use systems for CO2 sequestration, carbon credit potential, and income security in Vindhyan Region, India. Land Degrad. Dev. 2021, 1–13. [Google Scholar] [CrossRef]
- Richards, L.A. Diagnosis and Improvement in Saline, Alkali Soils; Handbook No. 60; USDA: Washington, DC, USA, 1954.
- Walkley, A.J.; Black, C.A. Estimation of soil organic carbon by the chronic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Subbiah, B.V.; Asija, G.L. A rapid procedure for the estimation of available nitrogen in soils. Curr. Sci. 1956, 25, 259–260. [Google Scholar]
- Olsen, S.R.; Cole, C.V.; Watanabe, F.S.; Dean, L.A. Estimation of Available Phosphorous in Soils by Extraction with Sodium Bicarbonate; Circular US Department of Agriculture: Washingotn, DC, USA, 1954; Volume 939.
- Lindsay, W.L.; Norvell, W.A. Development of a DTPA soil test for zinc, iron, manganese and copper. Soil Sci. Soc. Am. J. 1978, 42, 421–448. [Google Scholar] [CrossRef]
- Jackson, M.L. Soil Chemical Analysis; Prentice Hall of India Pvt. Ltd.: New Delhi, India, 1973. [Google Scholar]
- Akbar, N.; Jabran, K.; Ali, M.A. Weed management improves yield and quality of direct-seeded rice. Aust. J. Crop. Sci. 2011, 5, 688–694. [Google Scholar]
- McCullough, B.D.; Wilson, B. On the accuracy of statistical procedures in Microsoft Excel 2003. Comput Stat. Data Anal. 2005, 49, 1244–1252. [Google Scholar] [CrossRef]
- Gomez, K.A.; Gomez, A.A. Statistical Procedures for Agricultural Research, 2nd ed.; John Wiley and Sons: New York, NY, USA, 1984; 680p. [Google Scholar]
- Draper, N.R.; Smith, H. Applied Regression Analysis, 3rd ed.; Wiley: New York, NY, USA, 1998. [Google Scholar]
- Meena, R.S.; Kumar, S.; Bohra, J.S.; Lal, R.; Yadav, G.S.; Pandey, A. Response of alley cropping-grown sesame to lime and sulphur on yield and available nutrient status in an acidic soil of Eastern India. Energy Ecol. Envion. 2019, 4, 65–74. [Google Scholar] [CrossRef]
- Poorter, H.; Lambers, H.; Evans, J.R. Trait correlation networks: A whole-plant perspective on the recently criticized leaf economic spectrum. New Phytol. 2014, 201, 378–382. [Google Scholar] [CrossRef]
- Good, A.G.; Shrawat, A.K.; Muench, D.G. Can less yield more? Is reducing nutrient input into the environment compatible with maintaining crop production? Trends Plant Sci. 2004, 9, 597–605. [Google Scholar] [CrossRef]
- Ingestad, T. Nitrogen stress in birch seedlings. II. N, K, P, Ca and Mg nutrition. Physiol. Plant 1979, 45, 149–157. [Google Scholar] [CrossRef]
- Ingestad, T.; Agren, G.I. Nutrient uptake and allocation at steady-state nutrition. Physiol. Plant 1988, 72, 450–459. [Google Scholar] [CrossRef]
- Abbasi, M.K.; Tahir, M.M. Economizing nitrogen fertilizer in wheat through combinations with organic manures in Kashmir, Pakistan. Agron. J. 2012, 104, 169–177. [Google Scholar] [CrossRef]
- Kumar, S. Effect of Nutrient Management on Yield and Quality of Lentil (Lens culinaris Medik.) Cultivars. Ph.D. Thesis, Department of Agronomy, Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana, India, 2019. [Google Scholar]
- Zike, T.; Abera, T.; Hamza, I. Response of improved lentil (Lens culinaris Medik) varieties to phosphorus nutrition on vertisols of West Showa, Central Highlands of Ethiopia. Adv. Crop. Sci Tech. 2017, 5, 315. [Google Scholar] [CrossRef]
- Iliger, M.D.; Alagundagi, S.C. Response of lentil (Lens culinaris Medik.) genotypes to seed rate and fertilizer levels under protective irrigation. J. Agric. Sci. 2017, 30, 181–184. [Google Scholar]
- Biswas, U.; Mandi, G.; Bandyopadhyay, S.; Saren, B.K.; Murmu, K. Effect of varietal performance on growth attributes and yields of lentil varieties under red and lateritic soil of West Bengal. J. Nat. Appl. Sci. 2018, 10, 133–137. [Google Scholar] [CrossRef] [Green Version]
- Montemurro, F.; Diacono, M. Towards a better understanding of agronomic efficiency of nitrogen: Assessment and improvment strategies. Agronomy 2016, 6, 31. [Google Scholar] [CrossRef]
- Fageria, N.K.; Baligar, V.C.; Moreira, A.; Portes, T.A. Dry bean genotypes evaluation for growth, yield components and phosphorus use efficiency. J. Plant Nutr. 2010, 33, 2167–2181. [Google Scholar] [CrossRef]
- Baligar, V.C.; Fageria, N.K.; He, Z.L. Nutrient use efficiency in plants. Commun. Soil Sci. Plant Anal. 2001, 32, 921–950. [Google Scholar] [CrossRef]
- Tsay, Y.F.; Fan, S.C.; Chen, H.Y.; Chen, K.E. Method for Changing Nitrogen Utilization Efficiency in Plants. U.S. Patent Application No. 14/067,317, 30 October 2013. [Google Scholar]
- Girondé, A.; Etienne, P.; Trouverie, J.; Bouchereau, A.; Le Cahérec, F.; Leport, L.; Orsel, M.; Niogret, M.F.; Nesi, N.; Carole, D.; et al. The contrasting N management of two oilseed rape genotypes reveals the mechanisms of proteolysis associated with leaf N remobilization and the respective contributions of leaves and stems to N storage and remobilization during seed filling. BMC Plant Biol. 2015, 15, 59. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, R.; Stransky, H.; Koch, W. The amino acid permease AAP8 is important for early seed development in Arabidopsis thaliana. Planta 2007, 226, 805–813. [Google Scholar] [CrossRef]
- Zhang, L.; Garneau, M.G.; Majumdar, R.; Grant, J.; Tegeder, M. Improvement of pea biomass and seed productivity by simultaneous increase of phloem and embryo loading with amino acids. Plant J. 2015, 81, 134–146. [Google Scholar] [CrossRef]
- Santiago, J.P.; Tegeder, M. Connecting source with sink: The role of Arabidopsis AAP8 in phloem loading of amino acids. Plant Physiol. 2016, 171, 508–521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rengel, Z.; Graham, R.D. Wheat genotypes differ in Zn efficiency when grown in the chelate-buffered nutrient solution: I Growth. Plant Soil. 1995, 176, 307–316. [Google Scholar] [CrossRef]
- Hacisalihoglu, G.; Kochian, L.V. How do some plants tolerate low levels of soil zinc? Mechanisms of zinc efficiency in crop plants. New Phytol. 2003, 159, 341–350. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, N.; Ram, H. Effect of nutrients and weed management on productivity of lentil (Lens culinaris L.). J. Crop. Weed 2011, 7, 191–194. [Google Scholar]
- Niri, H.H.; Tobeh, A.; Gholipouri, A.; Zakaria, R.S.; Mostafaei, H.; Somarin, S.H. Effect of nitrogen and phosphorous on yield and protein content of lentil in dryland condition. Am. Eurasian. J. Agric. Environ. Sci. 2010, 8, 185–188. [Google Scholar]
- Singh, D.; Singh, R.P. Effect of integrated nutrient management on growth, physiological parameters and productivity of lentil (Lens culinaris Medik.). Int. J. Agric. Sci. 2014, 10, 175–178. [Google Scholar]
- Asai, H.; Samson, B.K.; Stephan, H.M.; Songyikhangsuthor, K.; Homma, K.; Kiyono, Y.; Inoue, Y.; Shiraiwa, T.; Horie, T. Biochar amendment techniques for upland rice production in Northern Laos: 1. Soil physical properties, leaf SPAD and grain yield. Field Crops Res. 2009, 111, 81–84. [Google Scholar] [CrossRef]
- Fageria, N.K.; Baligar, V.C. Enhancing nitrogen use efficiency in crop plants. Adv. Agron. 2005, 88, 97–185. [Google Scholar] [CrossRef]
- Jeyabal, A.; Palaniappan, S.P.; Chelliah, S. Evaluation of integrated nutrient management techniques in rice. Oryza 1999, 36, 263–265. [Google Scholar]
- Singh, G.; Wade, L.J.; Singh, R.K.; Nayak, R.; Singh, B.B.; Singh, O.N. Nutrient management for rainfed lowland rice and its effect on succeeding lentil crop. Oryza 2001, 38, 123–126. [Google Scholar]
- Zhao, C.; Lv, X.; Li, Y.; Li, F.; Geng, M.; Mi, Y.; Ni, Z.; Wang, X.; Xie, C.; Sun, Q. Haynaldia villosa NAM-V1 is linked with the powdery mildew resistance gene Pm21 and contributes to increasing grain protein content in wheat. BMC Genet. 2016, 17, 82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dass, A.; Sudhishri, S.; Lenka, N.K. Integrated nutrient management for upland rice in Eastern Ghats of Orissa. Oryza 2009, 46, 220–226. [Google Scholar]
- Haile, D.; Nigussie, D.; Ayana, A. Nitrogen use efficiency of bread wheat: Effects of nitrogen rate and time of application. J. Soil Sci. Plant Nutr. 2012, 12, 389–410. [Google Scholar]
- Mondal, S.; Singh, R.; Crossa, J.; Huerta-Espino, J.; Sharma, I.; Chatrath, R.; Singh, G.; Sohu, V.; Mavi, G.; Sukuru, V. Earliness in wheat: A key to adaptation under terminal and continual high temperature stress in South Asia. Field Crops Res. 2016, 151, 19–26. [Google Scholar] [CrossRef]
- Banik, P.; Sharma, R.C. Effect of organic and inorganic sources of nutrients on the winter crops-rice based cropping systems in sub-humid tropics of India. Arch. Agron. Soil Sci. 2009, 55, 285–294. [Google Scholar] [CrossRef]
- Cassman, K.G.; DeDatta, S.K.; Amarante, S.T.; Liboon, S.P.; Samson, M.I.; Dizon, M.A. Long-term comparison of the agronomic efficiency and residual benefits of organic and inorganic nitrogen sources for tropical lowland rice. Exp. Agric. 1996, 32, 427–444. [Google Scholar] [CrossRef]
- Snyder, C.S.; Bruulsema, T.W. Nutrient Use Efficiency and Effectiveness in North America: Indices of Agronomic and Environmental Benefit; International Plant Nutrition Institute: Norcross, GA, USA, 2007; p. 07076. [Google Scholar]
- Fixen, P.E.; Bruulsema, T.W.; Tom, L.J.; Mikkelsen, R.; Murrell, T.S.; Phillips, S.B.; Rund, Q.; Stewart, W.M. The fertility of North American soils. Better Crop. Plant Food 2010, 94, 6–8. [Google Scholar]
- Jiang, L.G.; Dai, T.B.; Jiang, D.; Cao, W.X.; Gan, X.Q.; Wei, S.Q. Characterizing physiological N-use efficiency as influenced by nitrogen management in three rice cultivars. Field Crops Res. 2004, 88, 239–250. [Google Scholar] [CrossRef]
- Belete, F.; Dechassa, N.; Molla, A.; Tana, T. Effect of nitrogen fertilizer rates on grain yield and nitrogen uptake and use efficiency of bread wheat (Triticum aestivum L.) varieties on the Vertisols of central highlands of Ethiopia. Agric. Food Secur. 2018, 7, 78. [Google Scholar] [CrossRef]
- Peng, S.B.; Huang, J.L.; Zhong, X.H. Challenge and opportunity in improving fertilizer-nitrogen use efficiency of irrigated rice in China. Agric. Sci. China 2002, 1, 776–785. [Google Scholar]
- Xie, W.X.; Wang, G.H.; Zhang, Q.C.; Guo, H.C. Effects of nitrogen fertilization strategies on nitrogen use efficiency in physiology, recovery, and agronomy and redistribution of dry matter accumulation and nitrogen accumulation in two typical rice cultivars in Zhejiang, China. J. Zhejiang Univ. Sci. B 2007, 8, 208–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Months | Temperature Max. (°C) | Temperature Min. (°C) | Bright Sunshine (h) | Total Rainfall (mm) | Total Evaporation (mm) | Relative Humidity (Morning) (%) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2016 | 2017 | 2016 | 2017 | 2016 | 2017 | 2016 | 2017 | 2016 | 2017 | 2016 | 2017 | |
June | 39.6 | 37.2 | 27.7 | 25.6 | 7.8 | 7.3 | 91.0 | 283.8 | 212.6 | 197.0 | 71 | 77 |
July | 35.0 | 35.1 | 26.2 | 27.0 | 5.9 | 6.8 | 244.8 | 83.0 | 132.1 | 151.7 | 90 | 88 |
August | 34.0 | 34.7 | 25.7 | 26.3 | 6.0 | 6.3 | 80.4 | 95.5 | 130.8 | 131.2 | 90 | 90 |
September | 35.2 | 34.9 | 24.2 | 23.5 | 8.8 | 6.8 | 2.8 | 56.6 | 142.6 | 124.7 | 87 | 87 |
October | 34.6 | 35.0 | 18.5 | 17.2 | 7.8 | 6.6 | 12.0 | 0.0 | 121.1 | 111.6 | 85 | 85 |
November | 29.3 | 27.2 | 10.6 | 10.8 | 5.8 | 3.4 | 0.0 | 0.0 | 59.0 | 85.4 | 92 | 90 |
December | 24.4 | 21.7 | 7.4 | 6.1 | 6.3 | 5.2 | 0.0 | 3.8 | 38.9 | 39.0 | 97 | 91 |
2017 | 2018 | 2017 | 2018 | 2017 | 2018 | 2017 | 2018 | 2017 | 2018 | 2017 | 2018 | |
January | 18.6 | 20.3 | 6.9 | 4.8 | 4.1 | 5.4 | 41.2 | 10.9 | 35.3 | 38.5 | 99 | 96 |
February | 24.3 | 24.5 | 7.8 | 7.9 | 7.7 | 6.7 | 0.0 | 1.2 | 57.5 | 56.8 | 92 | 91 |
March | 29.0 | 30.9 | 11.3 | 12.2 | 8.6 | 6.9 | 2.9 | 0.0 | 110.2 | 113.0 | 90 | 82 |
April | 38.6 | 36.6 | 19.1 | 19.6 | 8.7 | 7.3 | 3.1 | 14.0 | 218.1 | 192.1 | 57 | 60 |
May | 36.0 | 36.8 | 17.5 | 17.2 | 8.1 | 7.2 | 2.3 | 4.5 | 232.2 | 221.3 | 52 | 54 |
Cropping cycle | 27.4 | 26.9 | 10.5 | 10.2 | 6.9 | 5.8 | 47.2 | 29.9 | 519 | 524.8 | 92 | 90 |
Treatment | N | P | K | Zn | Fe | NPK |
---|---|---|---|---|---|---|
N1 | - | - | - | - | - | - |
N2 | 20.0 | 40.0 | - | - | - | 60.0 |
N3 | 23.0 | 11.0 | 21.6 | 1.2 | 7.6 | 55.6 |
N4 | 21.5 | 45.5 | 10.8 | 0.6 | 3.8 | 77.8 |
N5 | 20.0 | 40.0 | - | 2.5 | - | 60.0 |
N6 | 20.0 | 40.0 | - | - | 2.5 | 60.0 |
N7 | 20.0 | 40.0 | - | 2.5 | 2.5 | 60.0 |
N8 | 21.5 | 45.5 | 10.8 | 3.1 | 3.8 | 77.8 |
N9 | 21.5 | 45.5 | 10.8 | 0.6 | 6.3 | 77.8 |
N10 | 21.5 | 45.5 | 10.8 | 3.1 | 6.3 | 77.8 |
Treatment | Seed Yield (Mg ha−1) | Stover Yield (Mg ha−1) | Biological Yield (Mg ha−1) | |||
---|---|---|---|---|---|---|
2016 | 2017 | 2016 | 2017 | 2016 | 2017 | |
Cultivars | ||||||
Sapna | 1.33 b | 1.31 b | 1.86 a | 1.90 a | 3.19 | 3.21 |
Garima | 1.30 b | 1.30 b | 1.82 a | 1.87 a | 3.12 | 3.17 |
HM-1 | 1.59 a | 1.61 a | 1.68 b | 1.73 b | 3.27 | 3.34 |
SEm± | 0.02 | 0.02 | 0.03 | 0.03 | 0.03 | 0.05 |
LSD (p ≤ 0.05) | 0.09 | 0.09 | 0.13 | 0.13 | NS * | NS |
Nutrient management practices | ||||||
N1 | 1.06 d | 1.07 d | 1.42 d | 1.43 d | 2.48 d | 2.50 d |
N2 | 1.32 b | 1.35 b | 1.75 b | 1.80 b | 3.07 b | 3.15 b |
N3 | 1.19 c | 1.21 c | 1.59 c | 1.62 c | 2.78 c | 2.83 c |
N4 | 1.54 a | 1.56 a | 1.94 a | 2.00 a | 3.48 a | 3.56 a |
N5 | 1.38 b | 1.38 b | 1.77 b | 1.81 b | 3.15 b | 3.19 b |
N6 | 1.35 b | 1.36 b | 1.76 b | 1.81 b | 3.11 b | 3.17 b |
N7 | 1.41 b | 1.40 b | 1.77 b | 1.82 b | 3.18 b | 3.22 b |
N8 | 1.60 a | 1.62 a | 1.95 a | 2.01 a | 3.55 a | 3.63 a |
N9 | 1.57 a | 1.60 a | 1.95 a | 2.01 a | 3.52 a | 3.61 a |
N10 | 1.63 a | 1.65 a | 1.96 a | 2.02 a | 3.59 a | 3.67 a |
SEm± | 0.04 | 0.05 | 0.06 | 0.06 | 0.07 | 0.07 |
LSD (p ≤ 0.05) | 0.12 | 0.14 | 0.16 | 0.17 | 0.21 | 0.20 |
Treatment | N | P | K | Zn | Fe | |||||
---|---|---|---|---|---|---|---|---|---|---|
2016 | 2017 | 2016 | 2017 | 2016 | 2017 | 2016 | 2017 | 2016 | 2017 | |
Cultivars | ||||||||||
Sapna | 18.9 | 20.1 | 10.25 | 10.82 | 41.1 | 44.5 | 350 | 378 | 106 | 112 |
Garima | 17.5 | 20.4 | 9.41 | 10.97 | 38.5 | 44.5 | 328 | 381 | 97 | 113 |
HM-1 | 18.3 | 20.3 | 9.81 | 10.94 | 40.3 | 43.8 | 342 | 374 | 102 | 112 |
SEm± | 2.55 | 2.78 | 1.57 | 1.31 | 6.89 | 4.81 | 65 | 44 | 14.6 | 14.1 |
LSD (p ≤ 0.05) | NS * | NS | NS | NS | NS | NS | NS | NS | NS | NS |
Nutrient management practices | ||||||||||
N1 | - | - | - | - | - | - | - | - | - | - |
N2 | 13.0 c | 15.2 c | 6.50 d | 7.58 c | - | - | - | - | - | |
N3 | 5.7 d | 6.3 d | 11.91 a | 13.26 a | 6.1 b | 6.8 b | 109 b | 122 b | 17 e | 140 b |
N4 | 22.5 ab | 24.8 a | 10.62 abc | 11.71 abc | 44.7 a | 49.4 a | 805 a | 888 a | 126 c | 131 b |
N5 | 16.0 c | 17.7 c | 8.03 bcd | 8.82 bc | - | - | 128 b | 141 b | - | - |
N6 | 14.5 c | 16.4 c | 7.27 cd | 8.20 c | - | - | - | - | 116 c | 150 a |
N7 | 17.4 bc | 18.8 bc | 8.70 bcd | 9.37 bc | - | - | 139 b | 150 b | 139 a | 157 a |
N8 | 25.1 a | 27.7 a | 11.85 a | 13.08 a | 49.9 a | 55.1 a | 174 b | 192 b | 142 a | 90 c |
N9 | 23.5 a | 26.5 a | 11.12 ab | 12.53 ab | 46.8 a | 52.8 a | 843 a | 950 a | 80 d | 98 c |
N10 | 26.3 a | 28.8 a | 12.42 a | 13.63 a | 52.3 a | 57.4 a | 182 b | 200 b | 90 d | 140 b |
SEm± | 1.97 | 2.22 | 1.20 | 1.34 | 3.43 | 4.59 | 48 | 51 | 3.7 | 4.3 |
LSD (p ≤ 0.05) | 5.6 | 6.3 | 3.41 | 3.81 | 10.1 | 13.5 | 139 | 147 | 12 | 15 |
Cultivar × Nutrient | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS |
Treatment | N | P | K | Zn | Fe | |||||
---|---|---|---|---|---|---|---|---|---|---|
2016 | 2017 | 2016 | 2017 | 2016 | 2017 | 2016 | 2017 | 2016 | 2017 | |
Cultivars | ||||||||||
Sapna | 65.2 b | 65.1 b | 40.3 b | 40.1 b | 121.9 b | 123.1 b | 1128 b | 1134 b | 352 b | 351 b |
Garima | 62.8 b | 64.0 b | 38.6 b | 39.3 b | 119.5 b | 120.7 b | 1106 b | 1114 b | 343 b | 345 b |
HM-1 | 77.5 a | 78.5 a | 48.2 a | 48.7 a | 143.6 a | 145.5 a | 1336 a | 1352 a | 417 a | 421 a |
SEm± | 0.86 | 1.45 | 0.63 | 0.66 | 1.74 | 1.13 | 18 | 14.7 | 7.66 | 8.1 |
LSD (p ≤ 0.05) | 3.48 | 5.85 | 2.5 | 2.7 | 7.02 | 4.6 | 73 | 59 | 31 | 33 |
Nutrient management practices | ||||||||||
N1 | - | - | - | - | - | - | - | - | - | - |
N2 | 65.5 c | 66.5 d | 32.7 b | 33.2 b | - | - | - | - | - | - |
N3 | 51.1 d | 51.0 e | 106.7 a | 106.5 a | 54.4 b | 54.3 b | 992 b | 977 b | 157 d | 154 d |
N4 | 71.7 abc | 72.5 abcd | 33.9 b | 34.3 b | 142.7 a | 144.4 a | 2572 a | 2598 a | 406 b | 410 b |
N5 | 68.8 bc | 69.0 bcd | 34.4 b | 34.5 b | - | - | 552 c | 552 c | - | - |
N6 | 66.2 c | 67.7 cd | 33.1 b | 33.9 b | - | - | - | - | 540 a | 542 a |
N7 | 70.0 bc | 70.1 abcd | 35.0 b | 35.0 b | - | - | 563 c | 560 c | 563 a | 560 a |
N8 | 73.9 ab | 75.4 ab | 34.9 b | 35.6 b | 147.0 a | 150.1 a | 516 c | 523 c | 421 b | 427 b |
N9 | 73.0 ab | 74.2 abc | 34.5 b | 35.1 b | 145.2 a | 147.8 a | 2610 a | 2660 a | 249 c | 253 c |
N10 | 76.5 a | 76.6 a | 36.2 b | 36.2 b | 152.3 a | 152.4 a | 524 c | 531 c | 258 c | 261 c |
SEm± | 1.99 | 2.21 | 1.46 | 1.56 | 3.18 | 4.46 | 34 | 45.5 | 12.7 | 13.9 |
LSD (p ≤ 0.05) | 5.70 | 6.32 | 4.2 | 4.5 | 9.3 | 13.1 | 98 | 131 | 37 | 40 |
Cultivar × Nutrient | NS * | NS | NS | NS | NS | NS | NS | NS | NS | NS |
Treatment | N | P | K | Zn | Fe | |||||
---|---|---|---|---|---|---|---|---|---|---|
2016 | 2017 | 2016 | 2017 | 2016 | 2017 | 2016 | 2017 | 2016 | 2017 | |
Cultivars | ||||||||||
Sapna | 3.93 b | 3.98 b | 0.29 | 0.30 | 3.39 | 3.69 | 0.069 | 0.084 | 0.143 | 0.149 |
Garima | 3.80 b | 3.84 b | 0.30 | 0.32 | 3.42 | 3.58 | 0.068 | 0.083 | 0.140 | 0.148 |
HM-1 | 4.25 a | 4.32 a | 0.33 | 0.35 | 3.50 | 3.52 | 0.066 | 0.089 | 0.138 | 0.144 |
SEm± | 0.07 | 0.10 | 0.008 | 0.006 | 0.09 | 0.12 | 0.002 | 0.002 | 0.004 | 0.004 |
LSD (p ≤ 0.05) | 0.28 | 0.32 | NS * | NS | NS | NS | NS | NS | NS | NS |
Nutrient management practices | ||||||||||
N1 | - | - | - | - | - | - | - | - | - | |
N2 | 3.49 cd | 3.53 d | 0.22 c | 0.23 b | - | - | - | - | - | - |
N3 | 2.84 e | 2.89 e | 0.79 a | 0.82 a | 1.67 c | 1.73 c | 0.064 b | 0.071 b | 0.059 d | 0.062 d |
N4 | 4.10 bc | 4.18 bc | 0.24 bc | 0.24 b | 3.62 b | 3.77 b | 0.141 a | 0.182 a | 0.139 b | 0.150 b |
N5 | 3.89 cd | 3.92 cd | 0.25 bc | 0.26 b | - | - | 0.034 c | 0.041 c | - | - |
N6 | 3.85 cd | 3.86 cd | 0.24 bc | 0.25 b | - | - | - | - | 0.218 a | 0.227 a |
N7 | 4.20 abc | 4.33 abc | 0.27 b | 0.28 b | - | - | 0.034 c | 0.042 c | 0.223 a | 0.230 a |
N8 | 4.52 ab | 4.61 a | 0.26 bc | 0.27 b | 3.96 a | 4.15 a | 0.029 c | 0.038 c | 0.147 b | 0.153 b |
N9 | 4.45 ab | 4.55 ab | 0.25 bc | 0.27 b | 3.95 a | 4.13 a | 0.142 a | 0.184 a | 0.099 c | 0.103 c |
N10 | 4.61 a | 4.69 a | 0.26 bc | 0.28 b | 3.99 a | 4.19 a | 0.030 c | 0.039 c | 0.100 c | 0.102 c |
SEm± | 0.16 | 0.13 | 0.013 | 0.015 | 0.10 | 0.14 | 0.002 | 0.002 | 0.006 | 0.007 |
LSD (p ≤ 0.05) | 0.45 | 0.37 | 0.038 | 0.04 | 0.31 | 0.40 | 0.006 | 0.007 | 0.018 | 0.020 |
Cultivar × Nutrient | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS |
Treatment | N (kg kg−1) | P (kg kg−1) | K (kg kg−1) | Zn (kg g−1) | Fe (kg g−1) | |||||
---|---|---|---|---|---|---|---|---|---|---|
2016 | 2017 | 2016 | 2017 | 2016 | 2017 | 2016 | 2017 | 2016 | 2017 | |
Cultivars | ||||||||||
Sapna | 16.82 | 16.99 | 140.0 | 136.7 | 35.8 b | 33.2 b | 15.95 b | 13.32 b | 2.49 b | 2.42 b |
Garima | 17.00 | 17.21 | 131.8 | 128.1 | 35.1 b | 33.4 b | 15.84 b | 13.18 b | 2.47 b | 2.41 b |
HM-1 | 18.42 | 18.81 | 146.1 | 143.0 | 41.0 a | 41.1 a | 20.14 a | 15.01 a | 3.06 a | 2.98 a |
SEm± | 0.38 | 0.59 | 2.84 | 3.8 | 1.08 | 1.07 | 0.28 | 0.24 | 0.06 | 0.06 |
LSD (p ≤ 0.05) | NS * | NS | NS | NS | 4.5 | 4.3 | 1.12 | 0.91 | 0.23 | 0.24 |
Nutrient management practices | ||||||||||
N1 | - | - | - | - | - | - | - | - | - | |
N2 | 18.99 a | 20.41 a | 148.3 | 151.6 a | - | - | - | - | - | - |
N3 | 18.38 ab | 18.82 ab | 137.8 | 143.2 ab | 33.9 b | 31.5 b | 15.62 b | 13.72 ab | 2.67 abc | 2.60 ab |
N4 | 17.58 ab | 17.63 bc | 143.4 | 130.0 b | 40.4 a | 38.5 a | 18.30 a | 14.36 a | 2.96 a | 2.80 a |
N5 | 17.77 ab | 17.32 bc | 142.2 | 139.7 ab | - | - | 16.26 ab | 13.40 b | - | - |
N6 | 17.70 ab | 17.80 bc | 139.6 | 131.0 b | - | - | - | - | 2.47 c | 2.42 b |
N7 | 16.89 b | 17.57 bc | 131.6 | 135.2 ab | - | - | 16.51 ab | 13.48 ab | 2.55 c | 2.47 ab |
N8 | 16.55 b | 16.78 bc | 137.4 | 126.4 b | 37.4 ab | 36.5 ab | 17.82 ab | 13.78 ab | 2.88 ab | 2.77 ab |
N9 | 16.39 b | 16.41 c | 137.2 | 134.6 b | 36.8 ab | 36.2 ab | 18.61 a | 14.44 a | 2.56 c | 2.55 ab |
N10 | 16.41 b | 16.31 c | 135.8 | 131.8 b | 37.8 ab | 36.7 ab | 18.05 ab | 13.71 ab | 2.62 bc | 2.60 ab |
SEm± | 0.68 | 0.70 | 6.02 | 5.5 | 1.8 | 1.8 | 0.78 | 0.60 | 0.12 | 0.15 |
LSD (p ≤ 0.05) | 1.94 | 1.99 | NS | 16.9 | 5.6 | 5.5 | 2.50 | 0.98 | 0.31 | 0.36 |
Cultivar × Nutrient | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS |
Treatment | N (kg kg−1) | P (kg kg−1) | K (kg kg−1) | Zn (kg g−1) | Fe (kg g−1) | |||||
---|---|---|---|---|---|---|---|---|---|---|
2016 | 2017 | 2016 | 2017 | 2016 | 2017 | 2016 | 2017 | 2016 | 2017 | |
Cultivars | ||||||||||
Sapna | 12.47 | 13.69 | 116.5 a | 113.7 a | 50.6 | 44.5 | 35.4 | 14.4 | 3.03 | 3.67 |
Garima | 11.55 | 13.64 | 112.7 a | 106.4 a | 48.2 | 40.8 | 37.5 | 15.1 | 2.52 | 2.86 |
HM-1 | 11.33 | 11.69 | 97.5 b | 104.0 b | 57.6 | 45.0 | 38.8 | 16.5 | 2.90 | 3.48 |
SEm± | 0.38 | 0.46 | 2.8 | 2.9 | 2.1 | 1.9 | 1.6 | 1.0 | 0.91 | 1.03 |
LSD (p ≤ 0.05) | NS * | NS | 7.3 | 7.7 | NS | NS | NS | NS | NS | NS |
Nutrient management practices | ||||||||||
N1 | - | - | - | - | - | - | - | - | ||
N2 | 14.43 a | 16.33 a | 142.2 a | 134.8 a | - | - | - | - | - | - |
N3 | 9.40 f | 9.14 f | 72.7 f | 84.0 e | 21.6 d | 24.9 d | 36.0 c | 15.4 ab | 3.27 c | 2.69 d |
N4 | 13.23 b | 13.54 bc | 119.5 b | 123.4 b | 66.1 a | 57.2 a | 41.8 b | 15.7 ab | 5.15 a | 4.19 a |
N5 | 12.39 bc | 14.03 b | 106.0 d | 93.3 d | - | - | 24.5 e | 14.0 c | - | - |
N6 | 10.89 e | 12.44 de | 114.4 bc | 111.2 c | - | - | - | - | 2.17 f | 2.40 e |
N7 | 10.77 e | 11.46 e | 91.7 e | 90.2 de | - | - | 31.8 d | 16.3 a | 2.49 e | 2.36 e |
N8 | 12.02 c | 12.39 de | 118.0 b | 113.0 c | 61.0 ab | 48.3 b | 34.4 cd | 14.9 bc | 3.77 b | 3.99 a |
N9 | 11.10 de | 12.05 de | 106.3 cd | 111.3 c | 57.9 bc | 45.0 bc | 55.6 a | 16.6 a | 2.47 e | 3.55 c |
N10 | 11.82 cd | 12.67 cd | 109.2 cd | 110.8 c | 53.4 c | 41.7 c | 36.6 c | 14.2 c | 2.72 d | 3.47 c |
SEm± | 0.34 | 0.41 | 3.7 | 4.1 | 2.2 | 1.9 | 1.2 | 0.5 | 0.09 | 0.10 |
LSD (p ≤ 0.05) | 0.87 | 1.07 | 8.2 | 8.9 | 6.7 | 5.3 | 3.9 | 1.2 | 0.20 | 0.23 |
Cultivar × Nutrient | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, S.; Sharma, S.K.; Thakral, S.K.; Bhardwaj, K.K.; Jhariya, M.K.; Meena, R.S.; Jangir, C.K.; Bedwal, S.; Jat, R.D.; Gaber, A.; et al. Integrated Nutrient Management Improves the Productivity and Nutrient Use Efficiency of Lens culinaris Medik. Sustainability 2022, 14, 1284. https://doi.org/10.3390/su14031284
Kumar S, Sharma SK, Thakral SK, Bhardwaj KK, Jhariya MK, Meena RS, Jangir CK, Bedwal S, Jat RD, Gaber A, et al. Integrated Nutrient Management Improves the Productivity and Nutrient Use Efficiency of Lens culinaris Medik. Sustainability. 2022; 14(3):1284. https://doi.org/10.3390/su14031284
Chicago/Turabian StyleKumar, Sandeep, Surendra Kumar Sharma, Sanjay Kumar Thakral, Krishan Kumar Bhardwaj, Manoj Kumar Jhariya, Ram Swaroop Meena, Chetan Kumar Jangir, Sandeep Bedwal, Ram Dhan Jat, Ahmed Gaber, and et al. 2022. "Integrated Nutrient Management Improves the Productivity and Nutrient Use Efficiency of Lens culinaris Medik." Sustainability 14, no. 3: 1284. https://doi.org/10.3390/su14031284
APA StyleKumar, S., Sharma, S. K., Thakral, S. K., Bhardwaj, K. K., Jhariya, M. K., Meena, R. S., Jangir, C. K., Bedwal, S., Jat, R. D., Gaber, A., Atta, A. A., & Hossain, A. (2022). Integrated Nutrient Management Improves the Productivity and Nutrient Use Efficiency of Lens culinaris Medik. Sustainability, 14(3), 1284. https://doi.org/10.3390/su14031284