Research on Intelligent Analysis of Healthy Training Progress of Teenage Sports Athletes Using Various Modalities
Abstract
:1. Introduction
2. Need for Physical Activity
3. Concept of Health in Physical Fitness
4. Importance of Improving Health-Related Physical Fitness Components
5. Components of Health-Related Physical Fitness
- To compare the effect of HIIT and C.E.T. on selected HRPF variables such as cardiovascular endurance, muscular endurance, and flexibility among teenage boys.
- To compare the effect of different training modalities on the lipid profile of boys.
- To compare which training influences hematological variables such as red blood cells, white blood cells, and hemoglobin, among boys.
6. Related Literature
7. Hypotheses Formulation
8. Research Methodology
9. Selection of Subjects
10. Investigational Design
11. Statistical Analysis
12. Results and Discussion
Computation of Health-Related Physical Fitness Variables
13. Discussion
14. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ACSM | American College of Sports Medicine |
AHA | American Heart Association |
C.E.T. | Continuous Endurance Training |
C.G. | Control Group |
CMIET | Continuous Moderate-intensity Exercise Training |
CHDs | Congenital Heart Defects |
HDL | High-Density Lipoprotein |
HIIT | High-Intensity Interval training |
HRPF | Health-Related Physical Fitness |
ISAT | International Student Admissions Test |
P.A. | Physical Activity |
P.E. | Physical Exercise |
Q.O.L. | Quality of Life |
T.C. | Total Cholesterol |
T.G. | Triglyceride |
VLDL | Very-Low-Density-Lipoprotein |
VO2max | Peak Oxygen Consumption |
WHO | World Health Organization |
References
- Heidari, N.; Dortaj, E.; Karimi, M.; Karami, S.; Kordi, N. The effects of acute high intensity interval exercise of judo on blood rheology factors. Turk. J. Kinesiol. 2016, 2, 6–10. [Google Scholar]
- McNamus, A.; Mellecker, R. Physical Activity and Obese Children. J. Sport Health Sci. 2012, 1, 141–148. [Google Scholar]
- Ziemann, E.; Grzywacz, T.; Luszczyk, M.; Laskowski, R.; Olek, R.A.; Gibson, A.L. Aerobic and anaerobic changes with high-intensity interval training in active college-aged men. J. Strength Cond. Res. 2011, 25, 1104–1112. [Google Scholar] [CrossRef] [PubMed]
- Haapala, E.A.; Lee, E.; Laukkanen, J.A. Associations of cardiorespiratory fitness, physical activity, and BMI with arterial health in middle-aged men and women. Physiol. Rep. 2020, 8, e14438. [Google Scholar] [CrossRef]
- Alhashem, F.; Alkhateeb, M.; Sakr, H. Exercise protects against obesity induced semen abnormalities via downregulating stem cell factor, upregulating Ghrelin and normalizing oxidative stress. EXCLI J. 2014, 13, 551. [Google Scholar]
- Taherkhani, S.; Valaei, K.; Arazi, H. An Overview of Physical Exercise and Antioxidant Supplementation Influences on Skeletal Muscle Oxidative Stress. Antioxidants 2021, 10, 1528. [Google Scholar] [CrossRef]
- Gualano, B.; Lemes, I.R.; Silva, R.P.; Pinto, A.J.; Mazzolani, B.C.; Smaira, F.I.; Sieczkowska, S.M.; Aikawa, N.E.; Pasoto, S.G.; Medeiros-Ribeiro, A.C.; et al. Association between physical activity and immunogenicity of an inactivated virus vaccine against SARS-CoV-2 in patients with autoimmune rheumatic diseases. Brain Behav. Immun. 2022, 101, 49–56. [Google Scholar] [CrossRef]
- McTiernan, A.N.N.E.; Friedenreich, C.M.; Katzmarzyk, P.T.; Powell, K.E.; Macko, R.; Buchner, D.; Pescatello, L.S.; Bloodgood, B.; Tennant, B.; Vaux-Bjerke, A.; et al. Physical activity in cancer prevention and survival: A systematic review. Med. Sci. Sports Exerc. 2019, 51, 1252. [Google Scholar] [CrossRef]
- Murphy, R.A. Diet, Physical Activity, and Cancer Prevention. In Nutrition Guide for Physicians and Related Healthcare Professions; Humana: Cham, Switzerland, 2022; pp. 149–158. [Google Scholar]
- Rock, C.L.; Thomson, C.; Gansler, T.; Gapstur, S.M.; McCullough, M.L.; Patel, A.V.; Andrews, K.S.; Bandera, E.V.; Spees, C.K.; Robien, K.; et al. American Cancer Society guideline for diet and physical activity for cancer prevention. CA Cancer J. Clin. 2020, 70, 245–271. [Google Scholar] [CrossRef]
- Oliveira, R.B.; Farinatti, P.T. Effects of high intensity interval versus moderate continuous training on markers of ventilatory and cardiac efficiency in coronary heart disease patients. Sci. World J. 2015, 2015, 192479. [Google Scholar]
- Paschalis, V.; Theodorou, A.A.; Margaritelis, N.V.; Kyparos, A.; Nikolaidis, M.G. N-acetylcysteine supplementation increases exercise performance and reduces oxidative stress only in individuals with low levels of glutathione. Free Radic. Biol. Med. 2018, 115, 288–297. [Google Scholar] [CrossRef] [PubMed]
- García-Hermoso, A.; Alonso-Martinez, A.M.; Ramírez-Vélez, R.; Izquierdo, M. Effects of exercise intervention on health-related physical fitness and blood pressure in preschool children: A systematic review and meta-analysis of randomized controlled trials. Sports Med. 2020, 50, 187–203. [Google Scholar] [CrossRef]
- Chen, W.; Hammond-Bennett, A.; Hypnar, A.; Mason, S. Health-related physical fitness and physical activity in elementary school students. BMC Public Health 2018, 18, 195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qi, M.; Li, P.; Moyle, W.; Weeks, B.; Jones, C. Physical activity, health-related quality of life, and stress among the Chinese adult population during the COVID-19 pandemic. Int. J. Environ. Res. Public Health 2020, 17, 6494. [Google Scholar] [CrossRef] [PubMed]
- Silva, D.A.S.; Lima, T.R.D.; Tremblay, M.S. Association between resting heart rate and health-related physical fitness in Brazilian adolescents. BioMed Res. Int. 2018, 2018, 3812197. [Google Scholar] [CrossRef] [Green Version]
- Buchheit, M.; Platat, C.; Oujaa, M.; Simon, C. Habitual physical activity, physical fitness and heart rate variability in pre adolescents. Int. J. Sports Med. 2007, 28, 204–210. [Google Scholar] [CrossRef] [Green Version]
- Muntaner-Mas, A.; Palou, P.; Vidal-Conti, J.; Esteban-Cornejo, I. A mediation analysis on the relationship of physical fitness components, obesity, and academic performance in children. J. Pediatr. 2018, 198, 90–97. [Google Scholar] [CrossRef]
- Bou-Sospedra, C.; Adelantado-Renau, M.; Beltran-Valls, M.R.; Moliner-Urdiales, D. Independent and combined influence of physical fitness components on self-esteem in adolescents: DADOS study. Ann. Hum. Biol. 2021, 48, 550–556. [Google Scholar] [CrossRef]
- Roxburgh, B.H.; Nolan, P.B.; Weatherwax, R.M.; Dalleck, L.C. Is moderate intensity exercise training combined with high intensity interval training more effective at improving cardiorespiratory fitness than moderate intensity exercise training alone? J. Sports Sci. Med. 2014, 13, 702. [Google Scholar]
- Castelli, D.M.; Hillman, C.H.; Buck, S.M.; Erwin, H.E. Physical fitness and academic achievement in third-and fifth-grade students. J. Sport Exerc. Psychol. 2007, 29, 239–252. [Google Scholar] [CrossRef]
- Van Dusen, D.P.; Kelder, S.H.; Kohl, H.W.; Ranjit, N.; Perry, C.L. Associations of physical fitness and academic performance among schoolchildren. J. Sch. Health 2011, 81, 733–740. [Google Scholar] [CrossRef] [PubMed]
- Eveland-Sayers, B.M.; Farley, R.S.; Fuller, D.K.; Morgan, D.W.; Caputo, J.L. Physical fitness and academic achievement in elementary school children. J. Phys. Act. Health 2009, 6, 99–104. [Google Scholar] [CrossRef] [PubMed]
- Flanagan, S.P.; Laubach, L.L.; De Marco, G.M., Jr.; Alvarze, C.; Borchers, S.; Dressman, E.; Poeppelman, J. Effects of two different strength training modes on motor performance in children. Res. Q. Exerc. Sport 2002, 73, 340–344. [Google Scholar] [CrossRef] [PubMed]
- Lambrick, D.; Westrupp, N.; Kaufmann, S.; Stoner, L.; Faulkner, J. The effectiveness of a high-intensity games intervention on improving indices of health in young children. J. Sports Sci. 2016, 34, 190–198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milanovic, Z.; Sporis, G.; Weston, M. Effectiveness of high-intensity interval training (H.I.T.) and continuous endurance training for VO2max improvements: A systematic review and meta-analysis of controlled trials. Sports Med. 2015, 45, 1469–1481. [Google Scholar] [CrossRef] [PubMed]
- Perry, C.G.; Heigenhauser, G.J.; Bonen, A.; Spriet, L.L. High-intensity aerobic interval training increases fat and carbohydrate metabolic capacities in human skeletal muscle. Appl. Physiol. Nutr. Metab. 2008, 33, 1112–1123. [Google Scholar] [CrossRef]
- Boreham, C.A.; Twisk, J.O.S.; Savage, M.J.; Cran, G.W.; Strain, J.J. Physical activity, sports participation, and risk factors in adolescents. Med. Sci. Sports Exerc. 1997, 29, 788–793. [Google Scholar] [CrossRef] [Green Version]
- Ortega, F.B.; Ruiz, J.R.; Castillo, M.J.; Sjostrom, M. Physical fitness in childhood and adolescence: A powerful marker of health. Int. J. Obes. 2008, 32, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Simar, D.; Malatesta, D.; Mas, E.; Delage, M.; Caillaud, C. Effect of an 8-weeks aerobic training program in elderly on oxidative stress and hsp72 expression in leukocytes. J. Nutr. Health Aging 2012, 16, 155–161. [Google Scholar] [CrossRef]
- Welk, G.J.; Jackson, A.W.; Morrow, J.R., Jr.; Haskell, W.H.; Meredith, M.D.; Cooper, K.H. The association of health-related fitness with indicators of academic performance in Texas schools. Res. Q. Exerc. Sport 2010, 81 (Suppl. 3), S16–S23. [Google Scholar] [CrossRef]
Traning Groups | Pre-Test | Post-Test | t-Ratio | Significance | |||||
---|---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | ||||||
HIIT | 44.93 | 7.42 | 56.46 | 6.86 | 11.88 * | 0.000 | |||
C.E.T. | 45.33 | 13.49 | 53.53 | 13.29 | 14.58 * | 0.000 | |||
C.G. | 43.46 | 10.50 | 44.60 | 9.17 | 1.83 NS | 0.087 | |||
Groups | HIIT | CET | C.G. | SOV | Sum of Squares | df | Mean Square | F-Value | Significance |
Pre-test Mean | 44.93 | 45.33 | 43.46 | B | 28.97 | 2 | 14.48 | 0.125 NS | 0.883 |
S.D. | 7.42 | 13.49 | 10.50 | W | 4864.00 | 42 | 115.81 | ||
Post-test Mean | 56.46 | 53.53 | 44.60 | B | 1146.13 | 2 | 573.06 | 5.58 * | 0.007 |
SD | 6.86 | 13.29 | 9.17 | W | 4313.06 | 42 | 102.69 | ||
Adjusted Post-test Mean | 56.14 | 52.84 | 45.60 | B | 867.32 | 2 | 433.66 | 58.73 * | 0.000 |
W | 302.71 | 41 | 7.38 | ||||||
HIIT | C.E.T. | C.G. | Mean Difference | Significance | |||||
56.14 | 52.84 | - | 3.30 * | 0.002 | |||||
56.14 | - | 45.60 | 10.54 * | 0.000 | |||||
- | 52.84 | 45.60 | 7.24 * | 0.000 |
Traning Groups | Pre-Test | Post-Test | t-Ratio | Significance | |||||
---|---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | ||||||
HIIT | 34.80 | 6.18 | 40.46 | 4.61 | 10.00 * | 0.000 | |||
C.E.T. | 34.46 | 5.97 | 41.20 | 5.59 | 14.55 * | 0.000 | |||
C.G. | 33.13 | 4.54 | 33.66 | 5.06 | 1.65 NS | 0.120 | |||
Groups | HIIT | CET | C.G. | SOV | Sum of Squares | df | Mean Square | F-Value | Significance |
Pre-test Mean | 34.80 | 34.46 | 33.13 | B | 23.33 | 2 | 11.66 | 0.37 NS | 0.693 |
S.D. | 6.18 | 5.97 | 4.54 | W | 1325.86 | 42 | 31.56 | ||
Post-test Mean | 40.46 | 41.20 | 33.66 | B | 517.64 | 2 | 258.82 | 9.92 * | 0.000 |
SD | 4.61 | 5.59 | 5.06 | W | 1095.46 | 42 | 26.08 | ||
Adjusted Post-test Mean | 39.89 | 40.91 | 34.52 | B | 347.29 | 2 | 173.64 | 65.33 * | 0.000 |
W | 108.92 | 41 | 2.65 | ||||||
HIIT | C.E.T. | C.G. | Mean Difference | Significance | |||||
39.89 | 40.91 | - | 1.02 NS | 0.094 | |||||
39.89 | - | 34.52 | 5.37 * | 0.000 | |||||
- | 40.91 | 34.52 | 6.39 * | 0.000 |
Traning Groups | Pre-Test | Post-Test | t-Ratio | Significance | |||||
---|---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | ||||||
HIIT | 10.92 | 1.45 | 11.89 | 1.65 | 5.07 * | 0.000 | |||
C.E.T. | 10.28 | 2.22 | 11.07 | 2.20 | 6.71 * | 0.000 | |||
C.G. | 10.99 | 2.37 | 10.10 | 3.25 | 1.50 NS | 0.153 | |||
Groups | HIIT | CET | C.G. | SOV | Sum of Squares | df | Mean Square | F-Value | Significance |
Pre-test Mean | 10.92 | 10.28 | 10.99 | B | 4.65 | 2 | 2.32 | 0.55 NS | 0.581 |
S.D. | 1.45 | 2.22 | 2.37 | W | 177.86 | 42 | 4.23 | ||
Post-test Mean | 11.89 | 11.07 | 10.10 | B | 24.17 | 2 | 12.09 | 1.98 NS | 0.149 |
SD | 1.65 | 2.20 | 3.25 | W | 255.23 | 42 | 6.07 | ||
Adjusted Post-test Mean | 11.70 | 11.51 | 9.84 | B | 31.24 | 2 | 15.62 | 7.62 * | 0.02 |
W | 108.92 | 41 | 2.65 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, W.; Syed Ali, S.K.B.; Zulnaidi, H.; Qi, D. Research on Intelligent Analysis of Healthy Training Progress of Teenage Sports Athletes Using Various Modalities. Sustainability 2022, 14, 16556. https://doi.org/10.3390/su142416556
Chen W, Syed Ali SKB, Zulnaidi H, Qi D. Research on Intelligent Analysis of Healthy Training Progress of Teenage Sports Athletes Using Various Modalities. Sustainability. 2022; 14(24):16556. https://doi.org/10.3390/su142416556
Chicago/Turabian StyleChen, Wenzheng, Syed Kamaruzaman Bin Syed Ali, Hutkemri Zulnaidi, and Dongkai Qi. 2022. "Research on Intelligent Analysis of Healthy Training Progress of Teenage Sports Athletes Using Various Modalities" Sustainability 14, no. 24: 16556. https://doi.org/10.3390/su142416556
APA StyleChen, W., Syed Ali, S. K. B., Zulnaidi, H., & Qi, D. (2022). Research on Intelligent Analysis of Healthy Training Progress of Teenage Sports Athletes Using Various Modalities. Sustainability, 14(24), 16556. https://doi.org/10.3390/su142416556