How to Prioritize the Attributes of Water Ecosystem Service for Water Security Management: Choice Experiments versus Analytic Hierarchy Process
Abstract
:1. Introduction
2. Materials and Methods
2.1. Context
2.2. Choice Experiments
2.3. Analytic Hierarchy Process
2.4. Empirical Application
3. Results and Discussion
3.1. CE Results
3.2. AHP Results
3.3. CE versus AHP
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Caro, C.; Pinto, R.; Marques, J.C. Use and Usefulness of Open Source Spatial Databases for the Assessment and Management of European Coastal and Marine Ecosystem Services. Ecol. Indic. 2018, 95, 41–52. [Google Scholar] [CrossRef]
- Aznar-Sánchez, J.A.; Velasco-Muñoz, J.F.; Belmonte-Ureña, L.J.; Manzano-Agugliaro, F. The Worldwide Research Trends on Water Ecosystem Services. Ecol. Indic. 2019, 99, 310–323. [Google Scholar] [CrossRef]
- UN Water (UNW). Water Security and the Global Water Agenda: A UN-Water Analytical Brief; United Nations University: Tokyo, Japan, 2013. [Google Scholar]
- Flávio, H.M.; Ferreira, P.; Formigo, N.; Svendsen, J.C. Reconciling Agriculture and Stream Restoration in Europe: A Review Relating to the EU Water Framework Directive. Sci. Total Environ. 2017, 596–597, 378–395. [Google Scholar] [CrossRef]
- Consorcio para el Desarrollo Sostenible de la Ecorregión Andina (CONDESAN). Informe del DHR en la Microcuenca del Río Tilacancha; Consorcio para el Desarrollo Sostenible de la Ecorregión Andina: Lima, Peru, 2014; Available online: https://serviciosecosistemicos.minam.gob.pe/rseh_ficha/22 (accessed on 6 October 2022).
- Consorcio para el Desarrollo Sostenible de la Ecorregión Andina (CONDESAN). Mecanismos Para Compartir Beneficios: Una Introducción para la Planificación e Implementación; Consorcio para el Desarrollo Sostenible de la Ecorregión Andina: Lima, Peru, 2014; Available online: https://condesan.org/wp-content/uploads/2017/07/folleto1.pdf (accessed on 6 October 2022).
- Mosquera, G.M.; Marín, F.; Stern, M.; Bonnesoeur, V.; Ochoa-Tocachi, B.F.; Román-Dañobeytia, F. Servicios Ecosistémicos Hídricos de los Pajonales Altoandinos: ¿Qué Sabemos? Forest Trends: Lima, Peru, 2022; Available online: https://www.forest-trends.org/wp-content/uploads/2022/02/Servicios-ecosistemicos-hidricos-de-los-pajonales-altoandinos-Que-sabemos.pdf (accessed on 6 October 2022).
- Lü, D.; Lü, Y. Spatiotemporal Variability of Water Ecosystem Services Can Be Effectively Quantified by a Composite Indicator Approach. Ecol. Indic. 2021, 130, 108061. [Google Scholar] [CrossRef]
- Diogo, A.F.; Resende, R.A.; Oliveira, A.L. Optimised Selection of Water Supply and Irrigation Sources—A Case Study on Surface and Underground Water, Desalination, and Wastewater Reuse in a Sahelian Coastal Arid Region. Sustainability 2021, 13, 1296. [Google Scholar] [CrossRef]
- Ministerio del Ambiente (MINAM). Manual de Valoración Económica del Patrimonio Natural, 1st ed.; Ministerio del Ambiente: Lima, Peru, 2015; Available online: https://www.minam.gob.pe/patrimonio-natural/wp-content/uploads/sites/6/2013/09/MANUAL-VALORACI%C3%93N-14-10-15-OK.pdf (accessed on 6 October 2022).
- Kallas, Z.; Lambarraa, F.; Gil, J.M. A Stated Preference Analysis Comparing the Analytical Hierarchy Process versus Choice Experiments. Food Qual. Prefer. 2011, 22, 181–192. [Google Scholar] [CrossRef]
- Holmes, T.P.; Adamowicz, W.L.; Carlsson, F. Choice experiments. In A Primer on Nonmarket Valuation; Champ, P., Boyle, K., Brown, T., Eds.; Springer: Dordrecht, The Netherlands, 2017; pp. 133–186. [Google Scholar] [CrossRef]
- Ureta, J.; Motallebi, M.; Vassalos, M.; Alhassan, M.; Ureta, J.C. Valuing Stakeholder Preferences for Environmental Benefits of Stormwater Ponds: Evidence from Choice Experiment. J. Environ. Manag. 2021, 293, 112828. [Google Scholar] [CrossRef]
- Kim, J.H.; Yoo, S.H. Public Perspective on the Environmental Impacts of Sea Sand Mining: Evidence from a Choice Experiment in South Korea. Resour. Policy 2020, 69, 101811. [Google Scholar] [CrossRef]
- Duijndam, S.; van Beukering, P.; Fralikhina, H.; Molenaar, A.; Koetse, M. Valuing a Caribbean Coastal Lagoon Using the Choice Experiment Method: The Case of the Simpson Bay Lagoon, Saint Martin. J. Nat. Conserv. 2020, 56, 125845. [Google Scholar] [CrossRef]
- Tan, Y.; Lv, D.; Cheng, J.; Wang, D.; Mo, W.; Xiang, Y. Valuation of Environmental Improvements in Coastal Wetland Restoration: A Choice Experiment Approach. Glob. Ecol. Conserv. 2018, 15, e00440. [Google Scholar] [CrossRef]
- Iqbal, M.H. Valuing Ecosystem Services of Sundarbans Mangrove Forest: Approach of Choice Experiment. Glob. Ecol. Conserv. 2020, 24, e01273. [Google Scholar] [CrossRef]
- Aznar, J.; Estruch, A.V. Valoración de Activos Ambientales, 2nd ed.; Editorial Universitat Politècnica de València: Valencia, Spain, 2015. [Google Scholar]
- Ranji, A.; Parashkoohi, M.G.; Zamani, D.M.; Ghahderijani, M. Evaluation of Agronomic, Technical, Economic, and Environmental Issues by Analytic Hierarchy Process for Rice Weeding Machine. Energy Rep. 2022, 8, 774–783. [Google Scholar] [CrossRef]
- Díaz, H.; Teixeira, A.P.; Guedes Soares, C. Application of Monte Carlo and Fuzzy Analytic Hierarchy Processes for Ranking Floating Wind Farm Locations. Ocean Eng. 2022, 245, 110453. [Google Scholar] [CrossRef]
- Dos Santos, P.H.; Neves, S.M.; Sant’Anna, D.O.; de Oliveira, C.H.; Carvalho, H.D. The Analytic Hierarchy Process Supporting Decision Making for Sustainable Development: An Overview of Applications. J. Clean. Prod. 2019, 212, 119–138. [Google Scholar] [CrossRef]
- Rawa, M.; Abusorrah, A.; Bassi, H.; Mekhilef, S.; Ali, Z.M.; Abdel Aleem, S.H.E.; Hasanien, H.M.; Omar, A.I. Economical-Technical-Environmental Operation of Power Networks with Wind-Solar-Hydropower Generation Using Analytic Hierarchy Process and Improved Grey Wolf Algorithm. Ain Shams Eng. J. 2021, 12, 2717–2734. [Google Scholar] [CrossRef]
- Saaty, T.L. What is the analytic hierarchy process? In Mathematical Models for Decision Support; Springer: Berlin/Heidelberg, Germany, 1988; Volume 48, pp. 109–121. [Google Scholar] [CrossRef]
- Saaty, T.L. Decision Making with the Analytic Hierarchy Process. Int. J. Serv. Sci. 2008, 1, 83–98. [Google Scholar] [CrossRef] [Green Version]
- Danner, M.; Vennedey, V.; Hiligsmann, M.; Fauser, S.; Gross, C.; Stock, S. Comparing Analytic Hierarchy Process and Discrete-Choice Experiment to Elicit Patient Preferences for Treatment Characteristics in Age-Related Macular Degeneration. Value Health 2017, 20, 1166–1173. [Google Scholar] [CrossRef] [Green Version]
- Pascoe, S.; Doshi, A.; Kovac, M.; Austin, A. Estimating Coastal and Marine Habitat Values by Combining Multi-Criteria Methods with Choice Experiments. Ecosyst. Serv. 2019, 38, 100951. [Google Scholar] [CrossRef]
- Moran, D.; McVittie, A.; Allcroft, D.J.; Elston, D.A. Quantifying Public Preferences for Agri-Environmental Policy in Scotland: A Comparison of Methods. Ecol. Econ. 2007, 63, 42–53. [Google Scholar] [CrossRef]
- Colombo, S.; Angus, A.; Morris, J.; Parsons, D.J.; Brawn, M.; Stacey, K.; Hanley, N. A Comparison of Citizen and “Expert” Preferences Using an Attribute-Based Approach to Choice. Ecol. Econ. 2009, 68, 2834–2841. [Google Scholar] [CrossRef]
- Mühlbacher, A.C.; Bethge, S.; Kaczynski, A.; Juhnke, C. PCV129—Patients Preferences for Long-Term Treatment After Acute Coronary Syndrome: A Discrete-Choice Experiment and Analytic Hierarchy Process. Value Health 2011, 16, A534. [Google Scholar] [CrossRef] [Green Version]
- Ministerio del Ambiente (MINAM). Resolución Ministerial No 118-2010-MINAM; Ministerio del Ambiente del Perú: Lima, Peru, 2010; Available online: https://www.minam.gob.pe/disposiciones/resolucion-ministerial-n-118-2010-minam/ (accessed on 6 October 2022).
- Superintendencia Nacional de Servicios de Saneamiento (SUNASS). Estudio Tarifario: Entidad Prestadora Municipal de Servicio de Agua Potable y Alcantarillado de Amazonas Sociedad Anónima—EMUSAP S.A. 2021–2026, 1st ed.; Superintendencia Nacional de Servicios de Saneamiento: Lima, Peru, 2021; Available online: http://www.emusap.com.pe/contenido/estructura-tarifaria/2021-2026/estudio-tarifario-2021-2026.pdf (accessed on 6 October 2022).
- Ministerio del Ambiente (MINAM). Guía de Valoración Económica del Patrimonio Natural, 2nd ed.; Ministerio del Ambiente: Lima, Peru, 2016; Available online: https://www.minam.gob.pe/patrimonio-natural/wp-content/uploads/sites/6/2013/10/GVEPN-30-05-16-baja.pdf (accessed on 6 October 2022).
- Adamowicz, W.; Louviere, J.; Swait, J. Introduction to Attribute-Based Stated Choice Methods; National Oceanic and Atmospheric Administration: Washington, DC, USA, 1998; Available online: https://www.researchgate.net/publication/242494897_Introduction_to_Attribute-Based_Stated_Choice_Methods (accessed on 6 October 2022).
- Lancaster, K.J. A New Approach to Consumer Theory. J. Polit. Econ. 1966, 74, 132–157. [Google Scholar] [CrossRef]
- Thurstone, L.L. A Law of Comparative Judgment. Psychol. Rev. 1927, 34, 273–286. [Google Scholar] [CrossRef]
- McFadden, D. Conditional logit analysis of qualitative choice behavior. In Frontiers in Econometrics; Zarembka, P., Ed.; Academic Press: New York, NY, USA, 1974; pp. 105–142. [Google Scholar]
- Hausman, J.; McFadden, D. Specification Tests for the Multinomial Logit Model. Econometrica 1984, 52, 1219–1240. [Google Scholar] [CrossRef] [Green Version]
- Kanninen, B.J. Optimal Design for Multinomial Choice Experiments. J. Mark. Res. 2002, 39, 214–227. [Google Scholar] [CrossRef]
- Ku, S.-J.; Yoo, S.-H. Willingness to Pay for Renewable Energy Investment in Korea: A Choice Experiment Study. Renew. Sustain. Energy Rev. 2010, 14, 2196–2201. [Google Scholar] [CrossRef]
- Adamowicz, W.; Boxall, P.; Williams, M.; Louviere, J. Stated Preference Approaches for Measuring Passive Use Values: Choice Experiments and Contingent Valuation. Am. J. Agric. Econ. 1998, 80, 64–75. [Google Scholar] [CrossRef]
- Labib, A. Introduction to the analytic hierarchy process. In Learning from Failures; Elsevier Inc.: Amsterdam, The Netherlands, 2014; pp. 33–44. [Google Scholar] [CrossRef]
- Vaidya, O.S.; Kumar, S. Analytic Hierarchy Process: An Overview of Applications. Eur. J. Oper. Res. 2006, 169, 1–29. [Google Scholar] [CrossRef]
- Aznar, J.; Guijarro, F. Nuevos Métodos de Valoración. Modelos Multicriterio, 2nd ed.; Editorial Universitat Politècnica de València: Valencia, Spain, 2012. [Google Scholar]
- Forman, E.; Peniwati, K. Aggregating Individual Judgments and Priorities with the Analytic Hierarchy Process. Eur. J. Oper. Res. 1996, 108, 165–169. [Google Scholar] [CrossRef]
- Hanley, N.; Wright, R.E.; Adamowicz, V. Using Choice Experiments to Value the Environment. Environ. Resour. Econ. 1998, 11, 413–428. [Google Scholar] [CrossRef]
- Lucich, I.M.; Gonzales, K. Valoración Económica de la Calidad y Confiabilidad de los Servicios de Agua Potable en Tarapoto a Través de Experimentos de Elección; Conservation Strategy Fund: Lima, Peru, 2015. [Google Scholar]
- Tudela, J.; Soncco, C. Valoración económica del servicio ambiental hidrológico de las lagunas del Alto Perú, Cajamarca: Una aplicación del método de valoración contingente y experimentos de elección. In Perú: El Problema Agrario en Debate: SEPIA XV; Diez, A., Raez, E., Fort, R., Eds.; Sepia: Chachapoyas, Peru, 2014; pp. 369–419. Available online: https://sepia.org.pe/wp-content/uploads/2018/07/SEPIA-XV-Chachapoyas-2013.pdf (accessed on 6 October 2022).
- Shin, J.; Lyu, S.O. Using a Discrete Choice Experiment to Estimate Spectators’ Willingness to Pay for Professional Baseball Park Sportscape. Sport Manag. Rev. 2019, 22, 502–512. [Google Scholar] [CrossRef]
- Rakotonarivo, O.S.; Schaafsma, M.; Hockley, N. A Systematic Review of the Reliability and Validity of Discrete Choice Experiments in Valuing Non-Market Environmental Goods. J. Environ. Manag. 2016, 183, 98–109. [Google Scholar] [CrossRef] [PubMed]
References | Target | Location | Main Results |
---|---|---|---|
[25] | Comparing preference-based weights for age-related macular degeneration treatment attributes. | Germany | 20% of coincidence between estimated weights |
[11] | Comparing individual preferences of attributes and levels of an agri-food product: rabbit meat. | Spain | Coincidence of 55.6% in their ranking between methods. The variation in utility between levels in both approaches follows a similar shape for two of the three attributes analyzed. |
[29] | To assess patient preferences regarding different antiplatelet medication options after an acute coronary syndrome | Germany | 50% match. |
[28] | Exploring whether expert judgment can substitute for citizens’ preferences in determining public goods investment strategies | England | 60% coincidence between estimated weights |
Attributes of the Water Ecosystem Service | Brief Conceptual Description [5] | |
---|---|---|
Symbol | Name | |
A1 | Water regulation | Capacity of the ecosystems in the micro-watershed to store water during the rainy season and to supply it to the lower parts even during the dry season. Factors on which it depends: precipitation intensity, vegetation cover, and depth of surface soil. |
A2 | Sediment control | Capacity of ecosystems to prevent soil erosion by buffering rainfall shocks. Factors on which it depends: intensity of precipitation and vegetation cover. |
A3 | Water yield | Capacity of ecosystems to produce water. Factors on which it depends: precipitation intensity, evapotranspiration, and the ways in which water leaves the basin. |
A4 | Quality maintenance | Capacity of ecosystems to purify water. Factors on which it depends: filtration and absorption of soil particles, and of living organisms present in the water and soil. |
Attributes | Alternatives | ||
---|---|---|---|
Status Quo Scenario | Improvement Scenario A | Improvement Scenario B | |
Attribute 1 | Combination of levels for attributes in the current scenario | Combination of levels for attributes in scenario A | Combination of levels for attributes in scenario B |
Attribute 2 | |||
Attribute 3 | |||
... | |||
Attribute n | |||
Monetary attribute | |||
What would you buy? |
Attribute | Extreme Importance | Very strong Importance | Strong Importance | Moderate Importance | Equal Importance | Moderate Importance | Strong Importance | Very Strong Importance | Extreme Importance | Attribute |
---|---|---|---|---|---|---|---|---|---|---|
9 | 7 | 5 | 3 | 1 | 3 | 5 | 7 | 9 | ||
Attribute 1 | Attribute 2 | |||||||||
Attribute 1 | Attribute 3 | |||||||||
… | … | |||||||||
Attribute n − 1 | Attribute n |
Intensity | Definition |
---|---|
1 | Both elements are equally important |
3 | Moderate importance of one over the other |
5 | Essential or strong importance |
7 | Very strong importance |
9 | Extreme importance |
2, 4, 6 and 8 | Intermediate values used to shade the response between two adjacent values |
Attributes | Attribute 1 | Attribute 2 | Attribute 3 | … | Attribute n |
---|---|---|---|---|---|
Attribute 1 | 1 | … | |||
Attribute 2 | 1 | … | |||
Attribute 3 | 1 | … | … | ||
… | … | … | … | … | |
Attribute n | ... | 1 |
Matrix Size (n) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
Random consistency | 0.00 | 0.00 | 0.52 | 0.89 | 1.11 | 1.25 | 1.35 | 1.40 | 1.45 | 1.49 |
Matrix Size (n) | Consistency Ratio |
---|---|
3 | 5% |
4 | 9% |
5 or more | 10% |
Description of the Monetary Attribute | Valuation Method | |
---|---|---|
CE | AHP | |
Name | “Price” | “Cost of service” |
Conceptual definition | Amount offered in the scenarios (USD/month per household). It allows us to simulate the purchase preference of individuals and also estimate the economic value in monetary units of the WES attributes and of the entire choice set. | Cost incurred by the company that manages the service to produce 1 m3 of water, the word “produce” being understood as the treatment and management of the resource. It represents the pivot value, responsible for monetizing the WES attributes. To estimate the monthly service cost for a household, the unit value would have to be multiplied by the monthly household water consumption. |
Values | 0.13, 0.38, 0.64 and 0.90 USD/month per household | 0.63 USD/m3 of water |
Symbol | Attribute | Level Description | Level |
---|---|---|---|
A1 | Water regulation | Effect of programs and projects that guarantee effective protection and assurance of the provision of the attribute Water regulation compared with a scenario without intervention (unit: %) | Level 1: 0% * Level 2: 50% Level 3: 100% |
A2 | Sediment control | Effect of programs and projects that guarantee effective protection and assurance of the provision of the attribute Sediment control compared with a scenario without intervention (unit: %) | Level 1: 0% * Level 2: 50% Level 3: 100% |
A3 | Water yield | Effect of programs and projects that guarantee effective protection and assurance of the provision of the attribute Water yield compared with a scenario with no intervention (unit: %) | Level 1: 0% * Level 2: 50% Level 3: 100% |
A4 | Quality maintenance | Effect of programs and projects ensuring effective protection and assurance of the provision of the attribute Quality Maintenance compared with a scenario without intervention (unit: %) | Level 1: 0% * Level 2: 50% Level 3: 100% |
A5 | Price | Monthly amount derived from the implementation of programs and projects for the conservation of the attributes of the water ecosystem service (unit: USD/month per household) | Level 1: 0.13 Level 2: 0.38 Level 3: 0.64 Level 4: 0.90 |
Attribute | Extreme Importance | Very Strong Importance | Strong Importance | Moderate Importance | Equal Importance | Moderate Importance | Strong Importance | Very Strong Importance | Extreme Importance | Attribute |
---|---|---|---|---|---|---|---|---|---|---|
9 | 7 | 5 | 3 | 1 | 3 | 5 | 7 | 9 | ||
Water regulation | Sediment control | |||||||||
Water regulation | Water yield | |||||||||
Water regulation | Quality maintenance | |||||||||
Water regulation | Cost of service | |||||||||
Sediment control | Water yield | |||||||||
Sediment control | Quality maintenance | |||||||||
Sediment control | Cost of service | |||||||||
Water yield | Quality maintenance | |||||||||
Water yield | Cost of service | |||||||||
Quality maintenance | Cost of service |
Variable | Estimated Coefficients | Error Standard | p-Value |
---|---|---|---|
ASCA | 0.059 (0.19) | 0.3077 | 0.8488 |
ASCB | 0.089 (0.29) | 0.3050 | 0.7711 |
Water regulation | 0.360 * (3.36) | 0.1073 | 0.0008 |
Sediment control | 0.358 * (3.33) | 0.1075 | 0.0009 |
Water yield | 0.032 (0.28) | 0.1172 | 0.7818 |
Quality maintenance | 0.376 * (3.61) | 0.1041 | 0.0003 |
Price | −0.498 * (−5.41) | 0.0921 | 0.0000 |
Number of observations | 370 | ||
Log simulated likelihood | −371.4077 |
Attribute | MWTP (USD/Month per Household) |
---|---|
A1: Water regulation | 0.185 |
A2: Sediment control | 0.184 |
A3: Water yield | 0.017 |
A4: Quality maintenance | 0.193 |
Aggregate WTP | 0.579 |
Attribute | Aggregate Weight * | Pivot Value (USD/m3 Water) | Economic Value ** (USD/m3 Water) |
---|---|---|---|
A1: Water regulation | 0.3411 | - | 2.83 |
A2: Sediment control | 0.0952 | - | 0.79 |
A3: Water yield | 0.2189 | - | 1.81 |
A4: Quality maintenance | 0.2683 | - | 2.22 |
A5: Cost of service | 0.0764 | 0.632 | 0.63 |
Economic value added | 8.29 |
Indicator | CE | AHP |
---|---|---|
Estimated variables | Coefficients | Weightings (weights) |
Group interviewed | Water resource users | Panel of experts |
Sample size | Relatively large | Reduced |
Type of method | Stated preferences | Multi-criteria analysis |
Cognitive load | Lower | Higher |
Experimental design | Complex and restrictive | Simple |
Interaction between attributes | Allows | Does not allow |
Application costs | Expensive to apply (requires field work) | Cheap (does not requires field work) |
CE Results (Declared Payment Preference) | Relative Importance | AHP Results (Theoretical Stated Preference) | ||
---|---|---|---|---|
Attribute | Weight | Attribute | Weight | |
Quality maintenance | 0.334 | 1 | Water regulation | 0.369 |
Water regulation | 0.320 | 2 | Quality maintenance | 0.290 |
Sediment control | 0.318 | 3 | Water yield | 0.237 |
Water yield | 0.029 | 4 | Sediment control | 0.103 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arellanos, E.; Guzman, W.; García, L. How to Prioritize the Attributes of Water Ecosystem Service for Water Security Management: Choice Experiments versus Analytic Hierarchy Process. Sustainability 2022, 14, 15767. https://doi.org/10.3390/su142315767
Arellanos E, Guzman W, García L. How to Prioritize the Attributes of Water Ecosystem Service for Water Security Management: Choice Experiments versus Analytic Hierarchy Process. Sustainability. 2022; 14(23):15767. https://doi.org/10.3390/su142315767
Chicago/Turabian StyleArellanos, Erick, Wagner Guzman, and Ligia García. 2022. "How to Prioritize the Attributes of Water Ecosystem Service for Water Security Management: Choice Experiments versus Analytic Hierarchy Process" Sustainability 14, no. 23: 15767. https://doi.org/10.3390/su142315767
APA StyleArellanos, E., Guzman, W., & García, L. (2022). How to Prioritize the Attributes of Water Ecosystem Service for Water Security Management: Choice Experiments versus Analytic Hierarchy Process. Sustainability, 14(23), 15767. https://doi.org/10.3390/su142315767