# Design and Implementation of Novel Fault Ride through Circuitry and Control for Grid-Connected PV System

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

- Analysis of the grid-connected PVS with specifications 100 kW MATLAB/Simulink model is carried out, i.e., grid side parameters are evaluated in accordance with the acceptance limits focused on PCC during asymmetrical fault.
- A novel switch-type fault current limiter (STFCL) and bridge-type fault current limiter (BFCL) strategy is implemented to refine the LVRT operation.
- A detailed and keen comparison of BFCL with STFCL topology is performed.
- FCL-based steepest descent algorithm method (SD) is delineated and in contrast to formerly practiced PI controllers.
- Scenario of asymmetrical faults are used for 200 ms to authenticate LVRT operation of proposed SD + BFCL along with STFCL in comparison to the conventional PI strategy.
- There are performance evaluation analysis characteristics such as integral absolute error (IAE), integral square error (ISE) and integral of time-weighted absolute error (ITAE) are enforced to evaluate steadiness of the suggested controller and strategy.

## 2. Materials and Methods

#### 2.1. Mathematical Modeling of Photovoltaic Cell

#### 2.2. Mathematical Modeling of DC–DC Boost Converter

**D**= duty ratio

#### 2.3. Modeling of Inverter

#### 2.4. Mathematical Modeling of STFCL Circuit

#### 2.5. Mathematical Modeling of BFCL Circuit

#### 2.6. Description of PV Array

#### 2.7. Description of Block Diagram Test System and Fault Location

#### 2.7.1. Proposed Test System

#### 2.7.2. Description of Fault Location Test System, Grid and Local Load

## 3. Proposed Inverter Control and FRT Methods

#### 3.1. Switch-Type Fault Current Limiters (STFCL)

#### 3.2. BFCL (Bridge-Type Fault Current Limiter)

#### 3.3. The Description of Inverter Controller Modeling

#### Inverter Control Modeling

- Proportional Integral (PI) Controller

- 2.
- Steepest Descent Method.

- 3.
- The Equation for Controller Output

- 4.
- Jacobian Calculation

- 5.
- Final Equations for FLC–SD Algorithm

## 4. Results and Discussion

#### 4.1. Performance Evaluation Indices

#### 4.2. Single Phase to Ground (S-G) Fault

#### 4.3. Three-phase Faults to Ground Fault

## 5. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Conflicts of Interest

## References

- Willisand, H.L.; Scott, W.G. Distributed Power Generation: Planning and Evaluation; Marcel-Dekker: New York, NY, USA, 2000. [Google Scholar]
- PVPS Report—A Snapshot of Global PV—1992–2012, Preliminary Information from the IEA PVPS Programme. Report IEA-PVPS T1-22:201. 2012. Available online: https://iea-pvps.org/wp-content/uploads/2020/01/PVPS_report_-_A_Snapshot_of_Global_PV_-_1992-2012_-_FINAL_4.pdf (accessed on 25 May 2022).
- EPIA. Global Market Outlook for Photovoltaics 2013–2017; EPIA: Brussels, Belgium, 2013. [Google Scholar]
- REN21. Renewables 2014: Global Status Report. 2014, pp. 15–16. Available online: http://www.webcitation.org/6SKF06GAX (accessed on 25 May 2022).
- Iov, F.; Hansen, A.D.; Sørensen, P.E.; Cutululis, N.A. Mapping of Grid Faults and Grid Codes; Technical Report; Risø National Laboratory, Technical University of Denmark: Lyngby, Denmark, 2007. [Google Scholar]
- E.ON GmbH. Grid Code—High and Extra High Voltage. Available online: http://www.eon-netz.com/ (accessed on 25 May 2022).
- Braun, M.; Arnold, G.; Laukamp, H. Plugging into the Zeitgeist. IEEE Power Energy Mag.
**2009**, 7, 63–76. [Google Scholar] [CrossRef] - Comitato Elettrotecnico Italiano. CEI0-21: Reference Technical Rules for Connecting Users to the Active and Passive LV Distribution Companies of Electricity. Available online: http://www.ceiweb.it/ (accessed on 25 May 2022).
- Altin, M.; Goksu, O.; Teodorescu, R.; Rodriguez, P.; Jensen, B.B.; Helle, L. Overview of recent grid codes for wind power integration. In Proceedings of the 2010 International Conference on Optimization of Electrical and Electronic Equipment, Brasov, Romania, 20–22 May 2010; pp. 1152–1160. [Google Scholar]
- Ding, G.; Gao, F.; Tian, H.; Ma, C.; Chen, M.; He, G.; Liu, Y. Adaptive DC-link voltage control of two-stage photovoltaic inverter during low voltage ride-through operation. IEEE Trans. Power Electron.
**2016**, 31, 4182–4194. [Google Scholar] [CrossRef] - Beach, T.; Kozinda, A.; Rao, V. Advanced Inverters for Distributed PV: Latent Opportunities for Localized Reactive Power Compensation. Cal x Clean Coalition Energy C226. 2013. Available online: https://clean-coalition.org/wp-content/uploads/2018/12/CC_PV_AI_Paper_Final_Draft_v2.5_05_13_2013_AK.pdf (accessed on 25 May 2022).
- IEEE Std 1547.2-2008; IEEE Standard for Interconnecting Distributed Resources with Electric Power Systems. IEEE: Manhattan, NY, USA, 2009; pp. 1–217.
- Pannell, G.; Atkinson, D.J.; Zahawi, B. Minimum-Threshold Crowbar for a Fault-Ride-Through Grid-Code Compliant DFIG Wind Turbine. IEEE Trans. Energy Convers.
**2010**, 25, 750–759. [Google Scholar] [CrossRef] - Walid, A.; Alaboudy, A.H.K.; Azmy, A.M. Comparison Between Outer Crowbar and RSFCL for LVRT Capability Enhancement of Wind Turbines Conversion System. In Proceedings of the 2019 21st International Middle East Power System Conference (MEPCON), Cario, Egypt, 17–19 December 2019; pp. 884–889. [Google Scholar] [CrossRef]
- Rodriguez, P.; Timbus, A.V.; Teodorescu, R.; Liserre, M.; Blaabjerg, F. Flexible active power control of distributed power generation systems during grid faults. IEEE Trans. Ind. Electron.
**2007**, 54, 2583–2592. [Google Scholar] [CrossRef] - Teodorescu, R.; Liserre, M.; Rodriguez, P. Grid Converters for Photovoltaic and Wind Power Systems; Wiley: Hoboken, NJ, USA, 2011; Volume 29. [Google Scholar]
- Islam, S.U.; Zeb, K.; Uddin, W.; Khan, I.; Ishfaq, M.; Ullah, Z.; Kim, H.J. Design and Investigation of FRT Schemes for Three-Phase Grid-Tied PV System. In Proceedings of the 2019 15th International Conference on Emerging Technologies, Orlando, FL, USA, 9–12 December 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Islam, S.U.; Zeb, K.; Uddin, W.; Khan, I.; Ishfaq, M.; Busarello, M.; Kim, H.J. Design of proportional Resonant Harmonic Compensator and Fault Ride Trough Strategies for a Grid Connected Photovoltaic System. Electronics
**2018**, 7, 451. [Google Scholar] [CrossRef] [Green Version] - Tran, T.V.; Kim, M.; Kim, K.H. Frequency Adaptive Current Control Scheme for Grid-connected Inverter without Grid Voltage Sensors Based on Gradient Steepest Descent Method. Energies
**2019**, 12, 4266. [Google Scholar] [CrossRef] [Green Version] - Asghar, R.; Rehman, F.; Ullah, Z.; Aman, A.; Iqbal, K.; Nawaz, A.A. Modified switch type fault current limiter for low-voltage ride-through enhancement and reactive power support of DFIG-WT under grif faults. IET Renew. Power Gener.
**2020**, 14, 1481–1490. [Google Scholar] [CrossRef] - Guo, W.; Xiao, L.; Dai, S.; Li, Y.; Xiu, X.; Zhou, W.; Li, L. LVRT Capability Enhancement of DFIG with Switch-Type Fault Current Limiter. IEEE Trans. Ind. Electron.
**2015**, 63, 332–342. [Google Scholar] [CrossRef] - Firouzi, M.; Gharehpetian, G.B. Improving Fault Ride-Through Capability of Fixed-Speed Wind Turbine by Using Bridge-Type Fault Current Limiter. IEEE Trans. Energy Convers.
**2013**, 28, 361–369. [Google Scholar] [CrossRef] - Zeb, K.; Uddin, W.; Khan, M.A.; Haider, A.A.; Kim, H.J. A comparative assessment of scalar controlled induction motor using PI, adaptive sliding mode, and FLC based on SD controllers. In Proceedings of the 2017 First International Conference on Latest Trends in Electrical Engineering and Computing Technologies (INTELLECT), Karachi, Pakistan, 15–16 November 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Pizarro-Lerma, A.; Santibañez, V.; Garcia-Hernandez, R.; Villalobos-Chin, J. Sectorial Fuzzy Controller Plus Feedforward for the Trajectory Tracking of Robotic Arms in Joint Space. Mathematics
**2021**, 9, 616. [Google Scholar] [CrossRef]

**Figure 3.**The proposed system configuration for simulation consists of three combinations of FRT strategies and inverter control: (

**a**) PI + STFCL, (

**b**) PI/SD + BFCL.

Panel Characteristics | Unit | Value |
---|---|---|

PV Array Maximum power | kW | 100 |

Open Circuit Voltage ${V}_{OC}$ | Volt | 64.2 |

Short-Circuit Current ${I}_{SC}$ | Amp | 5.96 |

Voltage at Maximum Power Point ${V}_{mp}$ | Volt | 54.7 |

Current at Maximum Power Point ${I}_{mp}$ | Amp | 5.58 |

Control Strategies | Grid Voltage | ||
---|---|---|---|

IAE | ISE | ITAE | |

PI + STFCL | 0.005138 | 0.02684 | 0.003534 |

PI + BFCL | 0.004452 | 0.02154 | 0.002117 |

SD + BFCL | 0.002485 | 0.008989 | 0.001027 |

Control Strategies | Grid Voltage | ||
---|---|---|---|

IAE | ISE | ITAE | |

PI + STFCL | 0.02165 | 0.2582 | 0.08278 |

PI + BFCL | 0.006226 | 0.0367 | 0.007239 |

SD + BFCL | 0.00269 | 0.01139 | 0.001799 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Kim, D.; Ramadhan, U.F.; Islam, S.U.; Jung, S.; Yoon, M.
Design and Implementation of Novel Fault Ride through Circuitry and Control for Grid-Connected PV System. *Sustainability* **2022**, *14*, 9736.
https://doi.org/10.3390/su14159736

**AMA Style**

Kim D, Ramadhan UF, Islam SU, Jung S, Yoon M.
Design and Implementation of Novel Fault Ride through Circuitry and Control for Grid-Connected PV System. *Sustainability*. 2022; 14(15):9736.
https://doi.org/10.3390/su14159736

**Chicago/Turabian Style**

Kim, Donghwi, Umar Fitra Ramadhan, Saif Ul Islam, Seungmin Jung, and Minhan Yoon.
2022. "Design and Implementation of Novel Fault Ride through Circuitry and Control for Grid-Connected PV System" *Sustainability* 14, no. 15: 9736.
https://doi.org/10.3390/su14159736