Social Sustainable Urban Air Mobility in Europe
Abstract
:1. Introduction
2. Social Sustainability in Urban (Air) Transportation
3. Methodology
3.1. Adoption of SUMI on pUAM Characteristics
3.2. Literature Analysis
4. Results
4.1. Affordability of pUAM
4.2. Inclusivity of pUAM for Mobility-Impaired Groups
4.3. Access to pUAM Services
4.3.1. Vertiport Placement
4.3.2. Reachability of Vertiports
4.3.3. Vertiport Frequencies
4.4. Satisfaction with pUAM
4.4.1. Perceived Safety
4.4.2. Perceived Affordability
4.4.3. Perceived Service Reliability
4.4.4. Perceived Easiness to Use
4.5. Impact of pUAM on the Quality of Public Spaces
5. Discussion
6. Conclusions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- SESAR JU European Drones Outlook Study Unlocking the Value for Europe; Publications Office of the European Union: Brussels, Belgium, 2016; pp. 21–25.
- Hader, M.; Baur, S.; Kopera, S.; Schönberg, T.; Hasenberg, J.-P. The High-Flying Industry: Urban Air Mobility Takes Off. Urban Air Mobility—An Industry Takes Off. Investments Are over 20 Times Higher than Four Years Ago; Roland Berger GmbH: Munich, Germany, 2020. [Google Scholar]
- SESAR JU European ATM Master Plan-Roadmap for the Safe Integration of Drones into All Classes of Airspace; Publications Office of the European Union: Brussels, Belgium, 2018.
- Kellermann, R.; Biehle, T.; Fischer, L. Drones for Parcel and Passenger Transportation: A Literature Review. Transp. Res. Interdiscip. Perspect. 2020, 4, 100088. [Google Scholar] [CrossRef]
- International Transport Forum (ITF). Ready for Take Off? Integrating Drones into the Transport System; OECD Publishing: Paris, France, 2021. [Google Scholar]
- Maheshwari, T.; Axhausen, K.W. How Will the Technological Shift in Transportation Impact Cities? A Review of Quantitative Studies on the Impacts of New Transportation Technologies. Sustainability 2021, 13, 3013. [Google Scholar] [CrossRef]
- Mouratidis, K.; Peters, S.; van Wee, B. Transportation Technologies, Sharing Economy, and Teleactivities: Implications for Built Environment and Travel. Transp. Res. Part D Transp. Environ. 2021, 92, 102716. [Google Scholar] [CrossRef]
- Straubinger, A.; Verhoef, E.T.; de Groot, H.L.F. Going Electric: Environmental and Welfare Impacts of Urban Ground and Air Transport. Transp. Res. Part D Transp. Environ. 2022, 102, 103146. [Google Scholar] [CrossRef]
- Redefining “Urban”: A New Way to Measure Metropolitan Areas; OECD: Paris, France, 2012; ISBN 978-92-64-17405-4.
- Bundesinstitut für Bau-, Stadt- und Raumforschung (BBSR) im Bundesamt für Bauwesen und Raumordnung (BBR). Neue Leipzig Charta-Die Transformative Kraft der Städte für das Gemeinwohl; Bundesamt für Bauwesen und Raumordnung: Bonn, Germany, 2020; pp. 10–11. [Google Scholar]
- Straubinger, A.; Kluge, U.; Fu, M.; Al Haddad, C.; Ploetner, K.O.; Antoniou, C. Identifying Demand and Acceptance Drivers for User Friendly Urban Air Mobility Introduction. In Towards User-Centric Transport in Europe 2; Müller, B., Meyer, G., Eds.; Lecture Notes in Mobility; Springer International Publishing: Cham, Switzerland, 2020; pp. 117–134. ISBN 978-3-030-38027-4. [Google Scholar]
- Shaheen, S.; Cohen, A. Mobility on Demand (MOD) and Mobility as a Service (MaaS): Early Understanding of Shared Mobility Impacts and Public Transit Partnerships. In Demand for Emerging Transportation Systems; Elsevier: Amsterdam, The Netherlands, 2020; pp. 37–59. ISBN 978-0-12-815018-4. [Google Scholar]
- Edwards, T.; Price, G. EVTOL Passenger Acceptance; National Aeronautics and Space Administration, Ames Research Center: Mountain View, CA, USA, 2020.
- Commission of the European Communities a Community Strategy for “Sustainable Mobility”: Green Paper on the Impact of Transport on the Environment; European Commission: Brussels, Belgium, 1992.
- Holden, E.; Gilpin, G.; Banister, D. Sustainable Mobility at Thirty. Sustainability 2019, 11, 1965. [Google Scholar] [CrossRef] [Green Version]
- Litman, T. Developing Indicators for Comprehensive and Sustainable Transport Planning. Transp. Res. Rec. 2007, 2017, 10–15. [Google Scholar] [CrossRef] [Green Version]
- Seabra, L.O.; Taco, P.W.G.; Dominguez, E.M. Sustentabilidade Em Transportes: Do Conceito Às Políticas Públicas de Mobilidade Urbana. Rev. Dos Transp. Públicos-ANTP 2013, 35, 103–124. [Google Scholar]
- Indicators for Sustainability. In Encyclopedia of Sustainability in Higher Education; Filho, L.W. (Ed.) Springer International Publishing: Cham, Switzerland, 2019; p. 932. ISBN 978-3-030-11351-3. [Google Scholar]
- Bebber, S.; Libardi, B.; De Atayde Moschen, S.; Correa da Silva, M.B.; Cristina Fachinelli, A.; Nogueira, M.L. Sustainable Mobility Scale: A Contribution for Sustainability Assessment Systems in Urban Mobility. Clean. Eng. Technol. 2021, 5, 100271. [Google Scholar] [CrossRef]
- Jeekel, H. Social Sustainability and Smart Mobility: Exploring the Relationship. Transp. Res. Procedia 2017, 25, 4296–4310. [Google Scholar] [CrossRef]
- Torrisi, V.; Garau, C.; Ignaccolo, M.; Inturri, G. “Sustainable Urban Mobility Plans”: Key Concepts and a Critical Revision on SUMPs Guidelines. In Computational Science and Its Applications–ICCSA 2020; Gervasi, O., Murgante, B., Misra, S., Garau, C., Blečić, I., Taniar, D., Apduhan, B.O., Rocha, A.M.A.C., Tarantino, E., Torre, C.M., et al., Eds.; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2020; Volume 12255, pp. 613–628. ISBN 978-3-030-58819-9. [Google Scholar]
- Haghshenas, H.; Vaziri, M. Urban Sustainable Transportation Indicators for Global Comparison. Ecol. Indic. 2012, 15, 115–121. [Google Scholar] [CrossRef]
- European University Institute towards a Common European Framework for Sustainable Urban Mobility Indicators; European University Institute: Fiesole, Italy, 2020.
- Al Haddad, C.; Fu, M.; Straubinger, A.; Plötner, K.; Antoniou, C. Choosing Suitable Indicators for the Assessment of Urban Air Mobility: A Case Study of Upper Bavaria, Germany. Eur. J. Transp. Infrastruct. Res. 2020, 20, 214–232. [Google Scholar] [CrossRef]
- Directorate-General for Mobility and Transport Sustainable Urban Mobility Indicators (SUMI). Indicators 1, 2, 6, 12, and 14. Available online: https://transport.ec.europa.eu/transport-themes/clean-transport-urban-transport/sumi_en (accessed on 24 July 2022).
- Vascik, P.D. Systems Analysis of Urban Air Mobility Operational Scaling. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2020. [Google Scholar]
- European Commission; Directorate-General for Employment, Social Affairs and Inclusion; Grammeno, S. European Comparative Data on Europe 2020 and Persons with Disabilities: Labour Market, Education, Poverty and Health Analysis and Trends; Publications Office of the European Union: Brussels, Belgium, 2020. [Google Scholar]
- Mehta, V. The Street: A Quintessential Social Public Space; Routledge: Oxfordshire, UK, 2013; p. 57. ISBN 978-0-203-06763-5. [Google Scholar]
- Okoli, C.; Schabram, K. A Guide to Conducting a Systematic Literature Review of Information Systems Research. Sprouts Work. Pap. Inf. Syst. 2010, 10. [Google Scholar] [CrossRef] [Green Version]
- Vom Brocke, J.; Simons, A.; Niehaves, B.; Riemer, K.; Plattfaut, R.; Cleven, A. Reconstructing the Giant: On the Importance of Rigour in Documenting the Literature Search Process. In Proceedings of the ECIS 2009, Verona, Italy, 7–10 June 2009; p. 161. [Google Scholar]
- Hepplestone, S.; Holden, G.; Irwin, B.; Parkin, H.J.; Thorpe, L. Using Technology to Encourage Student Engagement with Feedback: A Literature Review. Res. Learn. Technol. 2011, 19, 117–127. [Google Scholar] [CrossRef]
- Webster, J.; Watson, R.T. Analyzing the Past to Prepare for the Future: Writing a Literature Review. MIS Q. 2002, 26, 13–23. [Google Scholar]
- Garrow, L.A.; German, B.J.; Leonard, C.E. Urban Air Mobility: A Comprehensive Review and Comparative Analysis with Autonomous and Electric Ground Transportation for Informing Future Research. Transp. Res. Part C Emerg. Technol. 2021, 132, 103377. [Google Scholar] [CrossRef]
- Lu, C.-J.; Shulman, S.W. Rigor and Flexibility in Computer-Based Qualitative Research: Introducing the Coding Analysis Toolkit. Int. J. Mult. Res. Approaches 2008, 2, 105–117. [Google Scholar] [CrossRef] [Green Version]
- Ando, H.; Cousins, R.; Young, C. Achieving Saturation in Thematic Analysis: Development and Refinement of a Codebook. Compr. Psychol. 2014, 3. [Google Scholar] [CrossRef] [Green Version]
- Niklaß, M.; Dzikus, N.; Swaid, M.; Berling, J.; Lührs, B.; Lau, A.; Terekhov, I.; Gollnick, V. A Collaborative Approach for an Integrated Modeling of Urban Air Transportation Systems. Aerospace 2020, 7, 50. [Google Scholar] [CrossRef]
- Rimjha, M.; Hotle, S.; Trani, A.; Hinze, N. Commuter Demand Estimation and Feasibility Assessment for Urban Air Mobility in Northern California. Transp. Res. Part A Policy Pract. 2021, 148, 506–524. [Google Scholar] [CrossRef]
- Goyal, R.; Reiche, C.; Fernando, C.; Cohen, A. Advanced Air Mobility: Demand Analysis and Market Potential of the Airport Shuttle and Air Taxi Markets. Sustainability 2021, 13, 7421. [Google Scholar] [CrossRef]
- Ploetner, K.O.; Al Haddad, C.; Antoniou, C.; Frank, F.; Fu, M.; Kabel, S.; Llorca, C.; Moeckel, R.; Moreno, A.T.; Pukhova, A.; et al. Long-Term Application Potential of Urban Air Mobility Complementing Public Transport: An Upper Bavaria Example. CEAS Aeronaut. J. 2020, 11, 991–1007. [Google Scholar] [CrossRef]
- Young, L.A. Accessibility Design and Operational Considerations in the Development of Urban Aerial Mobility Vehicles and Networks; NASA Ames Research Center: San Jose, CA, USA, 2020.
- Budd, L.; Ison, S. Supporting the Needs of Special Assistance (Including PRM) Passengers: An International Survey of Disabled Air Passenger Rights Legislation. J. Air Transp. Manag. 2020, 87, 101851. [Google Scholar] [CrossRef]
- Straubinger, A.; Michelmann, J.; Biehle, T. Business Model Options for Passenger Urban Air Mobility. CEAS Aeronaut. J. 2021, 12, 361–380. [Google Scholar] [CrossRef]
- Drabarz, A.K. Harmonising Accessibility in the EU Single Market: Challenges for Making the European Accessibility Act Work. RECL 2020, 43, 83–102. [Google Scholar] [CrossRef]
- Rimjha, M.; Hotle, S.; Trani, A.; Hinze, N.; Smith, J.C. Urban Air Mobility Demand Estimation for Airport Access: A Los Angeles International Airport Case Study. In Proceedings of the 2021 Integrated Communications Navigation and Surveillance Conference (ICNS), IEEE, Dulles, VA, USA, 20 April 2021. [Google Scholar]
- Rimjha, M.; Hotle, S.; Trani, A.; Hinze, N.; Smith, J.; Dollyhigh, S. Urban Air Mobility: Airport Ground Access Demand Estimation. In Proceedings of the AIAA AVIATION 2021 Forum, Virtual Event, 2 August 2021. [Google Scholar]
- Pukhova, A.; Llorca, C.; Moreno, A.; Staves, C.; Zhang, Q.; Moeckel, R. Flying Taxis Revived: Can Urban Air Mobility Reduce Road Congestion? J. Urban Mobil. 2021, 1, 100002. [Google Scholar] [CrossRef]
- Postorino, M.N.; Sarné, G.M.L. Reinventing Mobility Paradigms: Flying Car Scenarios and Challenges for Urban Mobility. Sustainability 2020, 12, 3581. [Google Scholar] [CrossRef]
- Rath, S.; Chow, J.Y.J. Air Taxi Skyport Location Problem for Airport Access; Cornell University: Ithaca, NY, USA, 27 September 2021. [Google Scholar] [CrossRef]
- Kleinbekman, I.C.; Mitici, M.; Wei, P. Rolling-Horizon Electric Vertical Takeoff and Landing Arrival Scheduling for On-Demand Urban Air Mobility. J. Aerosp. Inf. Syst. 2020, 17, 150–159. [Google Scholar] [CrossRef]
- Jeong, J.; So, M.; Hwang, H.-Y. Selection of Vertiports Using K-Means Algorithm and Noise Analyses for Urban Air Mobility (UAM) in the Seoul Metropolitan Area. Appl. Sci. 2021, 11, 5729. [Google Scholar] [CrossRef]
- European Aviation Safety Agency (EASA) Vertiports. Prototype Technical Specifications for the Design of VFR Vertiports for Operation with Manned VTOL-Capable Aircraft Certified in the Enhanced Category (PTS-VPT-DSN); European Aviation Safety Agency: Cologne, Germany, 2022; p. 72.
- Preis, L.; Hornung, M. Vertiport Operations Modeling, Agent-Based Simulation and Parameter Value Specification. Electronics 2022, 11, 1071. [Google Scholar] [CrossRef]
- Rimjha, M.; Trani, A. Urban Air Mobility: Factors Affecting Vertiport Capacity. In Proceedings of the 2021 Integrated Communications Navigation and Surveillance Conference (ICNS), IEEE, Dulles, VA, USA, 20 April 2021; pp. 1–14. [Google Scholar]
- Cohen, A.P.; Shaheen, S.A.; Farrar, E.M. Urban Air Mobility: History, Ecosystem, Market Potential, and Challenges. IEEE Trans. Intell. Transp. Syst. 2021, 22, 6074–6087. [Google Scholar] [CrossRef]
- European Aviation Safety Agency (EASA) Full Report. Study on the Societal Acceptance of Urban Air Mobility in Europe; EASA: Cologne, Germany, 2021.
- Biehle, T.; Kellermann, R. Mind the Gap: Concepts and Pathways for a Societally Acceptable Future of UAS in Europe; Sky Limits: Berlin, Germany, 2019. [Google Scholar]
- Northeast UAS Airspace Integration Research Alliance (NUAIR) High-Density Automated Vertiport Concept of Operations; NASA: Washington, DC, USA, 2021; p. 116.
- Sky Limits Traffic Solution or Technical Hype? Representative Population Survey on Delivery Drones and Air Taxis in Germany; Sky Limits: Berlin, Germany, 2020.
- Winter, S.R.; Rice, S.; Lamb, T.L. A Prediction Model of Consumer’s Willingness to Fly in Autonomous Air Taxis. J. Air Transp. Manag. 2020, 89, 101926. [Google Scholar] [CrossRef]
- Al Haddad, C.; Chaniotakis, E.; Straubinger, A.; Plötner, K.; Antoniou, C. Factors Affecting the Adoption and Use of Urban Air Mobility. Transp. Res. Part A Policy Pract. 2020, 132, 696–712. [Google Scholar] [CrossRef]
- Lim, C.; Kim, Y.W.; Ji, Y.G.; Yoon, S.; Lee, S.C. Is This Flight Headed Downtown?: User Experience Considerations for Urban Air Mobility. In Proceedings of the CHI Conference on Human Factors in Computing Systems Extended Abstracts, New Orleans, LA, USA, 29 April–5 May 2022; ACM: New Orleans, LA, USA, 2022; pp. 1–7. [Google Scholar]
- Chancey, E.T.; Politowicz, M.S. Public Trust and Acceptance for Concepts of Remotely Operated Urban Air Mobility Transportation. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 2020, 64, 1044–1048. [Google Scholar] [CrossRef]
- Winter, S.R.; Rice, S.; Mehta, R.; Cremer, I.; Reid, K.M.; Rosser, T.G.; Moore, J.C. Indian and American Consumer Perceptions of Cockpit Configuration Policy. J. Air Transp. Manag. 2015, 42, 226–231. [Google Scholar] [CrossRef]
- Ahmed, S.S.; Fountas, G.; Eker, U.; Still, S.E.; Anastasopoulos, P.C. An Exploratory Empirical Analysis of Willingness to Hire and Pay for Flying Taxis and Shared Flying Car Services. J. Air Transp. Manag. 2021, 90, 101963. [Google Scholar] [CrossRef]
- Breidert, C.; Hahsler, M.; Reutterer, T. A Review of Methods for Measuring Willingness-to-Pay. Innov. Mark. 2006, 2, 8–32. [Google Scholar]
- Merkert, R.; Beck, M. Value of Travel Time Savings and Willingness to Pay for Regional Aviation. Transp. Res. Part A Policy Pract. 2017, 96, 29–42. [Google Scholar] [CrossRef]
- Balac, M.; Rothfeld, R.L.; Horl, S. The Prospects of On-Demand Urban Air Mobility in Zurich, Switzerland. In Proceedings of the 2019 IEEE Intelligent Transportation Systems Conference (ITSC), IEEE, Auckland, New Zealand, 27–39 October 2019; pp. 906–913. [Google Scholar]
- Han, H.; Yu, J.; Kim, W. An Electric Airplane: Assessing the Effect of Travelers’ Perceived Risk, Attitude, and New Product Knowledge. J. Air Transp. Manag. 2019, 78, 33–42. [Google Scholar] [CrossRef]
- Rajendran, S. Real-Time Dispatching of Air Taxis in Metropolitan Cities Using a Hybrid Simulation Goal Programming Algorithm. Expert Syst. Appl. 2021, 178, 115056. [Google Scholar] [CrossRef]
- Mostofi, H.; Biehle, T.; Kellermann, R.; Dienel, H.L. Public Attitude towards of Air Taxis: SEM Model; Technische Universität Berlin: Berlin, Germany, 2022. [Google Scholar]
- Nentwich, M.; Horváth, D.M. Delivery Drones from a Technology Assessment Perspective; Institute for Technology Assessment Vienna (ITA): Vienna, Austria, 2018. [Google Scholar]
- Eißfeldt, H. Supporting Urban Air Mobility with Citizen Participatory Noise Sensing: A Concept. In Proceedings of the Companion 2019 World Wide Web Conference, San Francisco, CA, USA, 13 May 2019; ACM: New York, NY, USA; pp. 93–95. [Google Scholar]
- UAM Initiative Cities Community–UIC2. Manifesto on the Multilevel Governance of the Urban Sky. 2020. Available online: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwi4tpzImJ35AhWny4sBHYHXCzEQFnoECAcQAQ&url=https%3A%2F%2Fwww.amsterdamdroneweek.com%2F-%2Fmedia%2Fproject%2Fevent-sites%2Famsterdam-drone-week%2Fadw%2Fdocuments%2F2021%2Fuic2-manifesto---multilevel-governance-of-the-urban-sky_wtih-supporting-cities_14dec2021.pdf&usg=AOvVaw1BaS3405ovyiW1VN54avg5 (accessed on 25 July 2022).
- Decker, C.; Chiambaretto, P. Economic Policy Choices and Trade-Offs for Unmanned Aircraft Systems Traffic Management (UTM): Insights from Europe and the United States. Transp. Res. Part A Policy Pract. 2022, 157, 40–58. [Google Scholar] [CrossRef]
- Biehle, T. Ständige Überwachung–Militärische Interessen im zivilen Drohnenmarkt Europas. PROKLA. Z. Für Krit. Soz. 2020, 50, 665–680. [Google Scholar] [CrossRef]
- Liebe, U.; Preisendörfer, P.; Bruderer Enzler, H. The Social Acceptance of Airport Expansion Scenarios: A Factorial Survey Experiment. Transp. Res. Part D Transp. Environ. 2020, 84, 102363. [Google Scholar] [CrossRef]
- Bauranov, A.; Rakas, J. Designing Airspace for Urban Air Mobility: A Review of Concepts and Approaches. Prog. Aerosp. Sci. 2021, 125, 100726. [Google Scholar] [CrossRef]
SUMI Adopted for pUAM: | Research Focus: | Keywords for Database Search: |
---|---|---|
Affordability of pUAM for the poorest | Budget required to use pUAM on a regular basis for commuting and inner-city travel | uam AND affordability OR equity OR operating costs OR pricing OR demand |
Inclusivity of pUAM for mobility-impaired groups | Prospective accessibility of pUAM services and infrastructure to persons with reduced mobility | uam AND inclusivity OR accessibility OR equality |
Accessibility of pUAM services | Spatial distribution of vertiports and their performance. | uam OR vertiports AND accessibility OR scalability OR modal share OR location OR distribution OR capacity OR performance OR passenger handling |
Satisfaction with pUAM | Perceived satisfaction of using pUAM, especially regarding its safety, affordability, reliability and easiness to obtain/convenience | uam AND user adoption OR acceptance OR satisfaction OR reliability OR affordability OR safety OR convenience |
Impact of UAM on the quality of public spaces | Impact of pUAM and related infrastructure on the perceived satisfaction with public spaces and on the quality of urban life/welfare. | uam OR vertiports AND visual pollution OR privacy OR public spaces OR urban quality OR acceptance |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biehle, T. Social Sustainable Urban Air Mobility in Europe. Sustainability 2022, 14, 9312. https://doi.org/10.3390/su14159312
Biehle T. Social Sustainable Urban Air Mobility in Europe. Sustainability. 2022; 14(15):9312. https://doi.org/10.3390/su14159312
Chicago/Turabian StyleBiehle, Tobias. 2022. "Social Sustainable Urban Air Mobility in Europe" Sustainability 14, no. 15: 9312. https://doi.org/10.3390/su14159312