Farmer’s Perception, Agricultural Subsidies, and Adoption of Sustainable Agricultural Practices: A Case from Mongolia
Abstract
:1. Introduction
2. Adoption of SAPs and the Government Policy Overview
3. Conceptual Framework and Research Hypothesis
4. Materials and Methods
4.1. Analytical Methods
4.2. Study Area and Data Description
5. Results and Discussion
5.1. Wheat Growing Regions and Intensity of Adoption
5.2. Results of SEM
5.2.1. Measurement Model—Reliability and Validity Test
5.2.2. The Results of the Structural Model
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. NSP—Sustainable Agricultural Practices. Available online: http://www.fao.org/agriculture/crops/thematic-sitemap/theme/spi/soil-biodiversity/agriculture-and-soil-biodiversity/sustainable-agricultural-practices/en/ (accessed on 8 May 2020).
- Asfaw, D.; Neka, M. Factors affecting adoption of soil and water conservation practices: The case of Wereillu Woreda (District), South Wollo Zone, Amhara Region, Ethiopia. Int. Soil Water Conserv. Res. 2017, 5, 273–279. [Google Scholar] [CrossRef]
- Pimentel, D. Soil Erosion: A Food and Environmental Threat. Environ. Dev. Sustain. 2006, 8, 119–137. [Google Scholar] [CrossRef]
- Obalum, S.E.; Chibuike, G.U.; Peth, S.; Ouyang, Y. Soil organic matter as sole indicator of soil degradation. Environ. Monit. Assess. 2017, 189, 176. [Google Scholar] [CrossRef]
- Issaka, S.; Ashraf, M.A. Impact of soil erosion and degradation on water quality: A review. Geol. Ecol. Landsc. 2017, 1, 1–11. [Google Scholar] [CrossRef] [Green Version]
- FAO; ITPS. Status of the World’s Soil Resources (SWSR)—Main Report; FAO: Rome, Italy, 2015. [Google Scholar]
- Raza, M.H.; Abid, M.; Yan, T.; Ali Naqvi, S.A.; Akhtar, S.; Faisal, M. Understanding farmers’ intentions to adopt sustainable crop residue management practices: A structural equation modeling approach. J. Clean. Prod. 2019, 227, 613–623. [Google Scholar] [CrossRef]
- Bopp, C.; Engler, A.; Poortvliet, P.M.; Jara-Rojas, R. The role of farmers’ intrinsic motivation in the effectiveness of policy incentives to promote sustainable agricultural practices. J. Environ. Manag. 2019, 244, 320–327. [Google Scholar] [CrossRef] [PubMed]
- Nkomoki, W.; Bavorová, M.; Banout, J. Adoption of sustainable agricultural practices and food security threats: Effects of land tenure in Zambia. Land Use Policy 2018, 78, 532–538. [Google Scholar] [CrossRef]
- Adnan, N.; Nordin, S.M.; bin Abu Bakar, Z. Understanding and facilitating sustainable agricultural practice: A comprehensive analysis of adoption behaviour among Malaysian paddy farmers. Land Use Policy 2017, 68, 372–382. [Google Scholar] [CrossRef]
- Zeweld, W.; Van Huylenbroeck, G.; Tesfay, G.; Speelman, S. Smallholder farmers’ behavioural intentions towards sustainable agricultural practices. J. Environ. Manag. 2017, 187, 71–81. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Feng, S.; Luo, T.; Guan, Z. What drives the adoption of sustainable production technology? Evidence from the large scale farming sector in East China. J. Clean. Prod. 2020, 257, 120611. [Google Scholar] [CrossRef]
- Pilarova, T.; Bavorova, M.; Kandakov, A. Do farmer, household and farm characteristics influence the adoption of sustainable practices? The evidence from the Republic of Moldova. Int. J. Agric. Sustain. 2018, 16, 367–384. [Google Scholar] [CrossRef]
- Teklewold, H.; Kassie, M.; Shiferaw, B. Adoption of Multiple Sustainable Agricultural Practices in Rural Ethiopia. J. Agric. Econ. 2013, 64, 597–623. [Google Scholar] [CrossRef]
- Yami, M.; Van Asten, P. Policy support for sustainable crop intensification in Eastern Africa. J. Rural Stud. 2017, 55, 216–226. [Google Scholar] [CrossRef]
- Tey, Y.S.; Li, E.; Bruwer, J.; Abdullah, A.M.; Brindal, M.; Radam, A.; Ismail, M.M.; Darham, S. The relative importance of factors influencing the adoption of sustainable agricultural practices: A factor approach for Malaysian vegetable farmers. Sustain. Sci. 2013, 9, 17–29. [Google Scholar] [CrossRef]
- Sustainable Agriculture: German-Mongolian Joint Project (DMKNL). Handbook of Soil Erosion Prevention Methods; DMKNL: Ulaanbaatar, Mongolia, 2018. [Google Scholar]
- Nyamsambuu, N.; Ikhbayar, D. Cropland Use and Soil Erosion of Mongolia. Available online: https://www.1212.mn/BookLibraryDownload.ashx?url=gazar_tarialan_2019.pdf&ln=Mn (accessed on 23 January 2021).
- Wang, J.; Wei, H.; Cheng, K.; Ochir, A.; Davaasuren, D.; Li, P.; Shun Chan, F.K.; Nasanbat, E. Spatio-Temporal Pattern of Land Degradation from 1990 to 2015 in Mongolia. Environ. Dev. 2020, 34, 100497. [Google Scholar] [CrossRef]
- Mijiddorj, J. Soil erosion is the beginning of an ecological catastrophe. J. Soil Sci. Mong. 2012, 29, 6–14. [Google Scholar]
- Food and Agricultural Organizations (FAO). Special Report: FAO/WFP Crop. and Livestock Assessment Mission to Mongolia; FAO: Rome, Italy, 2017. [Google Scholar]
- National Statistics Office (NSO). An Overview of Agricultural Sector; NSO: Ulaanbaatar, Mongolia, 2019.
- Gunjal, K.; Annor-Frempong, C. Review Estimation and Analysis of Agricultural Subsidies in Mongolia; World Bank: Washington, DC, USA, 2014. [Google Scholar]
- Sustainable Agriculture: German-Mongolian Joint Project (DMKNL). Projekthintergrund. Available online: https://www.kooperationsprojekt-mng.de/de/projekthintergrund.html (accessed on 13 September 2020).
- Sustainable Agriculture: German-Mongolian Joint Project (DMKNL). Experiences and Recommendations of the German-Mongolian Sustainable Agriculture Project: 2013–2015; DMKNL: Ulaanbaatar, Mongolia, 2016; pp. 1–54. [Google Scholar]
- Wauters, E.; Mathijs, E. The adoption of farm level soil conservation practices in developed countries: A meta-analytic review. Int. J. Agric. Resour. Gov. Ecol. 2014, 10, 78–102. [Google Scholar] [CrossRef]
- Foguesatto, C.R.; Borges, J.A.R.; Machado, J.A.D. A review and some reflections on farmers’ adoption of sustainable agricultural practices worldwide. Sci. Total Environ. 2020, 729, 138831. [Google Scholar] [CrossRef]
- Ansari, S.A.; Tabassum, S. A New Perspective on the Adoption of Sustainable Agricultural Practices: A Review. Curr. Agric. Res. J. 2018, 6, 157–165. [Google Scholar] [CrossRef]
- Prokopy, L.S.; Floress, K.; Klotthor-Weinkauf, D.; Baumgart-Getz, A. Determinants of agricultural best management practice adoption: Evidence from the literature. J. Soil Water Conserv. 2008, 63, 300–311. [Google Scholar] [CrossRef]
- Truelove, H.B.; Carrico, A.R.; Thabrew, L. A socio-psychological model for analyzing climate change adaptation: A case study of Sri Lankan paddy farmers. Glob. Environ. Chang. 2015, 31, 85–97. [Google Scholar] [CrossRef]
- Bockarjova, M.; Steg, L. Can Protection Motivation Theory predict pro-environmental behavior? Explaining the adoption of electric vehicles in the Netherlands. Glob. Environ. Chang. 2014, 28, 276–288. [Google Scholar] [CrossRef]
- Borges, J.A.R.; Oude Lansink, A.G.J.M.; Marques Ribeiro, C.; Lutke, V. Understanding farmers’ intention to adopt improved natural grassland using the theory of planned behavior. Livest. Sci. 2014, 169, 163–174. [Google Scholar] [CrossRef]
- Adnan, N.; Md Nordin, S.; Rahman, I.; Noor, A. Adoption of green fertilizer technology among paddy farmers: A possible solution for Malaysian food security. Land Use Policy 2017, 63, 38–52. [Google Scholar] [CrossRef]
- Joao, A.R.B.; Luzardo, F.; Vanderson, T.X. An interdisciplinary framework to study farmers decisions on adoption of innovation: Insights from Expected Utility Theory and Theory of Planned Behavior. Afr. J. Agric. Res. 2015, 10, 2814–2825. [Google Scholar] [CrossRef] [Green Version]
- Baumgart-Getz, A.; Prokopy, L.S.; Floress, K. Why farmers adopt best management practice in the United States: A meta-analysis of the adoption literature. J. Environ. Manag. 2012, 96, 17–25. [Google Scholar] [CrossRef] [Green Version]
- Wezel, A.; Casagrande, M.; Celette, F.; Vian, J.-F.; Ferrer, A.; Peigné, J. Agroecological practices for sustainable agriculture. A review. Agron. Sustain. Dev. 2013, 34, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Nasir Ahmad, N.S.B.; Mustafa, F.B.; Muhammad Yusoff, S.Y.; Didams, G. A systematic review of soil erosion control practices on the agricultural land in Asia. Int. Soil Water Conserv. Res. 2020, 8, 103–115. [Google Scholar] [CrossRef]
- FAO. Sustainable development and natural resources management. In Proceedings of the 25th Conference of FAO, Rome, Italy, 11–29 November 1989. [Google Scholar]
- Francis, C.A. Crop Rotations. In Encyclopedia of Soils in the Environment; Hillel, D., Ed.; Elsevier: Oxford, UK, 2005; pp. 318–322. [Google Scholar] [CrossRef]
- Ministry of Food Agriculture and Light Industry. Overview of the Agriculture Sector in Mongolia. Available online: http://mofa.gov.mn/exp/blog/8/998 (accessed on 13 September 2020).
- Ichinhorloo, D. Agricultural soil protection issues in Mongolia. Land Adm. 2017, 3, 52–61. [Google Scholar]
- NSO. Agriculture. In Mongolian Statistical Yearbook; NSO: Ulaanbaatar, Mongolia, 2018. [Google Scholar]
- Kumar, A.; Takeshima, H.; Thapa, G.; Adhikari, N.; Saroj, S.; Karkee, M.; Joshi, P.K. Adoption and diffusion of improved technologies and production practices in agriculture: Insights from a donor-led intervention in Nepal. Land Use Policy 2020, 95, 104621. [Google Scholar] [CrossRef]
- Pedzisa, T.; Rugube, L.; Winter-Nelson, A.; Baylis, K.; Mazvimavi, K. The Intensity of adoption of Conservation agriculture by smallholder farmers in Zimbabwe. Agrekon 2016, 54, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.; Bailey, A.; Fraser, I. Technology Adoption and Pest Control Strategies Among UK Cereal Farmers: Evidence from Parametric and Nonparametric Count Data Models. J. Agric. Econ. 2011, 62, 73–92. [Google Scholar] [CrossRef] [Green Version]
- Hadley, D. Patterns in Technical Efficiency and Technical Change at the Farm-level in England and Wales, 1982–2002. J. Agric. Econ. 2006, 57, 81–100. [Google Scholar] [CrossRef]
- Rizov, M.; Pokrivcak, J.; Ciaian, P. CAP Subsidies and Productivity of the EU Farms. J. Agric. Econ. 2013, 64, 537–557. [Google Scholar] [CrossRef]
- Schaak, H.; Mußhoff, O. Understanding the adoption of grazing practices in German dairy farming. Agric. Syst. 2018, 165, 230–239. [Google Scholar] [CrossRef]
- Ghanian, M.; Ghoochani, O.M.; Dehghanpour, M.; Taqipour, M.; Taheri, F.; Cotton, M. Understanding farmers’ climate adaptation intention in Iran: A protection-motivation extended model. Land Use Policy 2020, 94, 104553. [Google Scholar] [CrossRef]
- Agresti, A. Categorical Data Analysis, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2003. [Google Scholar]
- Hair, J.F.; Black, W.C.; Babin, B.J.; Anderson, R.E. Multivariate Data Analysis, 7th ed.; Pearson: London, UK, 2013. [Google Scholar]
- Jöreskog, K.G.; Sörbom, D. LISREL8: User’s Reference Guide; Scientific Software International Inc.: Chicago, IL, USA, 2001. [Google Scholar]
- Enkhmaa, B. Relative Assessment of Soil Fertility in Mongolia; Mongolian National University: Ulaanbaatar, Mongolia, 2008. [Google Scholar]
- Henseler, J.; Ringle, C.M.; Sinkovics, R.R. The use of partial least squares path modeling in international marketing. In New Challenges to International Marketing; Emerald Group Publishing: Bingley, UK, 2009; pp. 277–319. [Google Scholar] [CrossRef] [Green Version]
- Hunter, J.E.; Hamilton, M.A. The Advantages of Using Standardized Scores in Causal Analysis. Hum. Commun. Res. 2002, 28, 552–561. [Google Scholar] [CrossRef]
- Tang, J.; Folmer, H.; Xue, J. Technical and allocative efficiency of irrigation water use in the Guanzhong Plain, China. Food Policy 2015, 50, 43–52. [Google Scholar] [CrossRef]
- Dayer, A.A.; Lutter, S.H.; Sesser, K.A.; Hickey, C.M.; Gardali, T. Private Landowner Conservation Behavior Following Participation in Voluntary Incentive Programs: Recommendations to Facilitate Behavioral Persistence. Conserv. Lett. 2018, 11, e12394. [Google Scholar] [CrossRef] [Green Version]
- Rode, J.; Gómez-Baggethun, E.; Krause, T. Motivation crowding by economic incentives in conservation policy: A review of the empirical evidence. Ecol. Econ. 2015, 117, 270–282. [Google Scholar] [CrossRef]
Number of Practices Used | 0 | 1 | 2 | 3 | 4 |
---|---|---|---|---|---|
Proportion of farmers | 2.5% | 21.10% | 48.40% | 26.05% | 1.95% |
Variables | Short Names | Description | Mean | SD | Min | Max |
---|---|---|---|---|---|---|
Dependent variable | ||||||
Intensity of adoption | Adoption | number of SAP-s adopted | 2.01 | 0.81 | 0 | 4 |
Independent and control variables | ||||||
Soil fertility | Soil | bonitet score fertility evaluation | 68.2 | 5.4 | 48.7 | 75.8 |
Wheat acreage | Size | farming land, ha | 749.5 | 919.9 | 20 | 6648 |
Experience | Exp | ordinal (1–5 scale: below 5 years above 20 years) | 3.64 | 1.3 | 1 | 5 |
Information | Info | whether takes information from “sustainable agriculture” project (yes = 1, no = 0) | 0.56 | 0.5 | 0 | 1 |
Direct subsidy | Dsub | number of times granted direct payment in the last 3 years | 1.93 | 1.19 | 0 | 3 |
Input subsidy | Isub | number of times granted soft loans for inputs in the last 3 years | 0.79 | 0.88 | 0 | 3 |
Investment subsidy | Msub | whether granted soft loans for agricultural machinery in the last 3 years | 0.33 | 0.47 | 0 | 1 |
Perceptions | Short Names | Indicators | Mean | SD | Min | Max |
---|---|---|---|---|---|---|
Perceptions of severity (fully disagree = 1; to fully agree = 5) | Sev 1 | Soil erosion is getting worse over the past 3 years. | 3.30 | 0.85 | 1 | 5 |
Sev 2 | Soil erosion is severe in my area. | 3.14 | 0.98 | 1 | 5 | |
Sev 3 | Soil erosion would be more severe in the coming 3 years if no measures were taken. | 3.71 | 0.79 | 1 | 5 | |
Perception of vulnerability (very low = 1; to very high = 5) | Vulnerability | The vulnerability of farmland to soil erosion. | 2.83 | 0.76 | 1 | 5 |
Perception of self-efficacy (not at all = 1; completely = 5) | Reff 1 | For me to use SAP is totally under my control. | 3.65 | 0.88 | 1 | 5 |
Reff 2 | I have enough knowledge and competency for implementing SAP. | 3.25 | 1.03 | 1 | 5 | |
Reff 3 | I have sufficient resources financial, human, and technical for implementing SAP. | 2.90 | 0.84 | 1 | 5 | |
Perception of response-efficacy (fully disagree = 1; disagree = 2; somehow agree = 4; fully agree = 5) | Seff 1 | Sustainable agricultural practices allow for the improvement of soil productivity. | 3.13 | 0.65 | 2 | 5 |
Seff 2 | Sustainable agricultural practices allow for the improvement of economic benefits. | 2.66 | 0.78 | 1 | 5 | |
Seff 3 | Mentioned SAPs are effective ways to deal with the effects of soil erosion risks. | 2.71 | 0.72 | 1 | 4 |
Regions | Mean | St. Dev | Frequency |
---|---|---|---|
Central | 1.99 | 0.82 | 163 |
East | 2.10 | 0.72 | 29 |
Khangai | 1.70 | 0.87 | 27 |
Western | 2.50 | 0.61 | 20 |
Total | 2.01 | 0.81 | 239 |
Source | SS | Df | MS | F | p-Value |
---|---|---|---|---|---|
Between groups | 7.67 | 3 | 2.55 | 4.02 | 0.008 |
Within groups | 149.29 | 235 | 0.63 | ||
Total | 156.96 | 238 | 0.66 | ||
Bartlett’s test for equal variances: chi2(3) = 3.4039; Prob > chi2 = 0.333 |
Latent Constructs | Indicators | Coefficient/Loadings/ | S.E | R2 |
---|---|---|---|---|
Perception of severity | Severity 1 | 0.875 *** | 0.023 | 0.776 |
Severity 2 | 0.895 *** | 0.02 | 0.801 | |
Severity 3 | 0.823 *** | 0.027 | 0.678 | |
Perception of self-efficacy | Self-efficacy 1 | 0.445 *** | 0.082 | 0.198 |
Self-efficacy 2 | 0.568 *** | 0.085 | 0.322 | |
Self-efficacy 3 | 0.772 *** | 0.099 | 0.596 | |
Perception of response efficacy | Response efficacy 1 | 0.886 *** | 0.037 | 0.785 |
Response efficacy 2 | 0.776 *** | 0.045 | 0.602 | |
Response efficacy 3 | 0.635 *** | 0.046 | 0.403 |
Latent Constructs (Cut-Off Value) | AVE (≥0.5) | Construct Reliability (≥0.7) | Cronbach’s ALPHA (≥0.7) |
---|---|---|---|
Perception of severity | 0.85 | 0.94 | 0.90 |
Perception of self-efficacy | 0.41 | 0.67 | 0.61 |
Perception of response efficacy | 0.72 | 0.89 | 0.80 |
Variables | Adoption | Perception of Severity | Perception of Vulnerability | Perception of Self-Efficacy |
---|---|---|---|---|
Production subsidy | 0.013 | |||
(0.075) | ||||
Input subsidy | 0.044 | |||
(0.067) | ||||
Investment subsidy | 0.002 | |||
(0.068) | ||||
Information | 0.563 *** | |||
(0.075) | ||||
Soil fertility | −0.115 * | −0.151 *** | −0.012 | |
(0.063) | (0.062) | (0.061) | ||
Wheat acreage | 0.080 | |||
(0.073) | ||||
Experience | −0.093 | −0.079 | ||
(0.067) | (0.077) | |||
Vulnerability | 0.301 *** | |||
(0.08) | ||||
Severity | 0.450 *** | |||
(0.077) | ||||
Self-efficacy | 0.379 *** | |||
(0.071) | ||||
Response efficacy | 0.419 *** | |||
(0.077) |
Variables | Coefficient | Errors |
---|---|---|
Soil fertility | −0.187 *** | 0.069 |
Experience | −0.123 * | 0.072 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Puntsagdorj, B.; Orosoo, D.; Huo, X.; Xia, X. Farmer’s Perception, Agricultural Subsidies, and Adoption of Sustainable Agricultural Practices: A Case from Mongolia. Sustainability 2021, 13, 1524. https://doi.org/10.3390/su13031524
Puntsagdorj B, Orosoo D, Huo X, Xia X. Farmer’s Perception, Agricultural Subsidies, and Adoption of Sustainable Agricultural Practices: A Case from Mongolia. Sustainability. 2021; 13(3):1524. https://doi.org/10.3390/su13031524
Chicago/Turabian StylePuntsagdorj, Buyannemekh, Dulamragchaa Orosoo, Xuexi Huo, and Xianli Xia. 2021. "Farmer’s Perception, Agricultural Subsidies, and Adoption of Sustainable Agricultural Practices: A Case from Mongolia" Sustainability 13, no. 3: 1524. https://doi.org/10.3390/su13031524
APA StylePuntsagdorj, B., Orosoo, D., Huo, X., & Xia, X. (2021). Farmer’s Perception, Agricultural Subsidies, and Adoption of Sustainable Agricultural Practices: A Case from Mongolia. Sustainability, 13(3), 1524. https://doi.org/10.3390/su13031524