Particulate Matter Removal of Three Woody Plant Species, Ardisia crenata, Ardisia japonica, and Maesa japonica
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. PM Reduction
2.3. Plant Growth Traits
Chlorophyll b = (21.5 × A646.8 − 5.1 × A663.2)
Carotenoid = (1000 × A470 − 1.82 × chl a − 85.02 × chl b)/198
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- International Agency for Research on Cancer (IARC). Outdoor Air Pollution a Leading Environmental Cause of Cancer Deaths. 2013. Available online: http://www.iarc.fr/en/media-centre/pr/2013/pdfs/pr221_E.pdf (accessed on 20 September 2018).
- BéruBé, K.A.; Sexton, K.J.; Jones, T.P.; Moreno, T.; Anderson, S.; Richards, R.J. The spatial and temporal variations in PM10 mass from six UK home. Sci. Total Environ. 2004, 324, 41–53. [Google Scholar] [CrossRef]
- Kyotani, T.; Iwatsuki, M. Characterization of soluble and insoluble components in PM2.5 and PM10 fractions of airborne particulate matter in Kofu city, Japan. Atmos. Environ. 2002, 36, 639–649. [Google Scholar] [CrossRef]
- Seaton, A.; Macnee, W.; Donaldson, K.; Godden, D. Particulate air pollution and acute health effects. Lancet 1995, 345, 176–178. [Google Scholar] [CrossRef]
- Airkorea. Ambient Air Environment Standard. 2013. Available online: https://www.airkorea.or.kr/web/pmRelay?itemCode=10007&pMENUNO=108 (accessed on 23 November 2018).
- Kwon, K.J.; Urrintuya, O.; Kim, S.Y.; Yang, J.C.; Sung, J.W.; Park, B.J. Removal potential of particulate matter of 12 woody plant species for landscaping planting. J. People Plants Environ. 2020, 23, 647–654. [Google Scholar] [CrossRef]
- Kwon, K.J.; Odsure, U.; Kim, S.Y.; Yang, J.C.; Park, B.J. Comparison of the particulate matter removal capacity of 11 herbaceous landscape plants. J. People Plants Environ. 2021, 24, 267–275. [Google Scholar] [CrossRef]
- Jeong, N.R.; Kim, J.H.; Han, S.W.; Kim, J.C.; Kim, W.Y. Assessment of the particulate matter reduction potential of climbing plants on green walls for air quality management. J. People Plants Environ. 2021, 24, 377–387. [Google Scholar] [CrossRef]
- Popek, R.; Przybysz, A.; Gawrońska, H.; Klamkowski, K.; Gawroński, S.W. Impact of particulate matter accumulation on the photosynthetic apparatus of roadside woody plants growing in the urban conditions. Ecotoxicol. Environ. Saf. 2018, 163, 56–62. [Google Scholar] [CrossRef]
- Dzierżanowski, K.; Popek, R.; Gawrońska, H.; Sæbø, A.; Gawroński, S.W. Deposition of particulate matter of different size fractions on leaf surfaces and in waxes of urban forest species. Int. J. Phytoremediation 2011, 13, 1037–1046. [Google Scholar] [CrossRef]
- Leonard, R.J.; McArthur, C.; Hochuli, D.F. Particulate matter deposition on roadside plants and the importance of leaf trait combinations. Urban For. Urban Green. 2016, 20, 249–253. [Google Scholar] [CrossRef]
- Weber, F.; Kowarik, I.; Säumel, I. Herbaceous plants as filters: Immobilization of particulates along urban street corridors. Environ. Pollut. 2014, 186, 234–240. [Google Scholar] [CrossRef]
- Kaplan, R.; Kaplan, S. The Experience of Nature: A Psychological Perspective; Cambridge University Press: Cambridge, UK, 1989. [Google Scholar]
- Lowry, C.A.; Hollis, J.H.; de Vries, A.; Pan, B.; Brunet, L.R.; Hunt, J.R.F.; Paton, J.; van Kampen, E.; Knight, D.; Evans, A.; et al. Identification of an immune-responsive mesolimbocortical serotonergic system: Potential role in regulation of emotional behavior. Neuroscience 2007, 146, 756–772. [Google Scholar] [CrossRef]
- Qin, J.; Sun, C.; Zhou, X.; Leng, H.; Lian, Z. The effect of indoor plants on human comfort. Indoor Built Environ. 2014, 23, 709–723. [Google Scholar] [CrossRef]
- Ulrich, R.S. Aesthetic and affective response to natural environment. In Behavior and the Natural Environment, Human Behavior and Environment (Advances in Theory and Research); Altman, I., Wohlwill, J.F., Eds.; Springer: Boston, MA, USA, 1983; Volume 6. [Google Scholar] [CrossRef]
- Moya, T.A.; van den Dobbelsteen, A.; Ottelé, M.; Bluyssen, P.M. A review of green systems within the indoor environment. Indoor Built Environ. 2019, 28, 298–309. [Google Scholar] [CrossRef]
- Perez, G.; Rincon, L.; Vila, A.; Gonzalez, J.M.; Cabeza, L.F. Green vertical systems for buildings as passive systems for energy savings. Appl. Energy 2011, 88, 4854–4859. [Google Scholar] [CrossRef]
- Kim, S.J. The introduction of south-plants in indoor space. J. Korean Inst. Inter. Landsc. Archit. 2001, 3, 67–70. [Google Scholar]
- Yang, Y.P. An enumeration of Myrsinaceae of Taiwan. Bot. Bull. Acad. Sin. 1999, 40, 39–47. [Google Scholar]
- Lee, A.K.; Suh, J.K. Ecological studied on Ardisia species native to Korea and the significance as a potential indoor landscape corp. J. Korean Inst. Landsc. Archit. 1999, 1, 59–77. [Google Scholar]
- Lee, J.S.; Oh, H.W. Using trend of Korean native plants for interior landscape in Korea. Flower Res. 2002, 10, 91–96. [Google Scholar]
- Lichtenthaler, H.K. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods Enzymol. 1987, 148, 350–382. [Google Scholar] [CrossRef]
- Chen, X.; Zhou, Z.; Teng, M.; Wang, P.; Zhou, L. Accumulation of three different sizes of particulate matter on plant leaf surfaces: Effect on leaf traits. Arch. Biol. Sci. 2015, 67, 1257–1267. [Google Scholar] [CrossRef]
- Paek, K.Y.; Jun, Y.S. Stomatal Density, Size and Morphological Characteristics in Orchids Stomatal density, size and morphological characteristics in orchids. J. Korean Soc. Hortic. Sci. 1995, 36, 851–862. [Google Scholar]
- Gawrońska, H.; Bakera, B. Phytoremediation of particulate matter from indoor air by Chlorophytum comosum L. plants. Air Qual. Atmos. Health 2015, 8, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Jeong, N.R.; Kim, K.J.; Yoon, J.H.; Han, S.W.; You, S. Evaluation on the potential of 18 species of indoor plants to reduce particulate matter. J. People Plants Environ. 2020, 23, 637–646. [Google Scholar] [CrossRef]
- Son, D.; Kim, K.J.; Jeong, N.R.; Yun, H.G.; Han, S.W.; Kim, J.; Do, G.R.; Lee, S.H.; Shagol, C.C. The impact of the morphological characteristics of leaves on particulate matter removal efficiency of plants. J. People Plants Environ. 2019, 22, 551–561. [Google Scholar] [CrossRef]
- Lou, C.; Liu, H.; Li, Y.; Peng, Y.; Wang, J.; Dai, L. Relationships of relative humidity with PM2.5 and PM10 in the Yangtze River Delta, China. Environ. Monit. Assess. 2017, 189, 582. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.H.; Choi, B.; Chun, M.Y. Stabilizing soil moisture and indoor air quality purification in a wall-typed botanical biofiltration system controlled by humidifying cycle. Korean J. Hortic. Sci. Technol. 2015, 33, 605–617. [Google Scholar] [CrossRef][Green Version]
- Przybysz, A.; Popek, R.; Gawrońsk, H.; Grab, K.; Łoskot, K.; Wrochna, M.; Gawronski, S.W. Efficiency of photosynthetic apparatus of plants grown in sites differing in level of particulate matter. Acta Sci. Pol. Hortorum Cultus 2014, 13, 17–30. [Google Scholar]
- Freer-Smith, P.H.; Holloway, S.; Goodman, A. The uptake of particulates by an urban woodland: Site description and particulate composition. Environ. Pollut. 1997, 95, 27–35. [Google Scholar] [CrossRef]
- Litschke, T.; Kuttler, W. On the reduction of urban particle concentration by vegetation—A review. Meteorol. Z. 2008, 17, 229–240. [Google Scholar] [CrossRef]
- Yoon, J.W.; Son, K.C.; Yang, D.S.; Kays, S.J. Removal of indoor tobacco smoke under light and dark conditions as affected by foliage plants. Korean J. Hortic. Sci. Technol. 2009, 27, 312–318. [Google Scholar]
- Hirano, T.; Kiyota, M.; Aiga, I. Physical effects of dust on leaf physiology of cucumber and kidney bean plants. Environ. Pollut. 1995, 89, 255–261. [Google Scholar] [CrossRef]
- Jeong, S.J.; Song, J.S.; Kim, W.S.; Lee, D.W.; Kim, H.D.; Kim, K.J.; Yoo, E.H.; Cho, J.G. Evaluation of selected foliage plants for improvement of indoor humidity. Hortic. Environ. Biotechnol. 2008, 49, 439–446. [Google Scholar]
- Fails, B.S.; Lewis, A.J.; Barden, J.A. Anatomy and morphology of sun-and shade-grown Ficus benjamina. J. Am. Soc. Hortic. Sci. 1982, 107, 754–757. [Google Scholar]
- Schmitz, H.; Hilgers, U.; Weidner, M. Assimilation and metabolism of formaldehyde by leaves appear unlikely to be of value for indoor air purification. New Phytol. 2000, 147, 307–315. [Google Scholar] [CrossRef]
- Son, K.; Lee, S.; Seo, S.; Song, J. Effects of foliage plants and potting soil on the absorption and adsorption of indoor air pollutants. J. Korean Soc. Hortic. Sci. 2000, 41, 305–310. [Google Scholar]
- Beckett, K.P.; Freer-Smith, P.H.; Taylor, G. Urban woodlands: Their role in reducing the effects of particulate pollution. Environ. Pollut. 1998, 99, 347–360. [Google Scholar] [CrossRef]
- Przybysz, A.; Sæbø, A.; Hanslin, H.M.; Gawroński, S.W. Accumulation of particulate matter and trace elements on vegetation as affected by pollution level, rainfall and the passage of time. Sci. Total Environ. 2014, 481, 360–369. [Google Scholar] [CrossRef]
Plant Height (cm) | Leaf Length (cm) | Leaf Width (cm) | No. of Leaves (/Plant) | |
---|---|---|---|---|
Maesa japonica | 20.7 ± 2.1 a z | 9.1 ± 1.3 a | 3.9 ± 0.6 a | 52.4 ± 0.5 a |
Ardisia japonica | 17.4 ± 1.9 b | 6.7 ± 1.1 b | 3.3 ± 0.3 b | 60.5 ± 1.6 a |
Ardisia crenata | 15.9 ± 1.9 b | 7.0 ± 0.7 b | 2.7 ± 0.5 b | 57.1 ± 1.8 a |
Significance | *** | *** | *** | ns |
0 h | 2 h | 4 h | 6 h | 8 h | ||
---|---|---|---|---|---|---|
PM1 | Control | 0.0121 a z | 0.0241 a | 0.0241 a | 0.0196 a | 0.0136 a |
Maesa japonica | 0.0123 a | 0.0273 a | 0.0179 ab | 0.0097 b | 0.0050 b | |
Ardisia japonica | 0.0117 ab | 0.0286 a | 0.0206 ab | 0.0121 b | 0.0071 b | |
Ardisia crenata | 0.0100 b | 0.0257 a | 0.0157 b | 0.0086 b | 0.0044 b | |
Significance | ns | ns | *** | ** | *** | |
PM2.5 | Control | 0.779 a | 0.631 a | 0.372 a | 0.199 a | 0.107 a |
Maesa japonica | 0.827 a | 0.337 b | 0.112 b | 0.042 b | 0.017 b | |
Ardisia japonica | 0.794 a | 0.420 b | 0.170 b | 0.071 b | 0.033 b | |
Ardisia crenata | 0.815 a | 0.329 b | 0.114 b | 0.046 b | 0.018 b | |
Significance | ns | ** | *** | *** | *** | |
PM10 | Control | 9.999 a | 2.398 a | 0.889 a | 0.373 a | 0.173 a |
Maesa japonica | 9.941 a | 0.661 b | 0.155 b | 0.050 b | 0.019 b | |
Ardisia japonica | 9.999 a | 1.073 b | 0.282 b | 0.098 b | 0.042 b | |
Ardisia crenata | 9.999 a | 0.710 b | 0.174 b | 0.060 b | 0.022 b | |
Significance | ns | *** | *** | *** | *** |
0.2–2.5 μm | 2.5–10 μm | 10–100 μm | |
---|---|---|---|
Maesa japonica | 0.762 ± 0.439 a z | 1.689 ± 0.703 a | 4.867 ± 1.692 b |
Ardisia japonica | 0.738 ± 0.338 a | 0.874 ± 0.355 b | 10.150 ± 3.065 a |
Ardisia crenata | 0.804 ± 0.351 a | 0.907 ± 0.450 b | 6.600 ± 1.324 b |
Significance | ns | ns | ** |
Photosynthetic Rate (µmol m−2 s−1) | Transpiration Rate (mol m−2 s−1) | Stomatal Conductance (mol m−2 s−1) | |
---|---|---|---|
Maesa japonica | 5.894 ± 1.237 a z | 1.510 ± 0.361 a | 0.060 ± 0.019 a |
Ardisia japonica | 0.862 ± 0.186 c | 0.020 ± 0.014 c | 0.000 ± 0.000 b |
Ardisia crenata | 2.316 ± 1.128 b | 0.436 ± 0.306 b | 0.018 ± 0.013 b |
Significance | *** | *** | *** |
Chlorophyll Content (mg g−1 FW) | Carotenoid (mg g−1 FW) | ||
---|---|---|---|
Chlorophyll a | Chlorophyll b | ||
Maesa japonica | 1.30 ± 0.36 a z | 2.55 ± 0.68 a | 2.53 ± 0.78 a |
Ardisia japonica | 0.85 ± 0.08 b | 1.69 ± 0.16 b | 1.58 ± 0.17 b |
Ardisia crenata | 1.21 ± 0.28 ab | 2.26 ± 0.53 ab | 2.27 ± 0.60 ab |
Significance | ns | ns | ns |
Fv/Fm | SLA (cm2 g−1) | Leaf pH | |
---|---|---|---|
Maesa japonica | 0.791 ± 0.016 a z | 155.6 ± 22.6 a | 5.39 ± 0.14 a |
Ardisia japonica | 0.791 ± 0.010 a | 163.8 ± 24.8 a | 5.40 ± 0.19 a |
Ardisia crenata | 0.772 ± 0.015 a | 140.1 ± 18.3 a | 5.41 ± 0.11 a |
Significance | ns | ns | ns |
Stomatal Number (/106 μm−2) | Stomatal Size (μm) | |
---|---|---|
Maesa japonica | 202.3 ± 37.2 a z | 12.3 ± 2.1 b |
Ardisia japonica | 185.9 ± 20.9 a | 9.7 ± 1.6 b |
Ardisia crenata | 133.0 ± 21.8 b | 21.1 ± 2.2 a |
Significance | ** | *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwon, K.-J.; Kwon, H.-J.; Oh, Y.-A.; Kim, S.-Y.; Park, B.-J. Particulate Matter Removal of Three Woody Plant Species, Ardisia crenata, Ardisia japonica, and Maesa japonica. Sustainability 2021, 13, 11017. https://doi.org/10.3390/su131911017
Kwon K-J, Kwon H-J, Oh Y-A, Kim S-Y, Park B-J. Particulate Matter Removal of Three Woody Plant Species, Ardisia crenata, Ardisia japonica, and Maesa japonica. Sustainability. 2021; 13(19):11017. https://doi.org/10.3390/su131911017
Chicago/Turabian StyleKwon, Kei-Jung, Hyuk-Joon Kwon, Yun-Ah Oh, Soo-Young Kim, and Bong-Ju Park. 2021. "Particulate Matter Removal of Three Woody Plant Species, Ardisia crenata, Ardisia japonica, and Maesa japonica" Sustainability 13, no. 19: 11017. https://doi.org/10.3390/su131911017
APA StyleKwon, K.-J., Kwon, H.-J., Oh, Y.-A., Kim, S.-Y., & Park, B.-J. (2021). Particulate Matter Removal of Three Woody Plant Species, Ardisia crenata, Ardisia japonica, and Maesa japonica. Sustainability, 13(19), 11017. https://doi.org/10.3390/su131911017