Reduction in Insect Attachment Caused by Different Nanomaterials Used as Particle Films (Kaolin, Zeolite, Calcium Carbonate)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Insects
2.2. Cryo Scanning Electron Microscopy (cryo-SEM)
2.3. Force Measurements
2.4. Walking Behavior
2.5. Substrate Preparation and Characterization
- -
- By spraying the glass surface with a water suspension of kaolin powder commonly available in Italy (“I consigli dell’esperto”, Civitavecchia, Italy) at the rate of 4% (w/v). The suspension was applied on horizontal surfaces with a hand-sprayer until runoff.
- -
- By spraying the glass surface with a water suspension of zeolite powder commonly available in Italy (Bioagrotech, Repubblica di San Marino, Italy—clinoptilolite-heulandite 67.5% and mordenite 32.5%,) at the rate of 0.4% (w/v). The suspension was applied on horizontal surfaces with a hand-sprayer until runoff.
- -
- By painting the glass surface with a water suspension of calcium hydroxide powder (or hydrated lime [Ca(OH)2]) (Sigma Aldrich, St Louis, MI, USA) at the rate of 1:1 using a brush.
2.6. Statistical Analysis
3. Results
3.1. Characterization of Tested Surfaces
3.2. Attachment Ability of Nezara viridula Adults to Untreated and Treated Glass
3.3. Evaluation of the Contaminating Effect of Different Nanoparticle Films
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Villaverde, J.J.; Sevilla-Morán, B.; López-Goti, C.; Alonso-Prados, J.L.; Sandín-España, P. Considerations of nano-QSAR/QSPR models for nanopesticide risk assessment within the European legislative framework. Sci. Total Environ. 2018, 634, 1530–1539. [Google Scholar] [CrossRef] [PubMed]
- Eroglu, N.; Emekci, M.; Athanassiou, C.G. Applications of natural zeolites on agriculture and food production. J. Sci. Food Agric. 2017, 97, 3487–3499. [Google Scholar] [CrossRef] [PubMed]
- Athanassiou, C.G.; Kavallieratos, N.G.; Benelli, G.; Losic, D.; Usha Rani, P.; Desneux, N. Nanoparticles for pest control: Current status and future perspectives. J. Pest Sci. 2018, 91, 1–15. [Google Scholar] [CrossRef]
- Benelli, G. Mode of action of nanoparticles against insects. Environ. Sci. Pollut. Res. 2018, 25, 12329–12341. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharyya, A.; Bhaumik, A.; Rani, P.U.; Mandal, S.; Epidi, T.T. Nano-particles—A recent approach to insect pest control. Afr. J. Biotechnol. 2010, 9, 3489–3493. [Google Scholar]
- Kavallieratos, N.G.; Athanassiou, C.G.; Korunic, Z.; Mikeli, N.H. Evaluation of three novel diatomaceous earths against three stored-grain beetle species on wheat and maize. Crop Prot. 2015, 75, 132–138. [Google Scholar] [CrossRef]
- Glenn, D.M.; Puterka, G.J. Particle films: A new technology for agriculture. Hortic. Rev. 2005, 31, 1–44. [Google Scholar]
- Ramesh, K.; Reddy, D.D. Zeolites and their potential uses in agriculture. Adv. Agron. 2011, 113, 219–241. [Google Scholar]
- De Smedt, C.; Someus, E.; Spanoghe, P. Potential and actual uses of zeolites in crop protection. Pest Manag. Sci. 2015, 71, 1355–1367. [Google Scholar] [CrossRef]
- Payra, P.; Dutta, P.K. Zeolites: A primer. In Handbook of Zeolite Science and Technology; Auerbach, S.M., Carrado, K.A., Dutta, P.K., Eds.; Marcel Dekker: New York, NY, USA, 2003; pp. 1–19. [Google Scholar]
- Rotondi, A.; Morrone, L.; Facini, O.; Faccini, B.; Ferretti, G.; Coltorti, M. Distinct particle films impacts on olive leaf optical properties and plant physiology. Foods 2021, 10, 1291. [Google Scholar] [CrossRef]
- Glenn, D.M.; Prado, E.; Erez, A.; McFerson, J.; Puterka, G.J. A reflective, processed-kaolin particle film affects fruit temperature, radiation reflection, and solar injury in apple. J. Am. Soc. Hortic. Sci. 2002, 127, 188–193. [Google Scholar] [CrossRef] [Green Version]
- Jifon, J.L.; Syvertsen, J.P. Kaolin particle film applications can increase photosyntesis and water use efficiency of Ruby Red grapefruit leaves. J. Am. Soc. Hortic. Sci. 2003, 128, 107–112. [Google Scholar] [CrossRef] [Green Version]
- Melgarejo, P.; Martínez, J.J.; Hernández, F.; Martínez-Font, R.; Barrows, P.; Erez, A. Kaolin treatment to reduce pomegranate sunburn. Sci. Hortic. 2004, 100, 349–353. [Google Scholar] [CrossRef]
- Gindaba, J.; Wand, S.J.E. Do fruit sunburn control measures affect leaf photosynthetic rate and stomatal conductance in Royal Gala apple? Environ. Exp. Bot. 2007, 59, 160–165. [Google Scholar] [CrossRef]
- De Smedt, C.; Steppe, K.; Spanoghe, P. Beneficial effects of zeolites on plant photosynthesis. Adv. Mater. Sci. 2017, 2, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Puterka, G.J.; Glenn, D.M.; Sekutowski, D.G.; Unruh, T.R.; Jones, S.K. Progress toward liquid formulations of particle films for insect and disease control in pear. Environ. Entomol. 2000, 29, 329–339. [Google Scholar] [CrossRef]
- Unruh, T.R.; Knight, A.L.; Upton, J.; Glenn, D.M.; Puterka, G.J. Particle films for suppression of the codling moth (Lepidoptera: Tortricidae) in apple and pear orchards. J. Econ. Entomol. 2000, 93, 737–743. [Google Scholar] [CrossRef]
- Saour, G.; Makee, H. A kaolin-based particle film for suppression of the olive fruit fly Bactrocera oleae Gmelin (Diptera: Tephritidae) in olive groves. J. Appl. Entomol. 2004, 128, 28–31. [Google Scholar] [CrossRef]
- Daniel, C.; Pfammatter, W.; Kehrli, P.; Wyss, E. Processed Kaolin as an alternative insecticide against the European pear sucker, Cacopsylla pyri (L.). J. Appl. Entomol. 2005, 129, 363–367. [Google Scholar] [CrossRef]
- Saour, G. Morphological assessment of olive seedlings treated with kaolin-based particle film and biostimulant. Adv. Hortic. Sci. 2005, 19, 193–197. [Google Scholar]
- Bostanian, N.J.; Racette, G. Particle film for managing arthropod pests. J. Econ. Entomol. 2008, 101, 145–150. [Google Scholar] [CrossRef]
- Pascual, S.N.; Cobos, G.; Seris, E.; González-Núñez, M. Effects of processed kaolin on pests and non-target arthropods in a Spanish olive grove. J. Pest Sci. 2009, 83, 121–133. [Google Scholar] [CrossRef]
- D’Aquino, S.; Cocco, A.; Ortu, S.; Schirra, M. Effects of kaolin-based particle film to control Ceratitis capitata (Diptera: Tephritidae) infestations and postharvest decay in citrus and stone fruit. Crop Prot. 2011, 30, 1079–1086. [Google Scholar] [CrossRef]
- Lo Verde, G.; Caleca, V.; Lo Verde, V. The use of kaolin to control Ceratitis capitata in organic citrus groves. Bull. Insectol. 2011, 64, 127–134. [Google Scholar]
- Nateghi, M.F.; Paknejad, F.; Moarefi, M. Effect of concentrations and time of kaolin spraying on wheat aphid. J. Biol. Environ. Sci. 2013, 7, 163–168. [Google Scholar]
- Silva, C.A.D.; Ramalho, F.S. Kaolin spraying protects cotton plants against damages by boll weevil Anthonomus grandis Boheman (Coleoptera: Curculionidae). J. Pest Sci. 2013, 86, 563–569. [Google Scholar] [CrossRef] [Green Version]
- De Smedt, C.; Van Damme, V.; De Clercq, P.; Spanoghe, P. Insecticide Effect of Zeolites on the Tomato Leafminer Tuta absoluta (Lepidoptera: Gelechiidae). Insects 2016, 7, 72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tacoli, F.; Mori, N.; Pozzebon, A.; Cargnus, E.; Da Vià, S.; Zandigiacomo, P.; Duso, C.; Pavan, F. Control of Scaphoideus titanus with natural products in organic vineyards. Insects 2017, 8, 129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tacoli, F.; Pavan, F.; Cargnus, E.; Tilatti, E.; Pozzebon, A.; Zandigiacomo, P. Efficacy and mode of action of kaolin in the control of Empoasca vitis and Zygina rhamni (Hemiptera: Cicadellide) in vineyards. J. Econ. Entomol. 2017, 110, 1164–1178. [Google Scholar] [CrossRef] [PubMed]
- Tacoli, F.; Cargnus, E.; Kiaeian Moosavi, F.; Zandigiacomo, P.; Pavan, F. Efficacy and mode of action of kaolin and its interaction with bunch-zone leaf removal against Lobesia botrana on grape–vines. J. Pest Sci. 2019, 92, 465–475. [Google Scholar] [CrossRef]
- Puterka, G.J.; Glenn, D.M.; Pluta, R.C. Action of particle films on the biology and behavior of pear psylla (Homoptera: Psyllidae). J. Econ. Entomol. 2005, 98, 2079–2088. [Google Scholar] [CrossRef] [PubMed]
- Salerno, G.; Rebora, M.; Kovalev, A.; Gorb, E.; Gorb, S. Kaolin nano-powder effect on insect attachment ability. J. Pest Sci. 2020, 93, 315–327. [Google Scholar] [CrossRef]
- Todd, J.W. Ecology and behavior of Nezara viridula. Annu. Rev. Entomol. 1989, 34, 273–292. [Google Scholar] [CrossRef]
- Salerno, G.; Rebora, M.; Gorb, E.; Kovalev, A.; Gorb, S. Attachment ability of the southern green stink bug Nezara viridula (Heteroptera: Pentatomidae). J. Comp. Physiol. A 2017, 203, 601–611. [Google Scholar] [CrossRef]
- Rebora, M.; Michels, J.; Salerno, G.; Heepe, L.; Gorb, E.; Gorb, S. Tarsal attachment devices of the southern green stink bug Nezara viridula (Heteroptera: Pentatomidae). J. Morphol. 2018, 279, 660–672. [Google Scholar] [CrossRef] [PubMed]
- Salerno, G.; Rebora, M.; Gorb, E.; Gorb, S. Attachment ability of the polyphagous bug Nezara viridula (Heteroptera: Pentatomidae) to different host plant surfaces. Sci. Rep. 2018, 8, 10975. [Google Scholar] [CrossRef] [Green Version]
- Salerno, G.; Rebora, M.; Kovalev, A.; Gorb, E.; Gorb, S. Contribution of different tarsal attachment devices to the overall attachment ability of the stink bug Nezara viridula. J. Comp. Physiol. A 2018, 204, 627–638. [Google Scholar] [CrossRef]
- Salerno, G.; Rebora, M.; Piersanti, S.; Matsumura, Y.; Gorb, E.; Gorb, S. Variation of attachment ability of Nezara viridula (Hemiptera: Pentatomidae) during nymphal development and adult aging. J. Insect Physiol. 2020, 127, 104117. [Google Scholar] [CrossRef]
- Yee, W.L. Behavioural responses by Rhagoletis indifferens (Diptera, Tephritidae) to sweet cherry treated with kaolin- and limestone-based products. J. Appl. Entomol. 2012, 136, 124–132. [Google Scholar] [CrossRef]
- Barata, J.M.S.; Santos, J.L.F.; Da Rosa, J.A.; Comes, R.D. Evaluation of tryptamine behavior under the effect of contact with calcium hydroxide Ca(OH)2: Mortality rates of Triatoma infestans and Rhodnius neglectus (Hemiptera, Reduviidae). An. Soc. Entomol. Brasil 1992, 21, 169–177. [Google Scholar] [CrossRef]
- Boucher, J.; Adams, R.; Johnson, F.; Packauskas, R. Eggplant: Hydrated Lime as an Insect Repellent, 1991. Insectic. Acaric. Tests 1993, 18, 131. [Google Scholar]
- Strack, T.; Cahenzli, F.; Daniel, C. Kaolin, lime and rock dusts to control Drosophila suzukii. In Ökologschen Landbau Weiterdenken: Verantwortung Übernhemen, Vertrauen Stärken; Wolfrum, S., Heuwinkel, H., Wiesinger, K., Reents, H.J., Hülsbergen, K.-J., Eds.; Verlag Dr. Köster: Berlin, Germany, 2017; pp. 262–263. [Google Scholar]
- Gorb, E.V.; Gorb, S.N. Functional surfaces in the pitcher of the carnivorous plant Nepenthes alata: A cryo-SEM approach. In Functional Surfaces in Biology—Adhesion Related Phenomena; Gorb, S.N., Ed.; Springer: Dordrecht, The Netherlands, 2009; Volume 2, pp. 205–238. [Google Scholar]
- Gorb, E.V.; Hosoda, N.; Miksch, C.; Gorb, S.N. Slippery pores: Anti-adhesive effect of nanoporous substrates on the beetle attachment system. J. R. Soc. Interface 2010, 7, 1571–1579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colazza, S.; Peri, D.; Salerno, G.; Peri, E.; Lo Pinto, M.; Liotta, G. Xbug, a Video Tracking and Motion Analysis System for Linux. In Proceedings of the XII International Entomophagous Insects Workshop, Pacific Grove, CA, USA, 26–30 September 1999. [Google Scholar]
- StatSoft Italia, S.R.L. Statistica (Data Analysis Software System), version 6; StatSoft Italia S.R.L.: Vigonza, Italy, 2001. [Google Scholar]
- Sokal, R.R.; Rohlf, F.J. Biometry; W.E. Freeman and Company: New York, NY, USA, 1998. [Google Scholar]
- Puterka, G.J.; Reinke, M.; Luvisi, D.; Ciomperik, M.A.; Bartels, D.; Wendel, L.; Glenn, D.M. Particle film, Surround WP, effects on glassy-winged sharpshooter behavior and its utility as a barrier to sharpshooter infestations in grape. Plant Health Prog. 2003, 4, 7. [Google Scholar] [CrossRef] [Green Version]
- Kuhar, T.P.; Morehead, J.A.; Formella, A.J. Applications of kaolin protect fruiting vegetables from brown marmorated stink bug (Hemiptera: Pentatomidae). J. Entomol. Sci. 2019, 54, 401–408. [Google Scholar] [CrossRef]
- Sterba, J.H.; Sperrer, H.; Wallenko, F.; Welch, J.M. Adsorption characteristics of a clinoptilolite-rich zeolite compound for Sr and Cs. J. Radioanal. Nucl. Chem. 2018, 318, 267–270. [Google Scholar] [CrossRef] [Green Version]
- Gorb, E.V.; Lemke, W.; Gorb, S.N. Porous substrate affects a subsequent attachment ability of the beetle Harmonia axyridis (Coleoptera, Coccinellidae). J. R. Soc. Interface 2019, 16, 20180696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clemente, C.J.; Bullock, J.M.; Beale, A.; Federle, W. Evidence for self-cleaning in fluid-based smooth and hairy adhesive systems of insects. J. Exp. Biol. 2010, 213, 635–642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clemente, C.J.; Federle, W. Mechanisms of self-cleaning in fluid-based smooth adhesive pads of insects. Bioinspir. Biomim. 2012, 7, 046001. [Google Scholar] [CrossRef]
- Féat, A.; Federle, W.; Kamperman, M.; Gucht, J.V.D. Coatings preventing insect adhesion: An overview. Prog. Org. Coat. 2019, 134, 349–359. [Google Scholar] [CrossRef]
Surfaces | Ra (5×) | Ra (50×) | rms (5×) | rms (50×) |
---|---|---|---|---|
Untreated glass | 0.55 ± 0.03 nm | 0.52 ± 0.01 nm | 0.70 ± 0.04 nm | 0.65 ± 0.01 nm |
Treated glass (with kaolin particle film) | 2.00 ± 0.08 µm | 1.54 ± 0.09 µm | 2.58 ± 0.10 µm | 1.93 ± 0.11 µm |
Treated glass (with zeolite particle film) | 1.66 ± 0.30 µm | 2.22 ± 0.30 µm | 2.13 ± 0.33 µm | 2.81 ± 0.20 µm |
Treated glass (with calcium carbonate particle film) | 4.5 ± 0.40 µm | 2.16 ± 0.44 µm | 6.25 ± 0.61 µm | 2.77 ± 0.61 µm |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salerno, G.; Rebora, M.; Piersanti, S.; Saitta, V.; Kovalev, A.; Gorb, E.; Gorb, S. Reduction in Insect Attachment Caused by Different Nanomaterials Used as Particle Films (Kaolin, Zeolite, Calcium Carbonate). Sustainability 2021, 13, 8250. https://doi.org/10.3390/su13158250
Salerno G, Rebora M, Piersanti S, Saitta V, Kovalev A, Gorb E, Gorb S. Reduction in Insect Attachment Caused by Different Nanomaterials Used as Particle Films (Kaolin, Zeolite, Calcium Carbonate). Sustainability. 2021; 13(15):8250. https://doi.org/10.3390/su13158250
Chicago/Turabian StyleSalerno, Gianandrea, Manuela Rebora, Silvana Piersanti, Valerio Saitta, Alexander Kovalev, Elena Gorb, and Stanislav Gorb. 2021. "Reduction in Insect Attachment Caused by Different Nanomaterials Used as Particle Films (Kaolin, Zeolite, Calcium Carbonate)" Sustainability 13, no. 15: 8250. https://doi.org/10.3390/su13158250
APA StyleSalerno, G., Rebora, M., Piersanti, S., Saitta, V., Kovalev, A., Gorb, E., & Gorb, S. (2021). Reduction in Insect Attachment Caused by Different Nanomaterials Used as Particle Films (Kaolin, Zeolite, Calcium Carbonate). Sustainability, 13(15), 8250. https://doi.org/10.3390/su13158250