Morphological and Biochemical Diversity in Fruits of Unsprayed Rosa canina and Rosa dumalis Ecotypes Found in Different Agroecological Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Sampling and Morphological Parameters
2.3. Biochemical and Bioactive Composition
2.3.1. Sample Preparation and Extraction
2.3.2. Total Phenolic Contents
2.3.3. Total Carotenoid Content
2.3.4. Total Flavonoid Content
2.3.5. Total Anthocyanin Content
2.3.6. Antioxidant Capacity
2.3.7. Phenolic Compounds
2.4. Statistical Analysis
3. Results and Discussion
3.1. Morphological Traits of R. canina and R. dumalis Ecotypes
3.2. Total Flavonoid, Total Phenolic, Total Carotenoid, Vitamin C, Total Anthocyanin, Antioxidant Capacity and SSC Content
3.3. Phenolic Compounds
3.4. Correlations between Traits
3.5. Principal Compenent Analysis (PCA)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tuzlaci, E.; Tolon, E. Turkish folk medicinal plants, part III: Sile (Istanbul). Fitoterapia 2000, 71, 673–685. [Google Scholar] [CrossRef]
- Ercisli, S.; Esitken, A.; Cangi, R.; Sahin, F. Adventitious root formation of kiwifruit in relation to sampling date, IBA and Agrobacterium rubi inoculation. Plant Growth Regul. 2003, 41, 133–137. [Google Scholar] [CrossRef]
- Dogan, H.; Ercisli, S.; Jurikova, T.; Temim, E.; Leto, A.; Hadziabulic, A.; Tosun, M.; Narmanlioglu, H.K.; Zia-Ul-Haq, M. Physicochemical and antioxidant characteristics of fruits of cape gooseberry (Physalis peruviana L.) from Turkey. Oxid. Commun. 2014, 37, 1005–1014. [Google Scholar]
- Gecer, M.K.; Kan, T.; Gundogdu, M.; Ercisli, S.; Ilhan, G.; Sagbas, H.I. Physicochemical characteristics of wild and cultivated apricots (Prunus armeniaca L.) from Aras valley in Turkey. Genet. Resour. Crop Evol. 2020, 67, 935–945. [Google Scholar] [CrossRef]
- Honkanen, E.; Hirvi, T. Dev. Food Sci. 3c, Food Flavours Pt C; Morton, I.D., MacLeod, A.J., Eds.; Elsevier: Amsterdam, The Netherlands, 1990; p. 131. [Google Scholar]
- Ulrich, D.; Hoberg, E. Flavour analysis in plant breeding research on strawberries. In Frontiers of Flavour Sciences; Schieberle, P., Engel, K.-H., Eds.; Deutsche Forschungsanstalt Lebensmittelchemie: Garching, Germany, 2000; pp. 161–163. [Google Scholar]
- Ersoy, N.; Ozen, M.S. Some physico-chemical characteristics in fruits of rose hip (Rosa spp.) genotypes from Bolu province in western part of Turkey. Agro-Knowl. J. 2016, 17, 191–201. [Google Scholar] [CrossRef] [Green Version]
- Rovná, K.; Ivanišová, E.; Žiarovská, J.; Ferus, P.; Terentjeva, M.; Kowalczewski, P.Ł.; Kačániová, M. Characterization of Rosa canina fruits collected in urban areas of Slovakia. Genome size, iPBS profiles and antioxidant and antimicrobial activities. Molecules 2020, 25, 1888. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guler, E.; Bak, T.; Karadeniz, T.; Muradoglu, F. Relationships of fruit characteristics of rosehips (Rosa canina L.) grown in Bolu city center. J. Inst. Sci. Technol. 2021, 11, 831–838. [Google Scholar] [CrossRef]
- Ercisli, S. Rose (Rosa spp.) germplasm resources of Turkey. Genet. Res. Crop Evol. 2005, 52, 787–795. [Google Scholar] [CrossRef]
- Chrubasik, C.; Roufogalis, B.D.; Müller-Ladner, U.; Chrubasik, S.A. Systematic review on the Rosa canina effect and efficacy profiles. Phytother. Res. 2008, 22, 725–733. [Google Scholar] [CrossRef] [PubMed]
- Guimarães, R.; Barros, L.; Carvalho, A.; Ferreira, I.C.F.R. Studies on chemical constituents and bioactivity of Rosa micrantha: An alternative antioxidants source for food, pharmaceutical, or cosmetic applications. J. Agric. Food Chem. 2010, 58, 6277–6284. [Google Scholar] [CrossRef] [PubMed]
- Demir, N.; Yildiz, O.; Alpaslan, M.; Hayaloglu, A.A. Evaluation of volatiles, phenolic compounds and antioxidant activities of rose hip (Rosa L.) fruits in Turkey. LWT 2014, 57, 126–133. [Google Scholar] [CrossRef]
- Živković, J.; Stojković, D.; Petrović, J.; Zdunić, G.; Glamočlija, J.; Soković, M. Rosa canina L.—New possibilities for an old medicinal herb. Food Funct. 2015, 6, 3687–3692. [Google Scholar] [CrossRef] [PubMed]
- Tahirović, A.; Bašić, N. Determination of phenolic content and antioxidant activity of Rosa canina L. fruits in different extraction systems. Work. Fac. For. Univ. Sarajev. 2017, 1, 47–59. [Google Scholar]
- Uggla, M.; Gao, X.; Werlemark, G. Variation among and within dogrose taxa (Rosa sect. Caninae) in fruit weight, percentages of fruit flesh and dry matter, and vitamin C content. Acta Agric. Scand. B 2003, 53, 147–155. [Google Scholar] [CrossRef]
- Veberic, R.; Jakopic, J.; Stampar, F.; Schmitzer, V. European elderberry (Sambucus nigra L.) rich in sugars, organic acids, anthocyanins and selected polyphenols. Food Chem. 2009, 114, 511–515. [Google Scholar] [CrossRef]
- Barros, L.; Carvalho, A.M.; Ferreira, I.C.F.R. Exotic fruit as a source of improving the traditional use of Rosa canina fruit in Portugal. Food Res. Int. 2011, 44, 2233–2236. [Google Scholar] [CrossRef]
- Ozturk, I.; Ercisli, S.; Kalkan, F.; Demir, B. Some chemical and physico-mechanical properties of pear cultivars. Afr. J. Biotechnol. 2009, 8, 687–693. [Google Scholar]
- Adamczak, A.; Buchwaldi, W.; Zielinski, J.; Mielcarek, S. Flavonoid and organic acid content in rose hips (Rosa L. Sect Caninae dc. Em. Christ). Acta Biol. Cracov. 2012, 54, 105–112. [Google Scholar] [CrossRef]
- Serce, S.; Ozgen, M.; Torun, A.A.; Ercisli, S. Chemical composition, antioxidant activities and total phenolic content of Arbutus andrachne L. (Fam. Ericaceae) (the Greek strawberry tree) fruits from Turkey. J. Food Compost. Anal. 2010, 23, 619–623. [Google Scholar] [CrossRef]
- Gundogdu, M.; Ozrenk, K.; Ercisli, S.; Kan, T.; Kodad, O.; Hegedus, A. Organic acids, sugars, vitamin C content and some pomological characteristics of eleven hawthorn species (Crataegus spp.) from Turkey. Biol. Res. 2014, 47, 21. [Google Scholar] [CrossRef] [Green Version]
- Skender, A.; Kurtovic, M.; Drkenda, P.; Becirspahic, D.; Ebrahimi, A. Phenotypic variability of autochthonous walnut (Juglans regia L.) genotypes in northwestern Bosnia and Herzegovina. Turk. J. Agric. For. 2020, 44, 517–525. [Google Scholar] [CrossRef]
- Engin, S.P.; Mert, C. The effects of harvesting time on the physicochemical components of aronia berry. Turk. J. Agric. For. 2020, 44, 361–370. [Google Scholar] [CrossRef]
- Kaskoniene, V.; Bimbiraite-Surviliene, K.; Kaskonas, P.; Tiso, N.; Cesoniene, L.; Daubaras, R.; Maruska, A.S. Changes in the biochemical compounds of Vaccinium myrtillus, Vaccinium vitis-idaea, and forest litter collected from various forest types. Turk. J. Agric. For. 2020, 44, 557–566. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Calorimetry of total phenolics with phosphomolybdic–phosphotungstic acid reagent. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Lichtenthaler, H.K. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods Enzymol. 1987, 148, 350–382. [Google Scholar]
- Chang, Q.; Zuo, Z.; Harrison, F.; Chow, M.S.S. Hawthorn. J. Clin. Pharmacol. 2002, 42, 605–612. [Google Scholar] [CrossRef]
- Giusti, M.M.; Wrolstad, R.E. Anthocyanins. Characterization and measurement of anthocyanins by UV-visible spectroscopy. In Current Protocols in Food Analytical Chemistry, Unit F1.2.1–13; John Wiley & Sons: New York, NY, USA, 2001. [Google Scholar]
- Nakajima, J.; Tanaka, I.; Seo, S.; Yamazaki, M.; Saito, K. LC/PDA/ESI-MS profiling and radical scavenging activity of anthocyanins in various berries. J. Biomed. Biotechnol. 2004, 5, 241–247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodriguez-Delgado, M.A.; Malovana, S.; Perez, J.P.; Borges, T.; Garcia-Montelongo, F.J. Separation of phenolic compounds by high-performance liquid chromatography with absorbance and fluorimetric detection. J. Chroma. 2001, 912, 249–257. [Google Scholar] [CrossRef]
- Yamankaradeniz, R. Physical and chemical properties of rosehip (Rosa spp.). J. Food. 1983, 8, 151–156. [Google Scholar]
- Kazankaya, A.; Turkoglu, N.; Yilmaz, M.; Balta, M.F. Pomological description of Rosa canina selections from Eastern Anatolia, Turkey. Int. J. Bot. 2005, 1, 100–102. [Google Scholar] [CrossRef]
- Yoruk, B.E. Determination of Some Fruit Characteristics of Rose Hips Grown in Siirt Province. Master’s Thesis, Yuzuncu Yil University, Van, Turkey, 2006. [Google Scholar]
- Celik, F.; Kazankaya, A.; Ercisli, S. Fruit characteristics of some selected promising rose hip (Rosa spp.) genotypes from Van region of Turkey. Afr. J. Agric. Res. 2009, 4, 236–240. [Google Scholar]
- Doğan, A.; Kazankaya, A. Fruit properties of rose hip species grown in Lake Van Basin (Eastern Anatolia Region). Asian J. Plant Sci. 2006, 5, 120–122. [Google Scholar]
- Okatan, V.; Çolak, A.M.; Guclu, S.F.; Korkmaz, N.; Sękara, A. Local genotypes of dog rose from Interior Aegean region of Turkey as a unique source of pro-health compounds. Bragantia 2019, 78, 397–408. [Google Scholar] [CrossRef]
- Ercisli, S.; Esitken, A. Fruit characteristics of native rose hip (Rosa spp.) selections from the Erzurum province of Turkey. N. Z. J. Crop Hortic. Sci. 2004, 32, 51–53. [Google Scholar] [CrossRef] [Green Version]
- Ipek, P.; Balta, F. Fruit properties of rose hip (Rosa spp.) genotypes selected from Akkuş, Ordu province. YYU J. Agric. Sci. 2020, 30, 338–344. [Google Scholar]
- Wu, J.; Wang, Y.; Xu, J.; Korban, S.S.; Fei, Z.; Tao, S.; Ming, R.; Tai, S.; Khan, A.M.; Postman, J.D.; et al. Diversification and independent domestication of Asian and European pears. Genome Biol. 2018, 19, 77. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Chen, T.; Wang, Y.; Chen, Q.; Sun, B.; Luo, Y.; Zhang, Y.; Tang, H.; Wang, X. Genetic diversity and domestication footprints of Chinese cherry [Cerasus pseudocerasus (Lindl.) G.Don] as revealed by nuclear microsatellites. Front. Plant Sci. 2018, 9, 238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, M.; Zhang, Z.; Li, S.; Lian, Q.; Fu, P.; He, Y.; Qiao, J.; Xu, K.; Liu, L.; Wu, M.; et al. Genomic analyses of diverse wild and cultivated accessions provide insights into the evolutionary history of jujube. Plant Biotechnol. J. 2021, 19, 517–531. [Google Scholar] [CrossRef] [PubMed]
- Lam, H.M.; Xu, X.; Liu, X.; Chen, W.; Yang, G.; Wong, F.L.; Li, M.W.; He, W.; Qin, N.; Wang, B.; et al. Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nat. Genet. 2010, 42, 1053–1059. [Google Scholar] [CrossRef]
- Shameh, S.; Alirezalu, A.; Hosseini, B.; Maleki, R. Fruit phytochemical composition and color parameters of 21 accessions of five Rosa species grown in North West Iran. J. Sci. Food Agric. 2019, 99, 5740–5751. [Google Scholar] [CrossRef] [PubMed]
- Samanta, A.; Das, G.; Das, S.K. Roles of flavonoids in plants. Int. J. Pharm. Sci. Tech. 2011, 6, 12–35. [Google Scholar]
- Medveckiene, B.; Kulaitiene, J.; Jariene, E.; Vaitkeviciene, N.; Hallman, E. Carotenoids, polyphenols, and ascorbic acid in organic rosehips (Rosa spp.) cultivated in Lithuania. Appl. Sci. 2020, 10, 5337. [Google Scholar] [CrossRef]
- Winther, K.; Vinther-Hansen, A.S.; Campbelle-Tofte, J. Bioactive ingredients of rose hips (Rosa canina L.) with special reference to antioxidative and anti-inflammatory properties: In Vitro studies. Bot. Targets Ther. 2016, 6, 11–23. [Google Scholar] [CrossRef] [Green Version]
- Andersson, S.C.; Rumpunen, K.; Johansson, E.; Olsson, M.E. Carotenoid content and composition in rose hips (Rosa spp.) during ripening, determination of suitable maturity marker and implications for health promoting food products. Food Chem. 2011, 128, 689–696. [Google Scholar] [CrossRef]
- Yoo, K.M.; Lee, C.H.; Lee, H.; Moon, B.; Lee, C.Y. Relative antioxidant and cytoprotective of common herbs. Food Chem. 2008, 106, 926–936. [Google Scholar] [CrossRef]
- Fattahi, S.; Jamei, R.; Hosseini, S.S. Antioxidant and antiradicalic activity of Rosa canina and Rosa pimpinellifolia fruits from West Azerbaijan. Iranian J. Plant Physiol. 2012, 2, 523–529. [Google Scholar]
- Ozturk Yilmaz, S.; Ercisli, S. Antibacterial and antioxidant activity of fruits of some rose species from Turkey. Rom. Biotechnol. Lett. 2011, 16, 6404–6411. [Google Scholar]
- Koczka, N.; Stefanovits-Bányai, E.; Ombódi, A. Total polyphenol content and antioxidant capacity of rosehips of some Rosa species. Medicines 2018, 5, 84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fascella, G.; D’Angiolillo, F.; Mammano, M.M.; Amenta, M.; Romeo, F.V.; Rapisarda, P.; Ballistreri, G. Bioactive compounds and antioxidant activity of four rose hip species from spontaneous Sicilian flora. Food Chem. 2019, 289, 56–64. [Google Scholar] [CrossRef] [PubMed]
- Alp, S.; Ercisli, S.; Jurikova, T.; Cakir, O.; Gozlekci, S. Bioactive content of rose hips of different wildly grown Rosa dumalis genotypes. Not. Bot. Horti Agrobo. 2016, 44, 472–476. [Google Scholar] [CrossRef] [Green Version]
- Al-Yafeai, A.; Malarskia, A.; Böhma, V. Characterization of carotenoids and vitamin E in R. rugosa and R. canina: Comparative analysis. Food Chem. 2018, 242, 435–442. [Google Scholar] [CrossRef]
- Andersson, S.C. Carotenoids, Tocochromanols and Chlorophylls in Sea Buckthorn Berries (Hippophae Rhamnoides) and Rose Hips (Rosa sp.). Ph.D. Thesis, Swedish University of Agricultural Sciences, Alnarp, Sweden, 2009. [Google Scholar]
- Fiedor, J.; Burda, K. Potential role of carotenoids as antioxidants in human health and disease. Nutrients 2014, 6, 466–488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roman, I.; Stanila, A.; Stanila, S. Bioactive compounds and antioxidant activity of Rosa canina L. biotypes from spontaneous flora of Transilvania. Chem. Cent. J. 2013, 7, 2–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosu, C.M.; Manzu, C.; Olteanu, Z.; Oprica, L.; Oprea, A.; Ciornea, E.; Zamfirache, M.M. Several fruit characteristics of Rosa sp. genotypes from the Northeastern region of Romania. Not. Bot. Horti Agrobo. 2011, 39, 203–208. [Google Scholar] [CrossRef] [Green Version]
- Bulley, S.; Laing, W. The regulation of ascorbate biosynthesis. Curr. Opin. Plant Biol. 2016, 33, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Fan, C.; Pacier, C.; Martirosyan, D.M. Rose hip (Rosa canina L): A functional food perspective. Funct. Foods Health Dis. 2014, 4, 493–509. [Google Scholar] [CrossRef]
- Guerrero, C.J.; Ciampi, P.L.; Castilla, A.C.; Medel, S.F.; Schalchli, H.S.; Hormazabal, E.U.; Bensch, E.T.; Alberdi, M.L. Antioxidant capacity, anthocyanins, and total phenols of wild and cultivated berries in Chile. Chil. J. Agric. Res. 2010, 70, 537–544. [Google Scholar] [CrossRef]
- Wang, H.; Cao, G.; Prior, R.L. Oxygen radical absorbing capacity of anthocyanins. J. Agric. Food Chem. 1997, 45, 304–309. [Google Scholar] [CrossRef]
- Murathan, Z.T.; Zarifikhosroshahi, M.; Kafkas, E.; Sevindik, E. Characterization of bioactive compounds in rosehip species from East Anatolia region of Turkey. Ital. J. Food Sci. 2016, 28, 314–325. [Google Scholar]
- Yildiz, O.; Alpaslan, M. Properties of rose hip marmalades. Food Technol. Biotechnol. 2012, 50, 98–106. [Google Scholar]
- Roobha, J.J.; Saravanakumar, M.; Aravindhan, K.M.; Devi, P.S. The effect of light, temperature, pH on stability of anthocyanin pigments in Musa acuminata bract. Res. Plant Biol. 2011, 1, 5–12. [Google Scholar]
- Cunja, V.; Mikulic-Petkovsek, M.; Zupan, A.; Stampar, F.; Schmitzer, V. Frost decreases content of sugars, ascorbic acids and some quercetin glycosides but stimulates selected carotenes in Rosa canina hips. J. Plant Physiol. 2015, 178, 55–63. [Google Scholar] [CrossRef]
- Soare, R.; Babeanu, C.; Bonea, D.; Panipa, O. The content of total phenols, flavonoids and antioxidant activity in rosehip from the spontaneous flora from south Romania. Sci. Pap. Ser. A Agron. 2015, LVIII, 307–314. [Google Scholar]
- Balta, F.; Cam, I. Some fruit properties of rose hips selected from Gevas and Ahlat district. Yuzuncu Yil Univ. J. Agric. 1996, 6, 155–160. [Google Scholar]
- Ozturk, N.; Tuncel, M.; Tuncel, N.B. Determination of phenolic acids by a modified HPLC: Its application to various plant materials. J. Liq. Chrom. Relat. Tech. 2007, 30, 587–596. [Google Scholar] [CrossRef]
- Nowak, R. Chemical composition of hips essential oils of some Rosa L. species. Z. Naturforsch. C. J. Biosci. 2005, 60, 369–378. [Google Scholar] [CrossRef] [PubMed]
- Fecka, I. Qualitative and quantitative determination of hydrolysable tannins and other polyphenols in herbal products from meadowsweet and dog rose. Phytochem. Anal. 2009, 20, 177–190. [Google Scholar] [CrossRef] [PubMed]
- Liang, N.; Kitts, D.D. Role of chlorogenic acids in controlling oxidative and inflammatory stress conditions. Nutrients 2016, 8, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ganeshpurkar, A.; Saluja, A.K. The pharmacological potential of rutin. Saudi Pharm. J. 2017, 25, 149–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cosmulescu, S.; Trandafir, I.; Nour, V. Phenolic acids and flavonoids profiles of extracts from edible wild fruits and their antioxidant properties. Int. J. Food Prop. 2017, 20, 3124–3134. [Google Scholar] [CrossRef] [Green Version]
- Dogan, H.; Ercisli, S.; Temim, E.; Hadziabulic, A.; Tosun, M.; Yilmaz, S.O.; Zia-Ul-Haq, M. Diversity of chemical content and biological activity in flower buds of a wide number of wild grown caper (Capparis ovate Desf.) genotypes from Turkey. C. R. Acad. Bulg. Sci. 2014, 67, 1593–1600. [Google Scholar]
- Ozkan, G. Phenolic compounds, organic acids, vitamin C and antioxidant capacity in Prunus spinose. C. R. Acad. Bulg. Sci. 2019, 72, 267–273. [Google Scholar]
- Gecer, M.K.; Ozkan, G.; Sagbas, H.I.; Ilhan, G.; Gundogdu, M.; Ercisli, S. Some important horticultural properties of summer apple genotypes from Coruh valley in Turkey. Int. J. Fruit Sci. 2020, 20, S1406–S1416. [Google Scholar] [CrossRef]
- Maras-Vanlioglu, F.G.; Yaman, H.; Kayacetin, F. Genetic diversity analysis of some species in Brassiceae family with ISSR markers. Biotech. Stud. 2020, 29, 38–46. [Google Scholar] [CrossRef]
- Ozkan, G.; Ercisli, S.; Sagbas, H.I.; Ilhan, G. Diversity on fruits of wild grown European cranberrybush from Coruh valley in Turkey. Erwerbs Obstbau 2020, 62, 275–279. [Google Scholar] [CrossRef]
- Bujdosó, G.; Cseke, K. The Persian (English) walnut (Juglans regia L.) assortment of Hungary: Nut characteristics and origin. Sci. Hortic. 2021, 283, 110035. [Google Scholar] [CrossRef]
- Kantar, F.; Yemsen, S.N.; Bulbul, C.; Yilmaz, N.; Mutlu, N. Phenotypic and iPBS-retrotransposon marker diversity in okra (Abelmoschus esculentus (L.) Moench) germplasm. Biotech. Stud. 2021, 30, 7–15. [Google Scholar] [CrossRef]
Ecotypes | Species | Location | Altitude (m) | Thorn | Yield | Fruit Weight (g) | Flesh Ratio (%) |
---|---|---|---|---|---|---|---|
K1 | Rosa canina | Arpacay | 1765 | Medium | High | 3.84 ± 0.15 | 70.55 ± 2.44 |
K2 | Rosa canina | Arpacay | 1780 | Medium | Very high | 4.02 ± 0.20 | 68.61 ± 3.14 |
K3 | Rosa dumalis | Arpacay | 1758 | Low | High | 3.66 ± 0.11 | 64.44 ± 2.88 |
K4 | Rosa canina | Digor | 1570 | Low | High | 4.25 ± 0.22 | 72.25 ± 4.22 |
K5 | Rosa dumalis | Digor | 1556 | Low | High | 2.95 ± 0.12 | 63.38 ± 4.56 |
K6 | Rosa dumalis | Digor | 1548 | Medium | High | 3.66 ± 0.14 | 65.11 ± 3.88 |
K7 | Rosa dumalis | Kagizman | 1470 | Medium | Very high | 3.90 ± 0.17 | 67.22 ± 2.11 |
K8 | Rosa canina | Kagizman | 1480 | Low | Very high | 4.11 ± 0.22 | 74.42 ± 5.11 |
K9 | Rosa dumalis | Kagizman | 1446 | Low | High | 3.60 ± 0.20 | 70.55 ± 4.31 |
K10 | Rosa dumalis | Sarikamis | 2205 | Medium | High | 3.44 ± 0.14 | 72.30 ± 5.51 |
K11 | Rosa canina | Sarikamis | 2180 | Medium | Very high | 4.46 ± 0.23 | 66.15 ± 4.32 |
K12 | Rosa canina | Sarikamis | 2210 | Medium | High | 4.72 ± 0.21 | 73.22 ± 5.26 |
K13 | Rosa canina | Selim | 1822 | Low | High | 3.85 ± 0.10 | 69.56 ± 3.67 |
K14 | Rosa dumalis | Selim | 1865 | Low | High | 3.50 ± 0.09 | 62.55 ± 4.93 |
K15 | Rosa dumalis | Kars | 1828 | Low | High | 3.10 ± 0.10 | 67.83 ± 2.93 |
K16 | Rosa dumalis | Kars | 1845 | Medium | High | 3.05 ± 0.09 | 69.92 ± 4.36 |
K17 | Rosa canina | Kars | 1885 | Low | High | 4.29 ± 0.17 | 73.34 ± 5.80 |
K18 | Rosa canina | Kars | 1910 | Medium | Very high | 4.38 ± 0.20 | 67.19 ± 4.55 |
K19 | Rosa dumalis | Kars | 1922 | Low | High | 3.81 ± 0.15 | 65.44 ± 3.67 |
K20 | Rosa canina | Kars | 1968 | Low | High | 3.57 ± 0.16 | 70.48 ± 4.67 |
Significance | ** | ** | |||||
LSD5% | 0.21 | 3.26 |
Ecotypes | Total Flavonoid (mg QUE/g FW) | Total Phenolic (mg GAE/100 g FW) | Total Carotenoid (mg/g FW) | Vitamin C (mg/100 g FW) | Total Anthocyanin (mg/kg) | DPPH (mg AAE/g FW) | SSC (%) |
---|---|---|---|---|---|---|---|
K1 | 1.55 ± 0.10 | 492 ± 16 | 13.70 ± 0.20 | 678 ± 21 | 5.68 ± 0.20 | 29.8 ± 0.5 | 20.2 ± 0.4 |
K2 | 1.87 ± 0.09 | 511 ± 13 | 12.20 ± 0.17 | 636 ± 27 | 7.04 ± 0.23 | 34.4 ± 0.2 | 19.8 ± 0.4 |
K3 | 1.94 ± 0.12 | 488 ± 14 | 15.17 ± 0.11 | 595 ± 24 | 6.28 ± 0.20 | 30.5 ± 0.1 | 20.6 ± 0.5 |
K4 | 1.75 ± 0.10 | 497 ± 09 | 15.02 ± 0.15 | 642 ± 29 | 4.95 ± 0.12 | 31.4 ± 0.2 | 19.8 ± 0.3 |
K5 | 1.90 ± 0.08 | 519 ± 20 | 14.80 ± 0.10 | 667 ± 23 | 7.81 ± 0.17 | 33.3 ± 0.2 | 20.6 ± 0.2 |
K6 | 2.04 ± 0.13 | 532 ± 13 | 14.40 ± 0.09 | 605 ± 30 | 6.50 ± 0.16 | 34.7 ± 0.4 | 19.9 ± 0.4 |
K7 | 1.08 ± 0.05 | 390 ± 10 | 9.40 ± 0.06 | 502 ± 13 | 7.51 ± 0.20 | 19.7 ± 0.3 | 17.3 ± 0.1 |
K8 | 0.95 ± 0.05 | 398 ± 09 | 8.11 ± 0.06 | 430 ± 10 | 4.41 ± 0.10 | 21.3 ± 0.5 | 16.9 ± 0.1 |
K9 | 0.88 ± 0.04 | 400 ± 14 | 6.83 ± 0.04 | 454 ± 09 | 5.35 ± 0.09 | 19.9 ± 0.2 | 17.1 ± 0.3 |
K10 | 1.67 ± 0.09 | 447 ± 10 | 10.70 ± 0.11 | 641 ± 14 | 6.20 ± 0.09 | 27.4 ± 0.5 | 22.7 ± 0.2 |
K11 | 1.55 ± 0.10 | 460 ± 08 | 11.40 ± 0.10 | 580 ± 12 | 7.02 ± 0.10 | 26.9 ± 0.5 | 21.5 ± 0.4 |
K12 | 1.79 ± 0.07 | 471 ± 07 | 11.80 ± 0.12 | 690 ± 16 | 3.62 ± 0.05 | 23.8 ± 0.2 | 22.0 ± 0.3 |
K13 | 1.66 ± 0.07 | 466 ± 10 | 7.60 ± 0.04 | 492 ± 10 | 6.02 ± 0.13 | 25.4 ± 0.3 | 20.2 ± 0.1 |
K14 | 1.47 ± 0.06 | 451 ± 12 | 8.40 ± 0.05 | 505 ± 13 | 5.75 ± 0.11 | 29.2 ± 0.6 | 20.8 ± 0.2 |
K15 | 1.28 ± 0.06 | 428 ± 14 | 9.97 ± 0.06 | 572 ± 11 | 6.36 ± 0.10 | 30.1 ± 0.5 | 19.3 ± 0.3 |
K16 | 1.35 ± 0.06 | 481 ± 10 | 7.94 ± 0.01 | 610 ± 14 | 6.11 ± 0.09 | 25.5 ± 0.4 | 21.9 ± 0.1 |
K17 | 1.30 ± 0.05 | 404 ± 09 | 10.20 ± 0.07 | 497 ± 08 | 4.85 ± 0.09 | 23.8 ± 0.4 | 20.1 ± 0.4 |
K18 | 1.50 ± 0.10 | 417 ± 11 | 11.30 ± 0.14 | 555 ± 10 | 5.42 ± 0.12 | 27.0 ± 0.5 | 21.5 ± 0.6 |
K19 | 1.43 ± 0.11 | 425 ± 15 | 9.88 ± 0.09 | 582 ± 12 | 3.97 ± 0.10 | 25.6 ± 0.2 | 20.2 ± 0.5 |
K20 | 1.20 ± 0.05 | 410 ± 14 | 10.57 ± 0.07 | 450 ± 11 | 4.87 ± 0.10 | 24.4 ± 0.2 | 19.9 ± 0.3 |
Significance | ** | ** | ** | ** | ** | ** | ** |
LSD5% | 0.26 | 45 | 2.23 | 120 | 1.67 | 2.77 | 1.40 |
Ecotypes | Chlorogenic | Gallic | Rutin | p-Coumaric | Caffeic |
---|---|---|---|---|---|
K1 | 28.2 ± 0.06 | 25.8 ± 0.05 | 21.7 ± 0.04 | 30.7 ± 0.04 | 8.7 ± 0.02 |
K2 | 55.8 ± 0.03 | 30.1 ± 0.03 | 30.8 ± 0.02 | 25.8 ± 0.02 | 10.1 ± 0.01 |
K3 | 67.4 ± 0.03 | 49.3 ± 0.02 | 25.5 ± 0.04 | 19.6 ± 0.03 | ND |
K4 | 60.3 ± 0.02 | 40.2 ± 0.02 | 30.1 ± 0.01 | 27.3 ± 0.03 | 13.7 ± 0.01 |
K5 | 81.3 ± 0.06 | 44.3 ± 0.01 | 38.6 ± 0.03 | ND | 10.9 ± 0.01 |
K6 | 50.2 ± 0.06 | 32.1 ± 0.03 | 26.2 ± 0.05 | 14.9 ± 0.02 | ND |
K7 | 73.7 ± 0.05 | 24.8 ± 0.01 | 24.4 ± 0.02 | 16.2 ± 0.03 | 9.4 ± 0.02 |
K8 | 48.8 ± 0.04 | 29.3 ± 0.04 | 33.6 ± 0.03 | 21.3 ± 0.03 | 11.6 ± 0.02 |
K9 | 69.8 ± 0.04 | 34.6 ± 0.05 | 28.6 ± 0.04 | 27.4 ± 0.02 | ND |
K10 | 27.8 ± 0.03 | 33.1 ± 0.05 | 20.9 ± 0.04 | 18.4 ± 0.02 | 8.3 ± 0.01 |
K11 | 56.1 ± 0.02 | 19.2 ± 0.05 | 22.5 ± 0.06 | 11.6 ± 0.01 | 14.2 ± 0.01 |
K12 | 51.4 ± 0.06 | 10.9 ± 0.03 | 24.7 ± 0.01 | ND | 13.1 ± 0.03 |
K13 | 29.3 ± 0.04 | 28.3 ± 0.05 | 18.5 ± 0.03 | 12.0 ± 0.01 | ND |
K14 | 77.8 ± 0.03 | 27.6 ± 0.04 | 33.2 ± 0.04 | 13.2 ± 0.01 | ND |
K15 | 44.2 ± 0.02 | 30.9 ± 0.02 | 35.4 ± 0.06 | 16.1 ± 0.02 | 13.9 ± 0.02 |
K16 | 39.6 ± 0.03 | 24.2 ± 0.05 | 19.9 ± 0.02 | 15.0 ± 0.02 | 12.6 ± 0.01 |
K17 | 35.2 ± 0.02 | 30.4 ± 0.06 | 22.6 ± 0.02 | 33.2 ± 0.02 | 11.5 ± 0.01 |
K18 | 51.8 ± 0.04 | 21.6 ± 0.05 | 24.4 ± 0.03 | ND | 14.0 ± 0.05 |
K19 | 69.1 ± 0.06 | 32.1 ± 0.02 | 30.2 ± 0.05 | 14.7 ± 0.01 | ND |
K20 | 42.2 ± 0.06 | 22.3 ± 0.04 | 19.2 ± 0.04 | 14.2 ± 0.02 | 13.3 ± 0.04 |
Significance | ** | ** | ** | ** | ** |
LSD5% | 3.2 | 2.8 | 2.4 | 1.9 | 0.9 |
FW | FFR | SSC | Vit. C | TPC | TFC | TC | TA | DPPH | |
---|---|---|---|---|---|---|---|---|---|
FW | 1.00 | ||||||||
FFR | 0.34 | 1.00 | |||||||
SSC | −0.25 | −0.18 | 1.00 | ||||||
Vit. C | 0.57 * | −0.17 | 0.63 * | 1.00 | |||||
TPC | 0.07 | −0.04 | −0.07 | 0.43 | 1.00 | ||||
TFC | −0.09 | −0.07 | −0.14 | 0.21 | 0.74 ** | 1.00 | |||
TC | −0.03 | −0.09 | −0.11 | 0.33 | 0.61 * | 0.55 | 1.00 | ||
TA | −0.04 | −0.17 | −0.23 | −0.08 | 0.44 | 0.52 | 0.04 | 1.00 | |
DPPH | 0.13 | −0.21 | −0.08 | 0.55 | 0.84 ** | 0.69 * | 0.58 | 0.61 * | 1.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bozhuyuk, M.R.; Ercisli, S.; Karatas, N.; Ekiert, H.; Elansary, H.O.; Szopa, A. Morphological and Biochemical Diversity in Fruits of Unsprayed Rosa canina and Rosa dumalis Ecotypes Found in Different Agroecological Conditions. Sustainability 2021, 13, 8060. https://doi.org/10.3390/su13148060
Bozhuyuk MR, Ercisli S, Karatas N, Ekiert H, Elansary HO, Szopa A. Morphological and Biochemical Diversity in Fruits of Unsprayed Rosa canina and Rosa dumalis Ecotypes Found in Different Agroecological Conditions. Sustainability. 2021; 13(14):8060. https://doi.org/10.3390/su13148060
Chicago/Turabian StyleBozhuyuk, Mehmet Ramazan, Sezai Ercisli, Neva Karatas, Halina Ekiert, Hosam O. Elansary, and Agnieszka Szopa. 2021. "Morphological and Biochemical Diversity in Fruits of Unsprayed Rosa canina and Rosa dumalis Ecotypes Found in Different Agroecological Conditions" Sustainability 13, no. 14: 8060. https://doi.org/10.3390/su13148060
APA StyleBozhuyuk, M. R., Ercisli, S., Karatas, N., Ekiert, H., Elansary, H. O., & Szopa, A. (2021). Morphological and Biochemical Diversity in Fruits of Unsprayed Rosa canina and Rosa dumalis Ecotypes Found in Different Agroecological Conditions. Sustainability, 13(14), 8060. https://doi.org/10.3390/su13148060