Research on the Spatial Differentiation and Driving Forces of Eco-Efficiency of Regional Tourism in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Envelope Analysis
2.2. Hot Spot Analysis
2.3. Spatial Center of Gravity Analysis
2.4. Panel Tobit Regression Analysis
2.5. Geodetector Model
3. Indicators and Data
3.1. Eco-Efficiency Indicators
3.2. The Panel Tobit Regression Model Indicators
3.3. The Geodetector Model Indicators
3.4. Data Sources
4. Results
4.1. The Overall Evolution of Regional Tourism Eco-Efficiency of China
4.2. Spatial Patterns on Regional Tourism Eco-Efficiency
4.2.1. Characteristics
4.2.2. Spatial Hot Spot Analysis
4.2.3. Spatial Center of Gravity Analysis
4.3. Analysis of the Driving Forces of the Regional Tourism Eco-Efficiency
4.3.1. Analysis of Internal Driving Forces: A Panel Tobit Regression Model
4.3.2. Analysis of External Influencing Factors: A Geodetector Model
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Nations, U. Transforming Our World: The 2030 Agenda for Sustainable Development; United Nations: New York, NY, USA, 2015. [Google Scholar]
- Organiztion, W.T. UNWTO Annual Report 2019; UNWTO: Madrid, Spain, 2019. [Google Scholar]
- Ministry of Culture and Tourism of the People’s Republic of China. Statistical Bulletin of Culture and Tourism Development in 2018; Ministry of Culture and Tourism: Beijing, China, 2019.
- Lenzen, M.; Sun, Y.-Y.; Faturay, F.; Ting, Y.-P.; Geschke, A.; Malik, A. The carbon footprint of global tourism. Nat. Clim. Chang. 2018, 8, 522–528. [Google Scholar] [CrossRef]
- Tang, Z.; Shang, J.; Shi, C.; Liu, Z.; Bi, K. Decoupling indicators of CO2 emissions from the tourism industry in China: 1990–2012. Ecol. Indic. 2014, 46, 390–397. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Y. Carbon tax, tourism CO2 emissions and economic welfare. Ann. Tour. Res. 2018, 69, 18–30. [Google Scholar] [CrossRef]
- Luo, F.; Moyle, B.D.; Moyle, C.-L.J.; Zhong, Y.; Shi, S. Drivers of carbon emissions in China’s tourism industry. J. Sustain. Tour. 2020, 28, 747–770. [Google Scholar] [CrossRef]
- Yang, L.; Yang, Y. Evaluation of eco-efficiency in China from 1978 to 2016: Based on a modified ecological footprint model. Sci. Total. Environ. 2019, 662, 581–590. [Google Scholar] [CrossRef]
- Katircioglu, S.T.; Feridun, M.; Kilinc, C. Estimating tourism-induced energy consumption and CO2 emissions: The case of Cyprus. Renew. Sustain. Energy Rev. 2014, 29, 634–640. [Google Scholar] [CrossRef]
- Zhang, L.; Gao, J. Exploring the effects of international tourism on China’s economic growth, energy consumption and environmental pollution: Evidence from a regional panel analysis. Renew. Sustain. Energy Rev. 2016, 53, 225–234. [Google Scholar] [CrossRef]
- Zheng, J.; Hu, Y.; Dong, S.; Li, Y. The Spatiotemporal Pattern of Decoupling Transport CO2 Emissions from Economic Growth across 30 Provinces in China. Sustainability 2019, 11, 2564. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, F.; Draz, M.U.; Su, L.; Ozturk, I.; Rauf, A. Tourism and Environmental Pollution: Evidence from the One Belt One Road Provinces of Western China. Sustainability 2018, 10, 3520. [Google Scholar] [CrossRef] [Green Version]
- Ruan, W.-Q.; Li, Y.-Q.; Zhang, S.; Liu, C.-H. Evaluation and drive mechanism of tourism ecological security based on the DPSIR-DEA model. Tour. Manag. 2019, 75, 609–625. [Google Scholar] [CrossRef]
- Zha, J.; Zhu, Y.; He, D.; Tan, T.; Yang, X. Sources of tourism growth in Mainland China: An extended data envelopment analysis-based decomposition analysis. Int. J. Tour. Res. 2020, 22, 54–70. [Google Scholar] [CrossRef]
- Sun, Y.-Y.; Drakeman, D. Measuring the carbon footprint of wine tourism and cellar door sales. J. Clean. Prod. 2020, 266, 121937. [Google Scholar] [CrossRef]
- Paiano, A.; Crovella, T.; Lagioia, G. Managing sustainable practices in cruise tourism: The assessment of carbon footprint and waste of water and beverage packaging. Tour. Manag. 2020, 77, 104016. [Google Scholar] [CrossRef]
- Sun, Y.; Hou, G.; Huang, Z.; Zhong, Y. Spatial-Temporal Differences and Influencing Factors of Tourism Eco-Efficiency in China’s Three Major Urban Agglomerations Based on the Super-EBM Model. Sustainability 2020, 12, 4156. [Google Scholar] [CrossRef]
- Zha, J.; Yuan, W.; Dai, J.; Tan, T.; He, L. Eco-efficiency, eco-productivity and tourism growth in China: A non-convex metafrontier DEA-based decomposition model. J. Sustain. Tour. 2020, 28, 663–685. [Google Scholar] [CrossRef]
- Peng, B.; Wang, Y.; Wei, G. Energy eco-efficiency: Is there any spatial correlation between different regions? Energy Policy 2020, 140, 111404. [Google Scholar] [CrossRef]
- Sun, H.; Kporsu, A.K.; Taghizadeh-Hesary, F.; Edziah, B.K. Estimating environmental efficiency and convergence: 1980 to 2016. Energy 2020, 208, 118224. [Google Scholar] [CrossRef]
- Wei, Y.; Li, Y.; Wu, M.; Li, Y. The decomposition of total-factor CO2 emission efficiency of 97 contracting countries in Paris Agreement. Energy Econ. 2019, 78, 365–378. [Google Scholar] [CrossRef]
- Ouyang, W.; Yang, J.-B. The network energy and environment efficiency analysis of 27 OECD countries: A multiplicative network DEA model. Energy 2020, 197, 117161. [Google Scholar] [CrossRef]
- Yu, S.; Liu, J.; Li, L. Evaluating provincial eco-efficiency in China: An improved network data envelopment analysis model with undesirable output. Environ. Sci. Pollut. Res. 2020, 27, 6886–6903. [Google Scholar] [CrossRef]
- Jiang, Y.; Chen, X.; Valdmanis, V.G.; Baležentis, T. Evaluating Economic and Environmental Performance of the Chinese Industry Sector. Sustainability 2019, 11, 6804. [Google Scholar] [CrossRef] [Green Version]
- Baum, R.; Bieńkowski, J. Eco-Efficiency in Measuring the Sustainable Production of Agricultural Crops. Sustainability 2020, 12, 1418. [Google Scholar] [CrossRef] [Green Version]
- Ezici, B.; Eğilmez, G.; Gedik, R. Assessing the eco-efficiency of U.S. manufacturing industries with a focus on renewable vs. non-renewable energy use: An integrated time series MRIO and DEA approach. J. Clean. Prod. 2020, 253, 119630. [Google Scholar] [CrossRef]
- Feng, M.; Li, X. Evaluating the efficiency of industrial environmental regulation in China: A three-stage data envelopment analysis approach. J. Clean. Prod. 2020, 242, 13. [Google Scholar] [CrossRef]
- Li, W.; Wang, J.; Chen, R.; Xi, Y.; Liu, S.Q.; Wu, F.; Masoud, M.; Wu, X. Innovation-driven industrial green development: The moderating role of regional factors. J. Clean. Prod. 2019, 222, 344–354. [Google Scholar] [CrossRef]
- Masuda, K. Eco-Efficiency Assessment of Intensive Rice Production in Japan: Joint Application of Life Cycle Assessment and Data Envelopment Analysis. Sustainability 2019, 11, 5368. [Google Scholar] [CrossRef] [Green Version]
- Li, H.L.; Zhu, X.H.; Chen, J.Y.; Jiang, F.T. Environmental regulations, environmental governance efficiency and the green transformation of China’s iron and steel enterprises. Ecol. Econ. 2019, 165, 14. [Google Scholar] [CrossRef]
- Prashar, A. Towards sustainable development in industrial small and Medium-sized Enterprises: An energy sustainability approach. J. Clean. Prod. 2019, 235, 977–996. [Google Scholar] [CrossRef]
- Trianni, A.; Cagno, E.; Neri, A.; Howard, M. Measuring industrial sustainability performance: Empirical evidence from Italian and German manufacturing small and medium enterprises. J. Clean. Prod. 2019, 229, 1355–1376. [Google Scholar] [CrossRef]
- Wang, X.; Chen, L.; Liu, C.; Zhang, Y.; Li, K. Optimal production efficiency of Chinese coal enterprises under the background of de-capacity—Investigation on the data of coal enterprises in Shandong Province. J. Clean. Prod. 2019, 227, 355–365. [Google Scholar] [CrossRef]
- Yu, Y.; Huang, J.; Zhang, N. Modeling the eco-efficiency of Chinese prefecture-level cities with regional heterogeneities: A comparative perspective. Ecol. Model. 2019, 402, 1–17. [Google Scholar] [CrossRef]
- Peng, H.; Zhanga, J.; Lu, L.; Tang, G.; Yan, B.; Xiao, X.; Han, Y. Eco-efficiency and its determinants at a tourism destination: A case study of Huangshan National Park, China. Tour. Manag. 2017, 60, 201–211. [Google Scholar] [CrossRef]
- Qiu, X.; Fang, Y.; Yang, X.; Zhu, F. Tourism Eco-Efficiency Measurement, Characteristics, and Its Influence Factors in China. Sustainability 2017, 9, 1634. [Google Scholar] [CrossRef] [Green Version]
- Gössling, S.; Peeters, P.; Ceron, J.-P.; Dubois, G.; Patterson, T.; Richardson, R.B. The eco-efficiency of tourism. Ecol. Econ. 2005, 54, 417–434. [Google Scholar] [CrossRef]
- Tang, C.; Wan, Z.; Ng, P.; Dai, X.; Sheng, Q.; Chen, D. Temporal and Spatial Evolution of Carbon Emissions and Their Influencing Factors for Tourist Attractions at Heritage Tourist Destinations. Sustainability 2019, 11, 5944. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.-Y.; Cadarso, M.A.; Driml, S. Tourism carbon footprint inventories: A review of the environmentally extended input-output approach. Ann. Tour. Res. 2020, 82, 13. [Google Scholar] [CrossRef]
- Cuccia, T.; Guccio, C.; Rizzo, I. The effects of UNESCO World Heritage List inscription on tourism destinations performance in Italian regions. Econ. Model. 2016, 53, 494–508. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, L. Ecological efficiency management of tourism scenic spots based on carbon footprint analysis. Int. J. Low-Carbon Technol. 2020, 15, 550–554. [Google Scholar] [CrossRef]
- Gössling, S.; Hansson, C.B.; Hörstmeier, O.; Saggel, S. Ecological footprint analysis as a tool to assess tourism sustainability. Ecol. Econ. 2002, 43, 199–211. [Google Scholar] [CrossRef]
- Kuo, N.-W.; Chen, P.-H. Quantifying energy use, carbon dioxide emission, and other environmental loads from island tourism based on a life cycle assessment approach. J. Clean. Prod. 2009, 17, 1324–1330. [Google Scholar] [CrossRef]
- Peeters, P.; Dubois, G. Tourism travel under climate change mitigation constraints. J. Transp. Geogr. 2010, 18, 447–457. [Google Scholar] [CrossRef]
- Dwyer, L.; Forsyth, P.; Spurr, R.; Hoque, S. Estimating the carbon footprint of Australian tourism. J. Sustain. Tour. 2010, 18, 355–376. [Google Scholar] [CrossRef]
- Munday, M.; Turner, K.; Jones, C. Accounting for the carbon associated with regional tourism consumption. Tour. Manag. 2013, 36, 35–44. [Google Scholar] [CrossRef]
- Tsai, K.-T.; Lin, T.-P.; Hwang, R.-L.; Huang, Y.-J. Carbon dioxide emissions generated by energy consumption of hotels and homestay facilities in Taiwan. Tour. Manag. 2014, 42, 13–21. [Google Scholar] [CrossRef]
- Radovanov, B.; Dudić, B.; Gregus, M.; Horvat, A.M.; Karovič, V. Using a Two-Stage DEA Model to Measure Tourism Potentials of EU Countries and Western Balkan Countries: An Approach to Sustainable Development. Sustainability 2020, 12, 4903. [Google Scholar] [CrossRef]
- Pablo-Romero, M.P.; Sánchez-Braza, A.; Sánchez-Rivas, J. Relationships between Hotel and Restaurant Electricity Consumption and Tourism in 11 European Union Countries. Sustainability 2017, 9, 2109. [Google Scholar] [CrossRef] [Green Version]
- Pace, L.A. How do tourism firms innovate for sustainable energy consumption? A capabilities perspective on the adoption of energy efficiency in tourism accommodation establishments. J. Clean. Prod. 2016, 111, 409–420. [Google Scholar] [CrossRef]
- Huang, Z.; Cao, F.; Jin, C.; Yu, Z.-Y.; Huang, R. Carbon emission flow from self-driving tours and its spatial relationship with scenic spots—A traffic-related big data method. J. Clean. Prod. 2017, 142, 946–955. [Google Scholar] [CrossRef]
- Cadarso, M.A.; Gomez, N.; Lopez, L.A.; Tobarra, M.A. Calculating tourism’s carbon footprint: Measuring the impact of investments. J. Clean Prod. 2016, 111, 529–537. [Google Scholar] [CrossRef]
- El Hanandeh, A. Quantifying the carbon footprint of religious tourism: The case of Hajj. J. Clean. Prod. 2013, 52, 53–60. [Google Scholar] [CrossRef]
- Pereira, R.P.T.; Ribeiro, G.M.; Filimonau, V. The carbon footprint appraisal of local visitor travel in Brazil: A case of the Rio de Janeiro-São Paulo itinerary. J. Clean. Prod. 2017, 141, 256–266. [Google Scholar] [CrossRef] [Green Version]
- Becken, S.; Simmons, D.G.; Frampton, C. Energy use associated with different travel choices. Tour. Manag. 2003, 24, 267–277. [Google Scholar] [CrossRef]
- Zaman, K.; Abd-el Moemen, M.; Islam, T. Dynamic linkages between tourism transportation expenditures, carbon dioxide emission, energy consumption and growth factors: Evidence from the transition economies. Curr. Issues Tour. 2017, 20, 1720–1735. [Google Scholar] [CrossRef]
- Scheepens, A.; Vogtlander, J.G.; Brezet, J. Two life cycle assessment (LCA) based methods to analysis and design complex (regional) circular economy systems. Case: Making water tourism more sustainable. J. Clean. Prod. 2016, 114, 257–268. [Google Scholar] [CrossRef]
- Kytzia, S.; Walz, A.; Wegmann, M. How can tourism use land more efficiently? A model-based approach to land-use efficiency for tourist destinations. Tour. Manag. 2011, 32, 629–640. [Google Scholar] [CrossRef]
- Sun, Y.-Y. Decomposition of tourism greenhouse gas emissions: Revealing the dynamics between tourism economic growth, technological efficiency, and carbon emissions. Tour. Manag. 2016, 55, 326–336. [Google Scholar] [CrossRef]
- Huang, Y.; Coelho, V.R. Sustainability performance assessment focusing on coral reef protection by the tourism industry in the Coral Triangle region. Tour. Manag. 2017, 59, 510–527. [Google Scholar] [CrossRef]
- Oender, I.; Wober, K.; Zekan, B. Towards a sustainable urban tourism development in Europe: The role of benchmarking and tourism management information systems—A partial model of destination competitiveness. Tour. Econ. 2017, 23, 243–259. [Google Scholar] [CrossRef]
- Wang, S.; Hu, Y.; He, H.; Wang, G. Progress and Prospects for Tourism Footprint Research. Sustainability 2017, 9, 1847. [Google Scholar] [CrossRef] [Green Version]
- Cooper, W.W.; Tone, K.; Seiford, L.M. Data Envelopment Analysis: A Comprehensive Text with Models, Applications References, and DEA-Solver Software with Cdrom; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1999; pp. 145–156. [Google Scholar]
- Zhou, Y.; Kong, Y.; Zhang, T. The spatial and temporal evolution of provincial eco-efficiency in China based on SBM modified three-stage data envelopment analysis. Environ. Sci. Pollut. Res. 2020, 27, 8557–8569. [Google Scholar] [CrossRef]
- Guo, S.-D.; Li, H.; Zhao, R.; Zhou, X. Industrial environmental efficiency assessment for China’s western regions by using a SBM-based DEA. Environ. Sci. Pollut. Res. 2019, 26, 27542–27550. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Villavicencio, G.; Didonet, S.R.; Dodd, A. Influencing factors of eco-efficient urban waste management: Evidence from Spanish municipalities. J. Clean. Prod. 2017, 164, 1486–1496. [Google Scholar] [CrossRef]
- Li, B.; Shi, Z.; Tian, C. Spatio-temporal Difference and Influencing Factors of Environmental Adaptability Measurement of Human-sea Economic System in Liaoning Coastal Area. Chin. Geogr. Sci. 2018, 28, 313–324. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Wang, S.; Yang, P.; Fan, F.; Wang, X. Analysis of Scale Factors on China’s Sustainable Development Efficiency Based on Three-Stage DEA and a Double Threshold Test. Sustainability 2020, 12, 2225. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Sun, Y.; Krishnamoorthy, S.; Chandran, K. An Empirical Analysis of Green Technology Innovation and Ecological Efficiency Based on a Greenhouse Evolutionary Ventilation Algorithm Fuzzy-Model. Sustainability 2020, 12, 3886. [Google Scholar] [CrossRef]
- Xu, K.; Loh, L.; Chen, A.Q. Sustainable Innovation Governance: An Analysis of Regional Innovation with a Super Efficiency Slack-Based Measure Model. Sustainability 2020, 12, 3008. [Google Scholar] [CrossRef] [Green Version]
- Adejumo, A.V. Environmental quality vs economic growth in a developing economy: Complements or conflicts. Environ. Sci. Pollut. Res. 2019, 27, 6163–6179. [Google Scholar] [CrossRef]
- Wang, J.; Chengdong, X.U. Geodetector: Principle and prospective. Acta Geogr. Sin. 2017, 72, 116–134. [Google Scholar]
- Bian, Y.; Dong, L.; Liu, Z.; Zhang, L. A Sectoral Eco-Efficiency Analysis on Urban-Industrial Symbiosis. Sustainability 2020, 12, 3650. [Google Scholar] [CrossRef]
- Grossman, G.M.; Krueger, A.B. Environmental Impacts of a North American Free Trade Agreement. Soc. Sci. Electron. Publ. 1991, 8, 223–250. [Google Scholar]
- Chen, N.; Xu, L.; Chen, Z. Environmental efficiency analysis of the Yangtze River Economic Zone using super efficiency data envelopment analysis (SEDEA) and tobit models. Energy 2017, 134, 659–671. [Google Scholar] [CrossRef]
- Tang, C.; Zhong, L.; Jiang, Q. Energy efficiency and carbon efficiency of tourism industry in destination. Energy Effic. 2018, 11, 539–558. [Google Scholar] [CrossRef]
The Name of Indicators | Unit | |
---|---|---|
Input indicators | Total number of people working in the Tourism Investment in fixed assets of tourism Tourism energy input Tourism water resources input | People Ten thousand yuan Ten thousand ton standard coal Ten thousand ton |
Output indicators | Revenue from tourism | Ten thousand yuan |
Undesirable output indicators | Tourism effluent discharge Tourism waste discharge Tourism SO2 emission Tourism carbon emissions | Ten thousand tons Ten thousand tons Ton Ten thousand tons |
Variable | Average | SD | MIN | MAX |
---|---|---|---|---|
TE | 0.7608 | 0.2601 | 0.2148 | 1.0000 |
lnTI | 5.9725 | 1.6834 | −1.4209 | 9.0772 |
lnTI2 | 11.9451 | 3.3668 | −2.8418 | 18.1543 |
lnTP | 8.7386 | 1.3833 | 3.0163 | 11.1704 |
HS | 0.4781 | 0.1643 | 0.0338 | 0.9412 |
lnRI | 0.5666 | 0.4877 | −1.9690 | 2.3994 |
lnEI | −1.2807 | 0.6681 | −3.2834 | 2.1181 |
lnWI | 2.6048 | 0.6730 | −0.5572 | 4.4247 |
Model 1 | Model 2 | |||
---|---|---|---|---|
TE | Coef. | z | Coef. | z |
lnTI | −0.0057 | −0.22 | - | - |
lnTI2 | −0.0014 | −0.47 | ||
lnTP | −0.0658 | −1.9 * | −0.0544 | −1.26 |
HS | 0.0459 | 0.39 | 0.0405 | 0.34 |
lnRI | −0.1139 | −2.72 *** | −0.1152 | −2.75 *** |
lnEI | −0.3178 | −7.92 *** | −0.3183 | −7.95 *** |
lnWI | −0.1680 | −4.95 *** | −0.1682 | −4.96 *** |
_cons | 1.6420 | 7.21 *** | 1.5638 | 5.3 *** |
Log-likelihood | −228.4672 | −228.3818 |
Year | F1 | F2 | F3 | F4 | F5 | F6 | F7 | F8 | F9 | F10 |
---|---|---|---|---|---|---|---|---|---|---|
1997 | 0.5437 | 0.6236 | 0.4169 | 0.3364 | 0.5282 | 0.3378 | 0.4349 | 0.6286 | 0.5110 | 0.5697 |
1998 | 0.5532 | 0.5329 | 0.6115 | 0.4469 | 0.4071 | 0.4860 | 0.6404 | 0.7393 | 0.6041 | 0.3745 |
1999 | 0.6300 | 0.4560 | 0.3495 | 0.4209 | 0.3245 | 0.3425 | 0.4375 | 0.6731 | 0.1003 | 0.4543 |
2000 | 0.3754 | 0.5275 | 0.4294 | 0.3237 | 0.5995 | 0.5227 | 0.7649 | 0.6381 | 0.2206 | 0.3527 |
2001 | 0.5227 | 0.5574 | 0.5050 | 0.4088 | 0.6853 | 0.4012 | 0.6766 | 0.5507 | 0.2663 | 0.2912 |
2002 | 0.3689 | 0.3674 | 0.4059 | 0.4250 | 0.2658 | 0.5111 | 0.4511 | 0.2834 | 0.1464 | 0.5130 |
2003 | 0.2420 | 0.5369 | 0.3039 | 0.6622 | 0.2276 | 0.5804 | 0.3236 | 0.3474 | 0.6704 | 0.4575 |
2004 | 0.6878 | 0.4338 | 0.4725 | 0.5723 | 0.1643 | 0.6156 | 0.4407 | 0.4479 | 0.6785 | 0.5576 |
2005 | 0.6834 | 0.2922 | 0.3228 | 0.4687 | 0.3014 | 0.6448 | 0.4833 | 0.7927 | 0.7792 | 0.5817 |
2006 | 0.5354 | 0.4564 | 0.2970 | 0.5926 | 0.5927 | 0.4978 | 0.4746 | 0.6973 | 0.5154 | 0.5834 |
2007 | 0.6153 | 0.4340 | 0.5037 | 0.4729 | 0.4162 | 0.5428 | 0.3931 | 0.7533 | 0.4965 | 0.5804 |
2008 | 0.5691 | 0.4927 | 0.3193 | 0.4459 | 0.6775 | 0.6936 | 0.4875 | 0.6446 | 0.3901 | 0.4363 |
2009 | 0.3286 | 0.4211 | 0.5340 | 0.3516 | 0.4531 | 0.5101 | 0.3471 | 0.5661 | 0.5855 | 0.4794 |
2010 | 0.2773 | 0.5680 | 0.4084 | 0.6333 | 0.7648 | 0.3431 | 0.7127 | 0.6108 | 0.7332 | 0.4769 |
2011 | 0.3765 | 0.5470 | 0.5397 | 0.4597 | 0.6303 | 0.3367 | 0.4930 | 0.7049 | 0.4689 | 0.6095 |
2012 | 0.4046 | 0.5234 | 0.6731 | 0.4220 | 0.5837 | 0.2994 | 0.5727 | 0.8424 | 0.4373 | 0.3220 |
2013 | 0.3317 | 0.4481 | 0.5874 | 0.5662 | 0.3562 | 0.4478 | 0.7946 | 0.7452 | 0.7262 | 0.1985 |
2014 | 0.4196 | 0.6371 | 0.5509 | 0.5141 | 0.3721 | 0.4952 | 0.7660 | 0.7663 | 0.2587 | 0.2032 |
2015 | 0.2796 | 0.6249 | 0.5759 | 0.5907 | 0.4661 | 0.5179 | 0.7548 | 0.7644 | 0.3619 | 0.4830 |
2016 | 0.3753 | 0.5750 | 0.6028 | 0.5970 | 0.3061 | 0.4836 | 0.7516 | 0.7771 | 0.2096 | 0.8604 |
Average | 0.4560 | 0.5028 | 0.4705 | 0.4856 | 0.4561 | 0.4805 | 0.5600 | 0.6487 | 0.4580 | 0.4692 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, R.; Xia, B.; Dong, S.; Li, Y.; Li, Z.; Ba, D.; Zhang, W. Research on the Spatial Differentiation and Driving Forces of Eco-Efficiency of Regional Tourism in China. Sustainability 2021, 13, 280. https://doi.org/10.3390/su13010280
Wang R, Xia B, Dong S, Li Y, Li Z, Ba D, Zhang W. Research on the Spatial Differentiation and Driving Forces of Eco-Efficiency of Regional Tourism in China. Sustainability. 2021; 13(1):280. https://doi.org/10.3390/su13010280
Chicago/Turabian StyleWang, Rui, Bing Xia, Suocheng Dong, Yu Li, Zehong Li, Duoxun Ba, and Wenbiao Zhang. 2021. "Research on the Spatial Differentiation and Driving Forces of Eco-Efficiency of Regional Tourism in China" Sustainability 13, no. 1: 280. https://doi.org/10.3390/su13010280
APA StyleWang, R., Xia, B., Dong, S., Li, Y., Li, Z., Ba, D., & Zhang, W. (2021). Research on the Spatial Differentiation and Driving Forces of Eco-Efficiency of Regional Tourism in China. Sustainability, 13(1), 280. https://doi.org/10.3390/su13010280