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Abstract: Local scour depth at complex piers (LSCP) cause expensive costs when constructing
bridges. In this study, a hybrid artificial intelligence approach of random subspace (RS) meta
classifier, based on the reduced error pruning tree (REPTree) base classifier, namely RS-REPTree,
was proposed to predict the LSCP. A total of 122 laboratory datasets were used and portioned into
training (70%: 85 cases) and validation (30%: 37 cases) datasets for modeling and validation
processes, respectively. The statistical metrics such as mean absolute error (MAE), root mean
squared error (RMSE), correlation coefficient (R), and Taylor diagram were used to check the
goodness-of-fit and performance of the proposed model. The capability of this model was assessed
and compared with four state-of-the-art soft-computing benchmark algorithms, including artificial
neural network (ANN), support vector machine (SVM), M5P, and REPTree, along with two
empirical models, including the Florida Department of Transportation (FDOT) and Hydraulic
Engineering Circular No. 18 (HEC-18). The findings showed that machine learning algorithms had
the highest goodness-of-fit and prediction accuracy (0.885 < R < 0.945) in comparison to the other
models. The results of sensitivity analysis by the proposed model indicated that pile cap location
(Y) was a more sensitive factor for LSCP among other factors. The result also depicted that the RS-
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REPTree ensemble model (R = 0.945) could well enhance the prediction power of the REPTree base
classifier (R = 0.885). Therefore, the proposed model can be useful as a promising technique to
predict the LSCP.

Keywords: scour depth; complex piers; pile cap; machine learning algorithms; ensemble models

1. Introduction

Local scour is responsible for most bridge failures around the world every year. In a streambed,
the flow interferes with bridge piers and leads to the creation of multiple vortices, which remove
sediment in the vicinity of the piers, and a scour hole is formed [1]. When the scour hole deepens
sufficiently, it causes bridge failure. The failures significantly increase the costs of temporary
maintenance and also ecological impacts on downstream ecosystems, such as spawning beds [2].
Because of the complicated process of scour around bridge piers, the local scour depth at complex
pier (LSCP) is a complicated phenomenon and hence its accurate predictions are a critical issue for
the design of bridge foundations. In other words, overestimation of LSCP may lead to extra
construction costs and even bridge failure around their foundations [3].

An accurate prediction of LSCP is a hot topic in river engineering because overestimated and
underestimated predictions lead to an increase in the dimensions of the bridges, resulting in an
increase of the construction costs and bridge failure, respectively [4]. Therefore, a reliable prediction
of LSCP for a safe, economic and technically sound structure is of paramount importance. In a river,
when a high volume of water flows, scouring of particles around the base of the bridges occurs, and
then a scour hole appears around bridge piers. If the LSCP is not predicted correctly, the bottom level
of the local scour hole will exceed the original level of the pier foundation. As a result, as time passes
and the volume of water flowing increases, local scour depth develops and the bridge’s base loses
strength, and eventually it will be destroyed [2]. Almost 53% of all bridge failures are attributed to
flood and scour [5].

Over the past decades, the mechanisms and prediction of scour hole occurence at the simple pier
and a group of piles have been widely investigated. Due to economic and technical issues, the piers
with complex geometry have developed to become the most common foundation type of bridge piers
in alluvial streambeds [6]. The term “complex pier” (CPs) is used in contrary to the simple pier. By
definition, the complex pier is a term that defines a special kind of non-uniform pier that is comprised
of a column, a pile cap, and a pile group [7]. At piers with complex geometry, due to scouring during
a flood, the pile cap position with respect to the initial stream bed level changes. As a result, the
influence of pile cap may be changed from a protective to intensifying role at the scour process when
it is entirely buried and exposed to the flow, respectively [7]. Such roles increase the complicity of
scour mechanisms and prediction at CPs [8].

To estimate local scour depth at complex pier (ys), a few empirical methods have been proposed
including the FHWA design methodology, Hydraulic Engineering Circular No. 18. (HEC-18) [9], the
Florida Department of Transportation (FDOT) bridge mechanisms scour manual [2,10,11]. In
addition, a procedure was proposed by Amini and Mohammad [7] which, based on field data, gives
reasonable estimates of the scour depth at CPs [12]. For calculations of scour depth, the HEC-18 and
FDOT methods apply a superposition procedure to combine the effect of each element of CPs.
However, the methods presented by Lee and Hong [1], Amini et al. [6], and Arneson et al. [9]
provided relations for an equivalent width (be) for that around a CP to be used in simple pier
equations where be is the diameter of a circular simple pier that produces scour depth equal to the
CP, for the same sediment and flow conditions. Apart from HEC-18 and FDOT methods, Mueller and
Wagner [13] used field data to examine the efficacy of 20 bridge pier scour depth estimation methods
and found that these methods predict the scour depth inaccurately with a large number of
overestimations.
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In recent years, ensemble machine learning models have become popular among environmental
researchers not only for classification issues to generate susceptibility maps [14-36] but also for
regression problems to simulate and predict an environmental variable such as wastewater
hydraulics [37], saturated hydraulic conductivity [38], shear strength of soft soil [39], soil moisture
[40], and soil temperature [41]. The advantages of artificial intelligence (AI) have encouraged
numerous researchers to use methods and techniques based on Al to estimate the depth of scour [42-
45]. Based on artificial neural networks (ANNSs), some local scour depth estimation methods have
been proposed. In case of bridge scouring, Cheng and Cao [46] for predicting local scour depth at
simple bridge piers, proposed an intelligent fuzzy radial basis function neural network inference
model (IFRIM). Their model was a hybrid of the fuzzy logic, the artificial bee colony algorithm and
radial basis function neural network. Najafzadeh et al. [47] presented a group method of data
handling, using the back propagation algorithm and quadratic polynomial. They found that the Al-
based model provides accurate predictions of scour at simple piers. In the case of local scour
prediction at pile group, Zounemat-Kermani et al. [48] and Hosseini et al. [49] reported the accuracy
of the ANNS5s and the neuro-fuzziness system in comparison with empirical methods.

However, contrary to the simple piers and pile groups, due to the complication of the scour
mechanism, and the variation of influential parameters, the ensemble machine learning methods
have been rarely developed to estimate the scour around the complex piers. The positive and
different point of this study with other studies is that there is no applied an ensemble model to predict
the LSCP. In other words, although some models and techniques have been used and suggested for
predicting the LSCP, the proposed model, RS-REPTree, has not been yielded for this purpose
worldwide. Therefore, the main aim of this study was to use a hybrid intelligence model to predict
current-induced local scour at complex piers. The presented model enhances the accuracy of scouring
predictions and the understanding of the local scour at the complex pier and its dominant variables.

2. Methodology

2.1. Data Acquisition

In this study, two sets of experimental data on local scour at CPs (LSCP) were used. The first
dataset was measured by fourth author of this paper at the National Hydraulic Research Institute of
Malaysia, NAHRIM. Five models (CPs) were used and experiments were performed over the whole
range of possible pile cap elevations with different geometrical characteristics. More details of the
data are presented in Amini et al. [7,50] and Amini et al. [51]. The second dataset of the experiment
works were carried out at Sharif University of Technology, Tehran, Iran by Ataie-Ashtiani et al. [52].
Both datasets were measured under flow and model dimensions so that the sediment size, dso, flow
depth, h, and contraction effects on LSCP became insignificant. The flow intensity, U/U., was selected
so that in all tests the clear water condition was maintained, where U is mean velocity of the approach
flow and Uk is critical mean velocity for sediment motion.

2.2. Dimensional Analysis

To determine scour depth, ys, most of the empirical methods use of dimensional analysis, a
functional relationship, based on an equivalent pier width, be, at CPs, from an existing equation for
single piers [7,9-11]. The be is defined as the diameter of a simple pile for the same flow and sediment
characteristics that would produce the same scour depth as the CPs. Depending on the pile cap
location (Y) with respect to the undisturbed streambed, ys or be is a function of flow and sediment
properties and CPs’ geometries. Therefore, a functional relationship for presenting LSCP may be
written as Equation (1) using dimensional analysis:

h b b TYL L
b —f(—o b—d—,—,————KscKspc, "g,m,n,bi bi) (1)
50

C C

where b is the column width; by is the pile cap width; h is flow depth, dso is median particle size of
the bed sediment, U. is critical value of U associated with initiation of motion of bed sediments, Fr is
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Froude number, T is the thickness of the pile cap; L. and Ltare extensions of the pile cap upstream of
and sides of the column; ks and kspc are the shape factors for the column and pile cap; by is the pile
diameter; m and n are the number of piles in line and normal with the flow; S and Sv are the pile
spacing in line and normal with the flow, and Y is pile cap elevation with respect to the undisturbed
streambed. A schematic drawing for flow-induced scour around a CP and the corresponding
parameters are shown in Figure 1.

Lu | be [Cohumn
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Figure 1. The various components of the composite pier and the corresponding parameters; (a)

Upstream view, (b) Side view, and (c) Plan view.

2.3. Empirical Equations

The HEC-18 [9] and FDOT methods[11] use the superposition method to predict scour depth at
piers with complex geometry (i.e., column, pile cap, and pile group). The superposition method to
calculate scour depth contributions from each component in HEC-18, is expressed as Equation (2):

ys :yscol +y spc +y spg (2)

where yscol is scour of column, yspe is the scour of pile cap, and yspg is the scour of pile group. The
FDOT method calculates the equivalents single cylindrical pier that would produce the same scour
depth as that complex pier component. Then, the equivalent diameter of the CPs is calculated by
adding the equivalent diameters of the CP components and expressed as Equation (3):

Dse:D +Depc +D epg (3)

ecol

where Dse, Decol, Depe, and Depg are equivalent diameters of the CPs, column, pile cap, and pile group,
respectively. Finally, the scour depth at CPs can be calculated using the methods presented for
scouring calculation at simple piers.

2.4. Machine Learning Algorithms

2.4.1. Artificial Neural Networks

The artificial neural networks (ANN), developed based on the neurons, is one of the well-known
deep learning algorithms for regression, classification, and pattern recognition challenges [53-56]. A
typical ANN architecture (Figure 2) has three layers: (a) input layer, in this case all the predictors of
LSCP that also decide the number of neurons in the ANN architecture; (b) hidden layer, the recipient
of all the neurons containing a specific weight, and (c) output layer, i.e., the predicted value of LSCP.
We have discovered that the number of hidden layers and their neurons can only be decided by trial
and error, and may vary case-by-case [57]. The ANN has shown promising results in predicting
bridge pier scour depths [58-62].
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Figure 2. A typical architecture of ANN.

2.4.2. M5P Model Tree

Although the M5P algorithm was developed in 1992 [63,64] by combining traditional decision
tree and linear regression function, resulting in induced trees of regression models, Quinlan [63]
reconstructed this algorithm. The M5P is one of the decision tree algorithms that has a branch node
and leaf node. The first one indicates a choice between a number of alternatives and another
represents a classification or decision issue [65].

Consider S as the set of examples is either associated with a leaf, or some test is chosen that splits
S into subsets and this process is recursively conducted to the subsets [63,66]. In the M5P, the split
process is done according to the minimizing the intra-subset variation down each branch in the
output values. Then, in each node the standard deviation of the expected reduction (C,,) is
calculated for the output values of the examples. Eventually, the attribute that maximizes the

expected error reduction is selected. The G, can be formulated as follows [67]:

i=n S
6,4 =0(S)— ;G(Si )% @)

where S is the set of examples corresponding to 51, Sz, ..., S« as the sets that result from splitting of the
node according to the chosen attribute [64].

2.4.3. Support Vector Machine

Support vector machine (SVM) was recently used for efficiently predicting scour depth at simple
piers [62]. SVM, a nonlinear simplified version of the generalized portrait algorithm, is one of the
most known robust machine learning algorithms for both regression and classification problems. It
can efficiently handle non-linear relationship between the predictors and the response in a
multidimensional space [68-70]. Since SVM is based on the statistical learning theory and was
developed using real world datasets, it is advantageous in generalizing the outcomes on the
unknown data [68]. In this study, we used support vector regression (SVR), following Vapnik’s
method where an alternative e-loss function is used to minimize the error. The SVM offers four kernel
functions including linear, polynomial, radial base, and sigmoid. In the SVR, a linear kernel is used,
and users can set the kernel parameters. However, the regularization parameter ‘C’ and the size of
error in sensitive zone ‘e’ may vary with the number of features and the context. Mathematically,
SVR can be presented as below:
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f(x, i, af) = Z(ai — aZ)M(xi,xj) +b ®)

where a; and a; are positive Lagrange multipliers and M(x,, x,) denotes a non-linear

transformation using linear kernel function of SVM, and ‘b’ stands for the ‘bias.”

2.4.4.REP Tree

The reduced error pruning tree (REPTree) is an ensemble model of decision tree (DT) and
reduced error pruning (REP) algorithms, equally efficient for classification and regression problems
[71]. The REPTree algorithm forms a decision regression tree by splitting and pruning the regression
tree based on the highest information gain ratio (IGR) value [72]. The IGR values were calculated
based on the entropy (E) function by Equation (6).

E(S, )|S |
E(S)- Z] s
IGR(x,S) = ST s (6)
log, ™
ISI S|

The IGR considers all the predictors of LSCP from training dataset (S) with subset Sz i=1, 2, ...,
n in consecutive pruning stages. Since complex decision-trees could lead to over-fitting and the
reduced-interpretability of a model, REP helps in decreasing the complexity, by removing leaves and
branches of the DT structure [17,71,73,74].

2.4.5. Random Subspace Ensemble Algorithm

The random subspace (RS) is another robust ensemble method used for classification as well as
regression challenges [75]. RS distinct itself from other ensemble technique and become
advantageous because it trains the model on randomly selected samples of features opposed to whole
feature sets, therefore, reduces correlations between estimators [76]. In this process, the first
regression of original feature space is performed in L training subsets of q dimensionality. Then, base
regression is applied to each of these subsets and a final decision is made on the basis of weighted
majority voting [77]. In this technique, first REPTree as a base classifier is selected and, after selecting
the optimal parameters, number of seeds, and iterations, the model is run and the dataset trained. In
the next step, the RS meta classifier is conducted to hybrid with REPTree base classifier. The RS is
created some sub-training and then for each dataset the base classifier is performed and eventually,
based on majority voting, the best model is selected as the final outcome. The framework of the LSCP
prediction is shown in Figure 3.
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Figure 3. A methodological framework of LSCP prediction.
2.5. Evaluation and Comparison

2.5.1. Statistical Metrics

In this study, some statistical index-based measures including correlation coefficient (R), mean
absolute error (MAE), root mean square error (RMSE) and a Taylor diagram were used to evaluate
and compare the performance of the models. R is a statistical measure, which represents the
percentage of the variance for a dependent variable that’s explained by an independent variable.
MAE measures the mean absolute value of each difference. Compared with RMSE, MAE can be given
to be a more natural and unambiguous index to measure errors between estimated and actual
observed values [78,79]. RMSE has been applied as a regular statistical metric to measure model
performance [80]. Lower values of RMSE indicate the better result. It has been widely used different
fields around the world [81]. The Taylor diagram graphically shows how the prediction models are
matched with observations in terms of correlation, their root-mean-square difference, and the ratio
of their variance considered in a single diagram [82]. On this diagram, the mode that is closer to the
observation (validation dataset) has the highest predictive performance [83]. The abovementioned
statistical indexes can be calculated by Equations (7)—(9) as below [84]:

i (xi -;)(yi ';)
R=—= )

Ji(x;bz Jim&f

MAE=L§: x| 8)
N =
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RMSE= )

where R is the correlation coefficient, X, and y, are measured and predicted values respectively,

X and y_ are the mean of measured and predicted values respectively, and N is the number of input
data.

2.5.2. Non-Parametric Statistical Tests

In order to check the statistical difference between five models to enhance the prediction
accuracy of LSPC, Friedman and Wilcox rank tests were used. As a null hypothesis, it was assumed
that there was no statistical significance between the performances of all LSCP models at the
significance level of a = 0.05. In other words, it attempted to show there was no variation between
the models or a single model was no different from its mean. Regarding the P-value, if the null
hypothesis is rejected (p < 0.05), it concludes that there is a significant difference between the models
[85]. The Friedman test only shows the significant differences among all LSCP models but not show
as pairwise comparisons. In this case, the Wilcoxon sign-rank test can be used to evaluate the pairwise
differences between the LSCP models. Statistically, if the null hypothesis is rejected (p < 0.05 and z-
value > (-1.96 and +1.96), there is significant differences between the performance of the models
[72,85].

2.6. Sensitivity Analysis

The effect of each factor on the local scour depth is assessed by the sensitivity analysis (SA)
technique [49,86]. The SA method in this study was computed by the proposed machine learning
algorithm named RS-REPTree. In the SA method, each factor is removed individually from the
modeling process and then the values of MAE, RMSE, and R metrics are recorded. Eventually, the
sensitive factors during the modeling process are known and listed. Judgement is performed based
on the effectiveness of each input factor. The higher the values of RMSE and MAE and the lower the
R for each factor is, the higher sensitivity of the factor for the modeling process of local scour depth
will be [49].

3. Results and Analysis

3.1. Optimal Selection of Modeling Parameters

Theoretically, an accurate model will be obtained when the parameters of the model are correctly
selected and optimized. The optimal values are achieved by trial and error using the modification of
the parameters. The optimal value of each machine learning parameters is shown in Table 1. In the
proposed ensemble model, RS-REPTree, the most important parameters are the number of seeds and
iterations during the modeling process. Figure 4 shows the best values for these two parameters of
the ensemble model based on the RMSE and R metrics. According to the test/validation dataset, the
result indicated that the best values for the number of seed and iteration based on the lowest RMSE
metric (0.0181) were 6 and 10, respectively (Figure 4a,b). Additionally, the optimal values for the
number of seeds and iterations regarding the R metric (0.945) were also 6 and 10 (Figure 4c,d).
Therefore, the proposed ensemble model was constructed by the obtained parameters to enhance the
prediction accuracy of LSCP.
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Table 1. Model optimal parameters in the modeling process.

Algorithms

Parameters

ANN

Number of hidden layer: 7; learning rate: 0.3; momentue: 0.2; Number of seed: 3;
training time: 500; validation threshold: 20; validation set size: default

M5P

Build regression tree: True; minimum number of instance: 4

SVM

C: 0.95; filter type: normalized training data; regOptimizer: RegSMO improved;
number of seed: 1; tolerance: 0.001

REPTree

Maximum depth: —1; minimum number: 2; minimum variance probability:
0.001; number of fold: 2; number of seed: 1

RS-REPTree

Classifier: REPTree; Number of iteration: 10; number of seed: 6; subspace size:
0.5
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Figure 4. Determination of the number of optimal values of iteration and seed in the modeling process
based on the RMSE and R; (a) number of seed by RMSE, (b) number of iteration using RMSE, (c)
number of iteration using R and (d) number of seed using R.

3.2. Model Validation and Comparison

The goodness-of-fit and performance of the models using training and testing/validation
datasets are shown in Table 2 and Figure 5a—n. The experimental data of LSCP was used to compare
obtained models and then their predictive accuracies were evaluated using the statistical metrics as
MAE, RMSE and R. It is noteworthy that the goodness-of-fit and performance of the models are
judged using training and validation datasets, respectively. However, to compare the power
prediction and performance of the models testing/validation dataset were used. Basically, the number
of MAE, RMSE, and R for the FDOT method were 0.058, 0.062, 0.726 and for the HECT-18 were 0.051,
0.064, and 0.620, respectively. In the ANN model, these values were 0.016, 0.021, and 0.907 while in
the M5P machine learning model they were 0.017, 0.022, and 0.912, respectively. For the SVM model,
the number of MAE, RMSE, and R were 0.016, 0.024, and 0.918 and for the REPTree mode were 0.018,
0.025, and 0.885, respectively. In the proposed ensemble model the values of 0.014, 0.018, and 0.945
were obtained for MAE, RMSE, and R, respectively. Overall, results indicated that, although all
machine learning models had higher accuracy than the empirical models, the proposed model, RS-
REPTree, well enhanced the accuracy of the based classifier of REPTree. On the other hand, this
model had the highest prediction accuracy in predicting LSCP.
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Table 2. Model results and comparison using training and validation datasets.

MAE RMSE R

Models Training Validation Training Validation Training Validation
FDOT 0.045 0.058 0.032 0.062 0.736 0.726
HEC-18 0.053 0.051 0.067 0.064 0.625 0.620
ANN 0.012 0.016 0.015 0.021 0.954 0.907
M5P 0.014 0.017 0.020 0.022 0.943 0.912
SVM 0.015 0.016 0.020 0.024 0.924 0.918
REPTree 0.013 0.018 0.021 0.025 0.931 0.885
RS-REPTree 0.013 0.014 0.019 0.018 0.946 0.945

Figure 5a—n graphically shows the relationship between actual and predicted scour depths (m)
based on the training and validation datasets. It was concluded that the empirical models had the
lowest prediction because the distance between actual and predicted local scour depth was higher
than the other models. The lower the MAE and RMSE and the higher R, the higher the model
prediction and lower distance between actual and predicted local scour depths. Although all machine
learning models had a reasonable fit of actual and predicted local scour depth, the proposed model

showed the best simulating results.
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Figure 5. Comparison between actual and predicted scour depth using training dataset; (a) FDOT
model, (c) HEC-18, (e) ANNMLP, (g) M5P, (i) SVM, (k) REPTree, (m) RS-REPTree, and Testing
dataset; (b) FDOT, (d) HEC-18, (f) ANNMLP, (h) M5P, (j) SVM, (1) REPTree and (n) RS-REPTree.

Figure 6 shows the correlation between actual and predicted values of LSCP for empirical and
machine learning models. Figure 6 was plotted in SPSS software to show the agreement of the actual
and predicted values of local scour depth. The results illustrated that, based on the validation dataset,
the values of R for the FDOT, HEC-18, ANN, M5P, SVM, REPTree, and RS-REPTree models were
0.726, 0.620, 0.907, 0.912, 0.918, 0.885, and 0.945, respectively. This implied that the lowest value of R
belonged to HEC-18 as an empirical model, and the highest one was obtained for the proposed model.
Overall, the result received that all machine learning models outperformed and outclassed the
empirical models for predicting the local scour depth; however, the RS-REPTree ensemble model was

more powerful than the other models.
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Figure 6. Analysis of correlation between actual and predicted values of LSCP (m) for empirical
models and machine learning algorithms.

A Taylor diagram was plotted to further analyze of model applicability (Figure 7). This diagram
showed that although all machine learning models were close to observed LSCP, the proposed model,
RS-REPTree, had the most predictive power compared to other models. The proposed model had a
closer correlation (0.946), RMSE (0.018), and SD (0.044) with observed data. The results indicated that
the models had good predictive power.
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Figure 7. Taylor diagram for displaying the correlation between the observed and predicted LSCP by
different machine learning models.

Beside the above-mentioned graphs and tables, the results were assessed based on the boxplot
of the models as shown in Figure 8. The box plots were plotted using the observed versus predicted
LSCP for machine learning and empirical methods. The spread of measured and predicted values
revealed that machine learning models present more accurate predictions in comparison to HEC-18
and FDOT models.
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Figure 8. Box plots of the actual and predicted values of local scour depth.
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Additionally, to find significant differences among models evaluated in this research the
Friedman's test, a non-parametric test for detecting differences in treatments across multiple attempts
[87], was used. Since the Friedman'’s test does not show pairwise comparisons, the Wilcoxon test was
used to quantify pairwise comparisons among the models. The results of the Wilcoxon test for
performance of the RS-REPTree model and other LSCP models are shown in Table 3. The obtained
significance value for the Friedman test was 0.000 (<0.05), which indicated that at 95% confidence
level there was no evidence to accept the null hypothesis and then it was rejected that there are no
differences between the mean of all models. Therefore, a significant difference between the
performances of the models to predict the LSCP was indicated. In addition, the Wilcoxon sign rank
test, as a pairwise comparison of the performance of the models, was used.

Table 3. Average ranking of the seven local scour depth models using the Friedman'’s test.

No Scour Depth Models Mean Ranks X2 Sig.
1 FDOT 6.53
2 HEC-18 6.49
3 ANN 3.77
4 M5P 3.62 158.012 0.000
5 SVM 4.18
6 REPTree 3.58
7 RS-REPTree 3.38

Table 4 shows significant differences between empirical methods predictions and actual data
using Wilcoxon pairwise rank test. In compare with machine learning models, both HEC-18 and
FDOT methods are with more over and under predicted data. It should be noted that avoiding under
predicting data, is of most importance for bridge designers. Table 4 shows that, apart from a
significant difference between the empirical models and actual experimental data, the empirical
models and machine learning models are significantly different. However, no significant differences
between machine learning predictions and actual data can be concluded from Table 4. Overall,
according to the statistical tests, it can be safely said that the result of machine learning models to
predict local scour depth is more reasonable and reliable than the empirical models.

Table 4. Performance of the RS-REPTree model compared to other LSCP models using Wilcoxon
signed-rank test (two-tailed).

NO Pairwise Comparison NND NPD z-Value p-Value Significance

1 Actual-FDOT 9 65 -6.608 0.000 Yes
2 Actual-HEC18 14 68 -6.732 0.000 Yes
3 Actual-ANN 39 44 -0.409 0.683 No
4 Actual-M5P 45 39 -0.085 0.932 No
5 Actual-SVM 37 38 -0.481 0.631 No
6 Actual-REPTree 45 39 -0.112 0911 No
7 Actual-RSREPTree 41 40 -0.443 0.658 No
8 HEC18-FDOT 40 24 -0.994 0.320 No
9 HEC18-ANN 68 14 -6.619 0.000 Yes
10 HEC18-M5P 74 10 -6.927 0.000 Yes
11 HEC18-SVM 68 16 -6.442 0.000 Yes
12 HEC18-REPTree 70 15 -6.806 0.000 Yes
13 HEC18-RSREPTree 71 13 -6.848 0.000 Yes
14 FDOT-ANN 78 10 -6.799 0.000 Yes
15 FDOT-M5P 73 12 —-6.768 0.000 Yes
16 FDOT-SVM 67 18 -6.536 0.000 Yes
17 FDOT-REPTree 78 7 -7.072 0.000 Yes
18 FDOT-RSREPTree 67 13 -6.799 0.000 Yes
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19 ANN-M5P 40 39 -0.364 0.716 No
20 ANN-SVM 32 50 -1.371 0.170 No
21 ANN-REPTree 49 32 -0.393 0.694 No
22 ANN-RSREPTree 37 47 -0.116 0.908 No
23 M5P-SVM 36 46 -1.318 0.188 No
24 M5P-REPTree 42 36 -0.416 0.677 No
25 M5P-RSREPTree 35 49 —0.989 0.323 No
26 SVM-REPTree 46 39 -0.734 0.463 No
27 SVM-RSREPTree 47 36  -01.115 0.265 No
28 RSREPTree-RSREPTree 43 37 -0.187 0.852 No

NND: Number of negative differences; NPD: Number of positive differences; “the standard p value is 0.05”.

3.3. Sensitivity Analysis

The role of each factor on the result of scour depth modeling was assessed by sensitivity analysis
of the proposed model (Figure 9). The results are ordered according to the effectiveness of each factor
that meaning the factor with removal creates higher RMSE and MAE, as well as the lower R located
at the top of the list. The results stated that the pile cap level is the most important factor in the LSCP
in a particular model. Moreover, other significant factors were pile cap thickness (T) and width (bp.).
The rest factors have slight effect for modeling process by the proposed ensemble model (Figure 9).
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Figure 9. Sensitivity analysis graphically based on the proposed ensemble model to predict local scour
depth.

4. Discussion

The flow disturbances around obstacles such as bridge piers, inserted into an alluvial streambed,
induce local scouring which is one of the most common being riverbed scour. Since the late 1950s the
estimation of scour at bridges has attracted the attention of many researchers [88].

Unlike the local scour at simple pier, the scour at CPs is a complex phenomenon. However, the
accurate estimation of equilibrium scour depth at CPs is vital for safe designing of the bridges. The
experimental data were used to compare the most commonly used method for predicting scour depth
at CPs. Based on data set analyses, an ensemble model was constructed to improve the accuracy of
local scour depth prediction of REPTree as a base classifier. The statistical measurements indicated
that the best values for the number of seeds and iterations were 6 and 10, respectively.
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The capabilities and performance of the empirical methods and obtained models in scour
prediction were evaluated using statistical tests. Overall, the statistical tests showing the relationship
between observed and predicted scour depths indicated that all machine learning models are with
higher power prediction than the empirical models. The inaccuracy of empirical methods at CPs
scour including HEC-18 and FDOT methods was reported [6,12,52]. In contrast, the superiority of
intelligent models to empirical methods for scour predicting was stated by Zounemat-Kermani et al.
[48] and Hosseini et al. [49]. The same results can be concluded from the correlation between the
observed and predicted values of local scour depth for empirical and machine learning models. The
lowest values of R were obtained for HEC-18 and the highest belonged to the RS-REPTree as 0.620
and 0.945, respectively. Moreover, the boxplot and Friedman's test of the models support the above
statements.

In the case of detecting the dominant parameters at inducing local scour at CPs, the sensitivity
analyses were conducted and the parameters were ordered according to their effectiveness. The
results depicted that the pile cap location (Y) in respect to undisturbed streambed is the most
important parameter which influence the scouring at CPs. These results are consistent with those
reported by [51,52,89]. Furthermore, the pile cap width (bpc), thickness (T) and column width (bc)
are with higher influences on LSCP, respectively. These results are in agreement with the findings of
Ferraro et al. [90] and Moreno et al. [89]. It should be noted that unlike the simple piers and pile group
[91], the role of the parameters at producing LSCP is various versus the pile cap level in respect to
undisturbed streambed. Particularly when the pile cap is lower or inside the scour hole, the pile cap
prevents scouring. This process continues until flow penetrates below the pile cap and the pile cap
becomes undercut. The undercutting of pile caps intensifies the scour depth. As the level of pile cap
reached the position for undercutting, apart from column and pile cap, the pile group is exposed to
the flow, and contributes towards scouring. As the pile cap level increased, the pile group prevents
the scouring and diminishes the LSCP [50,52]. In this case, the LSCP depends on the pile cap and pile
group characteristics. It is worth noting that the bridge pier models used to obtain the data in this
research were selected so that the sediment size and flow depth effects on LSCP became negligible
and flow intensity was in a confined range.

The ensemble models could more decrease the noise and over-fitting problems between the
training dataset, resulting in enhancing the accuracy of the model [15,17,92,93]. Basically, the findings
depicted that the RS-REPTree ensemble model could well enhance the prediction accuracy of the
REPTree as a classifier for the prediction of local scour depth at piers with complex geometry. This
finding is in agreement with Cheng and Cao [46] who reported the capability of the IFRIM as a
promising tool for civil engineers to estimate local scour at piers with simple geometry.

5. Conclusions

The complexity of the scour mechanisms at piers with non-uniform geometry caused the
inaccuracy in the empirical methods presented for scouring prediction at these piers. In this research,
the comprehensive datasets were used to evaluate the most commonly used empirical methods and
to present a machine learning algorithms approach for predicting LSCP. The typical geometry of non-
uniform piers is a complex pier (CP) composed of a column resting on a pile cap supported by a
group of piles, which is investigated in this research. The most obvious findings to emerge from this
study can be present as:

1. The machine learning algorithms have the powerful capability to predict LSCP and the hybrid
models can improve the performance of separate models in predicting LSCP.

2. Computing benchmark algorithms presented in this research have the potential to alter the LSCP
prediction in comparison with the most well-known empirical methods, namely HEC-18 and
FDOT methods.

3. The state-of-the-art RS-REPTree ensemble model, with the highest accuracy of the REPTree, is
proposed as a classifier for the prediction of the LSCP.

4. The pile cap location (Y) was a more sensitive factor for LSCP among other factors based on the
availability of data.
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Abbreviations
RMSE Root Mean Squared Error
LSCP Local Scour Depth at Complex Piers
RS Random Subspace
ANN Artificial Neural Network
R Correlation Coefficient
dso Median Sediment Size
Ys Scour Depth
h Water Depth
be Column Width
lc Column Length
bpe Pile Cap Width
Ipe Pile Cap Length
T Pile Cap Thickness
Lu Extension length of pile cap out from the column face
Lf Extension width of pile cap out from the column
Kse Shape factor for the column
Kspe Shape factor for the pile cap
bpg Pile diameter
F: Froude number
m Number of piles in line with the flow
n Number of piles normal with the flow
Si Pile spacing in line with the flow
Sb Pile spacing normal with the flow
Y Pile cap elevation in respect to undisturbed streamflow
be Equivalent width/diameter
Vscol Column’s scour
Vspe Pile cap’s scour
Vspg Scour of pile group
Dse Equivalent diameters of the complex pier
Decol Equivalent diameters of the column
Depc Equivalent diameters of the pile cap
Depg Equivalent diameters of the pile group
X Training dataset
S Subset of training dataset
Ue Critical velocity for the beginning of sediment motion
8] Mean approach flow velocity
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